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The Schrödinger equation for the ground state of the hydrogen molecule H2 is solved by applying the
Rayleigh-Ritz variational method in Hylleraas coordinates without using the Born-Oppenheimer approximation.
The nonrelativistic energy eigenvalue is converged to −1.164 025 030 880(7) atomic units. The leading-order
relativistic corrections, including the mass-velocity, Darwin, orbit-orbit, spin-spin, and relativistic recoil terms,
are evaluated perturbatively. Together with the higher-order relativistic and quantum electrodynamic corrections
obtained by Puchalski et al. [Phys. Rev. Lett. 117, 263002 (2016)], we determine the dissociation energy of the
hydrogen molecule, D0 = 36 118.069 71(33) cm−1, which agrees with the two recent experimental results of Liu
et al. [J. Chem. Phys. 130, 174306 (2009)], 36 118.069 62(37) cm−1, and Altmann et al. [Phys. Rev. Lett. 120,
043204 (2018)], 36 118.069 45(31) cm−1.
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I. INTRODUCTION

Recent experimental measurements have been able to de-
termine the dissociation energy of the hydrogen molecule
H2 to an accuracy of 10−4 cm−1 [1,2]. This new level of
accuracy has provided an opportunity for theorists to test
computational methods and relativistic and quantum electro-
dynamic (QED) effects in molecular systems. To match this
precision theoretically, as demonstrated by Puchalski et al.
[3], in addition to the nonrelativistic contribution that has to be
calculated to sufficiently high accuracy, the leading relativistic
and QED corrections of orders O(α2) and O(α3), as well
as the higher-order corrections of O(α4) and O(α5), have
to be included in the calculation. For the ground state of
H2, the nonrelativistic energy has been determined accurately
by two groups: Adamowicz’s group and Pachucki’s group.
Adamowicz’s group obtained a nonrelativistic dissociation
energy 36 118.797 736(13) cm−1 [4] variationally using ex-
plicitly correlated Gaussian basis sets without assuming the
Born-Oppenheimer approximation. In the Pachucki group’s
approach, either the nonadiabatic perturbation theory [5] or
fully nonadiabatic variational calculation with the James-
Coolidge basis functions [6] was applied. Their nonrelativistic
dissociation energy is 36 118.797 746 10(3) cm−1 [7]. These
nonrelativistic values have reached or even exceeded present
spectroscopic precision. The leading-order relativistic and
QED corrections and higher-order corrections have been cal-
culated systematically by Pachucki’s group [3,8–10] using an
adiabatic approximation. However, the new theoretical disso-
ciation energy determined by Pachucki’s group [3] deviates
from the experimental values [1,2] by about 2σ , which is
ascribed to the uncalculated leading relativistic recoil effect
of order O(α2me/mp). The agreement of the two former

theoretical dissociation energies calculated in Refs. [9,10] with
the experimental value of Liu et al. [1] was considered to be
accidental [3]. If we take the leading-order relativistic contri-
bution, including the recoil effect, from Ref. [11] obtained in
a fully nonadiabatic way, as well as other contributions from
Pachucki group’s values, we do not see an agreement with the
experimental values [1,2]. It is therefore desirable to perform
an independent calculation for the leading-order relativistic
corrections and the recoil effect.

In the past two decades, the variational method in Hylleraas
coordinates has been successfully applied to high-precision
calculations of three-electron atomic systems [12–14]. The
nonrelativistic variational energy of the ground state of
lithium, for example, has been calculated to an accuracy
of a few parts in 1015 using the Hylleraas basis [13,15].
Though the Hylleraas basis sets have also been extended
to the calculations of two-center hydrogen molecular ions
with a high accuracy [16–18], the Hylleraas basis sets have
not yet been applied to neutral hydrogen molecules. In this
Rapid Communication, we present the calculations of the
nonrelativistic energy and the leading-order relativistic cor-
rections, including the recoil effect, for the ground state of
the hydrogen molecule H2 fully nonadiabatically using the
Hylleraas basis sets. Our calculated values of the nonrelativistic
and leading-order relativistic (including the recoil effect)
contributions to the ground-state dissociation energy are,
respectively, 36 118.797 745 5(16) and −0.531 255(63) cm−1.
Together with the QED and higher-order corrections cal-
culated by Pachucki’s group [8], the dissociation energy is
thus determined to be D0 = 36 118.069 71(33) cm−1, which
is in good accord with the two recent experimental results of
36 118.069 62(37) cm−1 [1] and 36 118.069 45(31) cm−1 [2].
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In this Rapid Communication, the following physical
constants are used [19]: the fine-structure constant α =
1/137.035 999 139(31), the proton-to-electron mass ratio
mp/me = 1 836.152 673 89(17), and the Rydberg constant
R∞ = 10 973 731.568 508(65) m−1. Atomic units are used
unless otherwise stated.

