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Lorenz-Mie scattering of focused light via complex focus fields: An analytic treatment
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The Lorenz-Mie scattering of a wide class of focused electromagnetic fields off spherical particles is studied.
The focused fields in question are constructed through complex focal displacements, leading to closed-form
expressions that can exhibit several interesting physical properties, such as orbital and/or spin angular momentum,
spatially varying polarization, and a controllable degree of focusing. These fields constitute complete bases that
can be considered as nonparaxial extensions of the standard Laguerre-Gauss beams and the recently proposed
polynomials-of-Gaussian beams. Their analytic form turns out to lead also to closed-form expressions for their
multipolar expansion. Such expansion can be used to compute the field scattered by a spherical particle and the
resulting forces and torques exerted on it, for any relative position between the field’s focus and the particle.
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I. INTRODUCTION

Optical trapping and manipulation constitute important
techniques in research on systems that range from the bio-
logical to the quantum mechanical [1–3], with the size of the
trapped object(s) varying by around four orders of magnitude.
Single-beam optical traps (often known as optical tweezers)
are made possible by the existence of the so-called gradient
force. When the irradiance gradient is sufficiently large, this
force can counteract the radiation pressure exerted on the object
by the field, as first determined by Ashkin and collaborators
[4,5]. Early analysis [5,6] of single-beam optical traps focused
on scatterers whose size is much smaller than the optical
wavelength λ, allowing the use of Rayleigh’s approximation in
which the expressions for the induced forces and torques take
simple forms. Later work considered the opposite limit, where
the size of the scatterer is much larger than λ, thus allowing an
accurate treatment in terms of geometrical optics [7,8].

To achieve a sufficiently large gradient force to produce a
stable trap, the incident light must be strongly focused, requir-
ing a high-numerical-aperture microscope objective. Analysis
of the forces and torques acting on an object whose size is
between the Rayleigh and geometrical optics limits requires a
generalization of Lorenz-Mie scattering, which, in its original
form, treated the scattering of a plane wave by a spherical
particle. A substantial body of work has been devoted to
generalizing Lorenz-Mie scattering to treat arbitrarily shaped
fields and scatterers (cf. Refs. [9–16]).

Scattering of arbitrary fields is described by using the
generalized Lorenz-Mie theory (GLMT) [15,16], which relies
on the decomposition of the incident field in terms of vector
multipoles [17–20] and the fulfillment of boundary conditions
through the use of the appropriate T matrix [12–15]. Past
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treatments of the scattering of focused electromagnetic fields
[20–28] provide a variety of models for optical tweezers.
These models differ from each other primarily in how the
focused incident field is described: through field matching
[20–22], through use of the Richards-Wolf diffraction theory
(cf. Refs. [6,29,30]) to focus a paraxial beam by an optical
element [23–25], or via an ad hoc extension of paraxial beams
to the nonparaxial electromagnetic regime [26–28,31]. In all
these treatments, the expressions for the coefficients of the
vector multipoles in the beam decomposition are typically
not analytic; i.e., computation of these expressions requires
numerical integration.

The present treatment relies on models for the focused
incident field that allow for analytic expressions for the
coefficients in the decomposition. These models are based
on what is referred to here as complex focus (CF) fields
[32–35] and their generalizations to complete sets of bases
[36,37]. Please note that complex focus fields are similar to
complex source-point (CSP) fields [35,38–41] except that they
are free of the branch ring at the focal plane that makes CSP
fields singular multivalued solutions; CF fields are analytic
everywhere. CF fields are known to be a rigorous nonparaxial
extension of Gaussian beams [32–34] (required since Gaussian
beams are a solution to the paraxial wave equation that is
not valid in the high-numerical-aperture case). Previous work
on Mie scattering by CF fields has been limited to low-order
modes or to the scalar regime [42–45].

In the present work, we describe the Lorenz-Mie scattering
of the elements of the bases given in Refs. [36,37]. The fields
derived in Ref. [36] can be considered as rigorous nonparaxial
electromagnetic analogs to the Laguerre-Gauss (LG) beams,
given in terms of a closed-form expression, without the need
for undetermined functions and numerical integrals [23,31],
whereas those proposed in Ref. [37] are the nonparaxial
electromagnetic extension of the polynomials-of-Gaussians
(PG) bases [46,47], which present some useful confinement
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properties while providing a radial and angular structure
similar to that of LG beams. These bases allow the study of
fields with orbital angular momentum (OAM) [3,48,49] and
its coupling with polarization or spin angular momentum [50].
We derive analytic expressions for the coefficients in their
multipolar expansion, valid for any relative position between
the scatterer and the incident field. Therefore, the use of
a translation equation with limited accuracy [51,52] can be
avoided.

II. VECTOR MULTIPOLES

We restrict our attention to monochromatic electromagnetic
free fields in homogeneous transparent media, with assumed
time dependence given by exp(−iωt). These fields satisfy the
vector Helmholtz equation

∇2E(r) + k2E(r) = 0, (1)

with the added divergence condition

∇ · E(r) = 0, (2)

where k = 2πn0/λ is the wave number and n0 is the index
of refraction of the background medium, which is assumed
to be real. Any such field can be expressed as a continuous
superposition of plane waves; that is,

E(r) =
∫

4π

A(u)eiku·rd�, (3)

where u is a real unit vector indicating the plane-wave direction
and A(u) is the plane-wave amplitude (PWA), often referred
to as the angular spectrum. Note that the divergence condition
imposes transversality of the PWA, u · A(u) = 0. The unit
vector u is the variable of integration through the angles θ

and φ in PWA (or direction) space.
In spherical coordinates, Eqs. (1) and (2) yield the standard

source-free solutions �
(I)
l,m and �

(II)
l,m known as the vector

multipoles (also referred to as the vector spherical wave
functions and denoted as Ml,m and Nl,m [15,16]). They are
given by

�
(I)
l,m(r) = 1

k
√

l(l + 1)
∇ × ∇ × [r�l,m(r)], (4a)

�
(II)
l,m(r) = i√

l(l + 1)
∇ × [r�l,m(r)], (4b)

where

�l,m(r) = 4πiljl(kr)Yl,m(θr ,φr ) (5)

are the scalar multipoles, with

Yl,m(θ,φ) = σm
m

√
(2l + 1)(l − m)!