II. NONRELATIVISTIC WAVE FUNCTIONS
AND ENERGIES

In the laboratory frame, the nonrelativistic Hamiltonian for
a general four-body Coulombic system is [20]

H = −
3∑

i=0

1

2mi

∇2
Ri

+
3∑

0�i<j

qiqj

|Ri − Rj | , (1)

where mi , qi , and Ri denote the mass, charge, and coordinates
of the ith particle, respectively. By introducing the center-of-
mass coordinates and the relative coordinates

X =
∑3

i=0 miRi∑3
i=0 mi

, (2)

ri = Ri − R0, i = 1,2,3, (3)

and eliminating the center-of-mass motion, the Hamiltonian
describing the internal motion of the system is thus

H = −
3∑

i=1

1

2μi

∇2
ri

−
3∑

1�i<j

1

m0
∇ri

· ∇rj

+
3∑

i=1

q0qi

ri

+
3∑

1�i<j

qiqj

|ri − rj | , (4)

where μi = mim0/(mi + m0). For the H2 molecule, we choose
one of the two protons to be the reference particle located at
R0. The Hamiltonian thus becomes

H = − 1 + mp

2mp

(∇2
r1

+ ∇2
r2

) − 1

mp

∇2
r3

− 1

mp

3∑
1�i<j

∇ri
· ∇rj

− 1

r1
− 1

r2
+ 1

r3
+ 1

r12
− 1

r23
− 1

r31
, (5)

where r1 and r2 are the position vectors of the two electrons
relative to the proton at R0, and r3 the position vector of the
second proton relative to the first.

For a pure vibrational state of H2, the angular momentum
of the system is zero. The variational wave function can
be expanded in terms of the following Hylleraas type basis
functions,

φ(r1,r2,r3) = r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−αr1−βr2−γ r3

×χ (1,2) − (1 ↔ 2), (6)

where the symbol (1 ↔ 2) denotes the exchange between the
two electrons, and

χ (1,2) = α(1)β(2) − β(1)α(2) (7)

is the electronic spin function with the total spin S = 0. Here,
the two protons are treated as spinless particles since the
hyperfine structure is not considered in the present work. The

TABLE I. Convergence study of the nonrelativistic energy for the
ground state of H2, in atomic units.

� No. of terms E(�) R(�)

5 256 −1.163 966 582 926 6
6 500 −1.164 014 701 977 4
7 912 −1.164 022 742 555 1 5.98
8 1570 − 1.164 024 430 412 5 4.76
9 2570 − 1.164 024 883 582 6 3.72
10 4050 − 1.164 025 005 934 5 3.70
11 6150 − 1.164 025 025 391 4 6.28
12 9070 − 1.164 025 029 087 2 5.26
13 13 008 − 1.164 025 030 293 0 3.06
14 19 728 − 1.164 025 030 779 7 2.47
15 27 456 − 1.164 025 030 834 7 8.83
16 37 536 − 1.164 025 030 862 5 1.98
17 50 448 − 1.164 025 030 873 2 2.60
Extrap. ∞ − 1.164 025 030 880(7)
Ref. [4] 10 000 − 1.164 025 030 84(6)
Ref. [7] ∞ − 1.164 025 030 883 1(3)

basis set is divided into six to ten blocks and the basis functions
in the ith block satisfy the conditions

j1 + j2 + j12 + j23 + j31 � � + 1 − i, (8)

j3 = 34 + i, 1 � i � 10, (9)

where j1,j2,j3,j12,j23,j31 are non-negative integers, and � is
an integer that controls the size of the basis set. The terms
with j1 > j2, as well as terms with j1 = j2, j23 > j31, are
omitted to avoid the near linear dependence problem. The
integral problems involving Eq. (6) were solved by Drake and
Yan two decades ago [21]. For a diatomic molecular system,
one essential difference from an atomic system is the high
localization of the two nuclei so that the vibrational modes
between the two nuclei have to be treated properly. Bhatia and
Drachman [22] pointed out that this feature can be simulated
satisfactorily by using the function ρNe−bρ , provided N is
large and b ≈ N/2. In our basis functions, we choose j3 � 35
and 25 < γ < 32 to describe the vibrational modes between
the two protons. The parameters α and β, which determine
the behaviors of the two electrons, are within 1.0 and 2.3.
The optimal values of these nonlinear parameters are finally
determined by an optimization program.

Table I shows a convergence study of the nonrelativistic
energy for the ground state of H2 as the size of the basis
set increases progressively. The parameter R(�), which is a
measure of the rate of convergence, is defined by

R(�) = E(� − 1) − E(� − 2)

E(�) − E(� − 1)
. (10)

For� � 12, we divide the basis set into six blocks. For� = 13,
the number of blocks is eight. For � � 14, it is ten blocks. The
nonrelativistic energy, calculated to −1.164 025 030 873 a.u.
at � = 17, is extrapolated to −1.164 025 030 880(7) a.u. Our
result is slightly lower than that of Adamowicz’s group [4], but
is less accurate than that of Pachucki’s group [7] by about two
orders of magnitude.
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III. LEADING-ORDER RELATIVISTIC CORRECTIONS

The leading relativistic corrections of orderα2 Ry, including
the relativistic recoil corrections of order (me/mp)α2 Ry and
(me/mp)2α2 Ry, are calculated using the first-order perturba-
tion theory,


Erel = 〈�0|Hrel|�0〉, (11)

where �0 is the nonrelativistic wave function for the state
of interest and Hrel is the total leading-order relativistic cor-
rection operator that includes several terms. These relativistic
correction operators have been studied for a general Coulombic
system by Stone [23]. In the center-of-mass frame, these
relativistic terms, specific to the ground state of H2, are

HMV = −1

8
α2

(
p4

1 + p4
2

)
, (12)

HSS = 2πα2δ3(r12), (13)

HD = π

2
α2[δ3(r1) + δ3(r2) + δ3(r23) + δ3(r31) − 2δ3(r12)]

+ π

2

1

m2
p

α2[δ3(r1) + δ3(r2) + δ3(r23) + δ3(r31)], (14)

where δ3(r23) + δ3(r31) = δ3(r1) + δ3(r2) due to the symmetry
of the system, and

HOO = 1

2
α2

[
1

r21
∇2 · ∇1 + 1

r3
21

r21(r21 · ∇2)∇1

]

− 1

2
α2 1

mp

2∑
i=1

[
1

r3i

∇3 · ∇i + 1

r3
3i

r3i(r3i · ∇3)∇i

]

+ 1

2
α2 1

mp

2∑
i=1

⎡
⎣ 1

ri

∇i ·
3∑

j=1

∇j + 1

r3
i

ri(ri · ∇i)
3∑

j=1

∇j

⎤
⎦

− 1

2
α2 1

m2
p

⎡
⎣ 1

r3
∇3 ·

3∑
j=1

∇j + 1

r3
3

r3(r3 · ∇3)
3∑

j=1

∇j

⎤
⎦,

(15)

where HMV is the correction due to the variation of mass with
velocity, HSS a spin-spin type of interaction between the two
electrons, HD is the contact interaction which is also called
the Darwin term, and HOO is the correction due to retardation
effects. The terms proportional to (me/mp)3 in Eq. (12) have
been omitted at the present level of precision. For the sake of
convenience we rewrite HOO in the form

HOO = α2

2

(
O1 − 1

mp

O2 + 1

mp

O3 − 1

m2
p

O4

)
, (16)

where

O1 = 1

r21
∇2 · ∇1 + 1

r3
21

r21(r21 · ∇2)∇1, (17)

O2 =
2∑

i=1

[
1

r3i

∇3 · ∇i + 1

r3
3i

r3i(r3i · ∇3)∇i

]
, (18)

O3 =
2∑

i=1

⎡
⎣ 1

ri

∇i ·
3∑

j=1

∇j + 1

r3
i

ri(ri · ∇i)
3∑

j=1

∇j

⎤
⎦, (19)

O4 = 1

r3
∇3 ·

3∑
j=1

∇j + 1

r3
3

r3(r3 · ∇3)
3∑

j=1

∇j . (20)

In order to improve the rate of convergence for the expectation
value of HMV , we use the following general transformation,

〈ψ |HMV |ψ〉 = α2

4
〈ψ |p2

1p
2
2 + 2

1 + mp

p2
1p

2
3

+ 2

1 + mp

p2
2p

2
3|ψ〉

− α2

2

m2
p

(1 + mp)2
〈ψ |(E − V )2|ψ〉

− α2

2

mp

(1 + mp)2
〈ψ |(E − V )

3∑
i<j

∇i · ∇j

+
3∑

i<j

∇i · ∇j (E − V )|ψ〉

+ α2

2

1

(1 + mp)2
〈ψ |p4

3|ψ〉

− α2

2

1

(1 + mp)2
〈ψ |

⎛
⎝ 3∑

i<j

∇i · ∇j

⎞
⎠

2

|ψ〉,

(21)

where E and ψ are, respectively, the energy eigenvalue and the
corresponding eigenfunction of the state of interest. For δ3(ri)
and δ3(rij ), the Drachman’s globalization method [24] can be
generalized to the H2 system,

〈ψ |δ3(ri)|ψ〉 = 1

2πλi

〈ψ | 1

ri

(Vd − E)|ψ〉

− 1

2πλi

3∑
s=1

λs〈∇sψ | 1

ri

|∇sψ〉, (22)

TABLE II. Expectation values of the relativistic correction oper-
ators, in atomic units.

� p4
1 + p4

2 δ3(r1) + δ3(r2) δ3(r12) × 102

5 13.005 250 0.451 544 206 5 1.611 685 62
6 13.009 415 0.451 477 426 1 1.613 290 10
7 13.009 026 0.451 463 095 9 1.613 712 54
8 13.008 319 0.451 462 580 9 1.613 904 82
9 13.007 529 0.451 465 150 0 1.614 080 95
10 13.007 380 0.451 462 356 4 1.614 069 00
11 13.007 343 0.451 461 981 1 1.614 066 58
12 13.007 326 0.451 461 942 7 1.614 065 28
13 13.007 315 0.451 461 945 2 1.614 066 56
14 13.007 306 0.451 461 952 3 1.614 068 15
15 0.451 461 953 0
Extrap. 13.007 27(4) 0.451 461 95(2) 1.614 068(4)
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TABLE III. Expectation values of O1, O2, O3, and O4, in atomic units.

� O1 × 102 O2 O3 O4

5 − 9.338 293 2.489 114 −2.495 529 126 −12.385 413
6 − 9.284 777 2.493 504 −2.494 464 842 −12.358 607
7 − 9.269 364 2.494 225 −2.494 373 948 −12.357 297
8 − 9.263 620 2.494 329 −2.494 356 207 −12.357 169
9 − 9.259 710 2.494 345 −2.494 356 512 −12.357 125
10 − 9.259 437 2.494 352 −2.494 356 044 −12.357 130
11 − 9.259 354 2.494 354 −2.494 356 097 −12.357 123
12 − 9.259 313 2.494 357 −2.494 356 054 −12.357 115
13 − 9.259 292 −2.494 356 069 −12.357 114
14 − 9.259 268 −2.494 356 060 −12.357 115
15 − 9.259 248
Extrap. − 9.259 24(4) 2.494 356(2) −2.494 356 06(3) −12.357 115(5)

〈ψ |δ3(rij )|ψ〉 = 1

2π (λi + λj )
〈ψ | 1

rij

(Vd − E)|ψ〉

− 1

2π (λi + λj )

3∑
s=1

λs〈∇sψ | 1

rij

|∇sψ〉,

(23)

with

Vd = − 1

r1
− 1

r2
+ 1

r3
+ 1

r12
− 1

r23
− 1

r31
− 1

mp

∑
i<j

∇i · ∇j ,

(24)
and

λ1 = λ2 = −1 + mp

2mp

, λ3 = − 1

mp

,

λ12 = λ23 = λ31 = − 1

mp

. (25)

In the calculations of the matrix elements of these operators,
some singular integrals such as 〈r−2

ij 〉 and 〈r−3
ij 〉 will emerge.

The methods to deal with these singular integrals have been
developed by Yan and Drake [25].

The expectation values of the relativistic operators and their
convergence behaviors are listed in Tables II and III. It can be
seen that all the expectation values of these operators converge
to an accuracy of 10−6 or better, yielding the total leading-order
relativistic correction (including the recoil effect) to the ground
state of H2 to be 
E

(2)
mol = −2.390 574(63) cm−1. As for the

leading-order relativistic correction to the ground state of the
atomic hydrogen, we use the following formula [19,26],


E
(2)
ato = −mrα

2

[
1

8
+ mr

8(1 + mp)

]
, (26)

where mr = memp/(me + mp) is the reduced mass of the
electron. Then we obtain the leading-order relativistic con-
tribution to the dissociation energy of the hydrogen molecule

E

(2)
diss = −0.531 255(63) cm−1, which is in better agreement

TABLE IV. Contributions to the dissociation energy D0 of H2 and comparison with other calculations and experiments, in cm−1. In the
table, “BO” stands for the Born-Oppenheimer approximation.

Contribution D0 BO or Non BO Reference

E(0) 36 118.797 736(13) Non BO Bubin et al. [4]
36 118.797 746 10(3) Non BO Pachucki and Komasa [7]
36 118.797 745 5(16) Non BO This work

E(2) −0.531 9(3) BO Piszczatowski et al. [9]
−0.531 8(3) BO Puchalski et al. [8]

−0.533 121(1) BO Puchalski et al. [3]
−0.569 1 Non BO Stanke and Adamowicz [11]

−0.531 255(63) Non BO This work
E(3) −0.194 8(2) BO Komasa et al. [10]
E(4) −0.002 067(6) BO Puchalski et al. [8]
E(5) 0.000 12(6) BO Puchalski et al. [8]
EFS −0.000 031 BO Puchalski et al. [8]
Theory 36 118.069 5(10) Piszczatowski et al. [9]

36 118.069 1(6) Puchalski et al. [8]
36 118.067 8(6) Puchalski et al. [3]

36 118.069 71(33) This work
Experiment 36 118.069 62(37) Liu et al. [1]

36 118.069 45(31) Altmann et al. [2]
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with Pachucki group’s earlier values [8,9] than their most
recent one [3]. There is a large discrepancy between our value
and the one in Ref. [11].

Together with the higher-order relativistic and QED
corrections calculated by Pachucki’s group [8,10], we fi-
nally determine the dissociation energy of H2 to be D0 =
36 118.069 71(33) cm−1, which agrees with the two re-
cent experimental results of 36 118.069 62(37) cm−1 [1] and
36 118.069 45(31) cm−1 [2]. The various contributions to the
dissociation energy of H2 are listed in Table IV, where E(n) is
the contribution of order αn Ry, and EFS is the one from the
proton charge distribution.

IV. SUMMARY

The Schrödinger equation for the ground state of the
hydrogen molecule H2 has been solved in Hylleraas coordi-
nates without assuming the Born-Oppenheimer approxima-
tion. The nonrelativistic energy calculated by us is slightly
better than that of Adamowicz’s group [4]; however, it is
less accurate than that of Pachucki’s group [7], by about two

orders of magnitude. The leading-order relativistic corrections,
including the relativistic recoil effect, have then been cal-
culated perturbatively. We have found that the leading-order
relativistic effect contributes to the dissociation energy of
H2 by an amount of −0.531 255(63) cm−1. Together with
the higher-order relativistic and QED corrections obtained
by Pachucki’s group [8,10], we have determined the disso-
ciation energy to be D0 = 36 118.069 71(33) cm−1, which
is in perfect agreement with the most recent experimental
results of 36 118.069 62(37) cm−1 [1] and 36 118.069 45(31)
cm−1 [2].
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