4π (l + m)!
P

(m)
l (cos θ )eimφ (6)

being the spherical harmonics [σm = sgn(m + 1/2)] and jl

the spherical Bessel functions. Here, θr , φr , and r denote
the spherical coordinates in physical space. Note that the
normalization coefficients in Eqs. (4) and (5) differ from those
used in other works (see, for example, Refs. [9,10]).

The PWA of the vector multipoles is given by [53]

�
(I)
l,m(r) =

∫
4π

Zl,m(u)eiku·rd�, (7a)

�
(II)
l,m(r) =

∫
4π

Yl,m(u)eiku·rd�, (7b)

where

Zl,m(θ,φ) = u × Yl,m(θ,φ), (8a)

Yl,m(θ,φ) = 1√
l(l + 1)

LuYl,m(θ,φ), (8b)

are the vector spherical harmonics and

Lu = −iu × ∇� = i
θ̂

sin θ

∂

∂φ
− iφ̂

∂

∂θ
(9)

is the angular-momentum operator in PWA space. This is
analogous to the relationship satisfied in the scalar case:

�l,m(r) =
∫

4π

Yl,m(u)eiku·rd�. (10)

The vector multipoles form a complete orthonormal basis for
monochromatic electromagnetic free fields [17–20] and are
central to Lorenz-Mie scattering theory since they constitute
the appropriate set to satisfy the boundary conditions when the
scatterer is spherical [9,10].

III. BASES OF COMPLEX FOCUS FIELDS

A. Complete bases

As mentioned in the introduction, the incident fields used for
trapping and manipulation must be highly focused in order to
produce the necessary intensity gradient to counteract radiation
pressure. However, most approaches to describe this type of
field involve integral expressions rather than closed forms.
This is not the case for the CF constructions proposed in
Refs. [36,37], which are given by analytic expressions and can
incorporate properties of interest such as OAM, different states
of polarization, and a controllable degree of focusing [3].

The main idea behind CF fields can be understood through
the shift-phase property of Fourier transforms. Consider any
free field that is described by a closed-form expression.
Clearly, the field that results from a spatial displacement of
this expression is also expressible in closed form, even if
such a displacement is complex. Since the PWA space is
a reduced version of Fourier space, a spatial shift by an
imaginary distance in the z direction (z → z − iq) amounts
to multiplication of the PWA by a real exponential of the form
exp(kq cos θ ). This factor weights more heavily the directions
around the positive z direction (namely, θ = 0) thus inducing a
controllable degree of directionality through the parameter q.
Figure 1 illustrates this effect for one of the basis elements
considered here: as kq decreases, the field becomes more
focused, and nonparaxial effects become more apparent, such
as the loss of rotational symmetry of the focal spot.

Different sets of complete bases can be constructed through
complex displacements of multipoles. Here, we consider the
two options proposed in Refs. [36,37]. For the first [36], the
elements are given by weighted superpositions of complex
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FIG. 1. Intensity profiles over the Cartesian planes for the basis
element L(II)

1,1 quasilinearly polarized along y with kq = 15 (5) in the
first (second) row.

multipoles with equal imaginary displacement and different
radial indices:

L(I)
n,m(r; q) = 1

ik

n∑
p=0

α(p)
n,m(q)∇ × [V†

r�|m|+p,m(r − iq ẑ)],

(11a)

L(II)
n,m(r; q) =

n∑
p=0

α(p)
n,m(q)Vr�|m|+p,m(r − iq ẑ), (11b)

where Vr is a polarization operator to be discussed in the next
section. The coefficients α

(p)
n,m(q) depend on the choice of polar-

ization and can be calculated by using the expressions provided
in Appendix A. In the paraxial regime (kq � 1), the elements
of this basis reduce to the standard LG beams; we therefore
refer to them here as the nonparaxial Laguerre-Gauss (NLG)
fields. The second type of basis was presented in Ref. [37] and
is given by a weighted sum of complex multipoles of equal
indices but different imaginary displacements according to

Q(I)
n,m(r; q) = 1

ik

n∑
p=0

β(p)
n,m(q)∇

×{V†
r�|m|,m[r − i(2p + 1)q ẑ]}, (12a)

Q(II)
n,m(r; q) =

n∑
p=0

β(p)
n,m(q)Vr�|m|,m[r − i(2p + 1)q ẑ].

(12b)

Again, the coefficients β
(p)
n,m(q) depend on the choice of

polarization and can be calculated by using the formulas
given in Appendix A. Two variants of this type of basis are
considered [37]: one that is orthogonal in PWA space but
that requires nonstandard polynomials, and one that is not
exactly orthogonal but that is expressible in terms of Jacobi
polynomials. These correspond to nonparaxial extensions of
the bases expressed as polynomials of Gaussians [46,47]; we
then refer to them as nonparaxial polynomials-of-Gaussians
(NPG) fields.

B. Polarization operators

The operators Vr and (ik)−1∇ × V†
r in Eqs. (11) and (12)

determine the two orthogonal polarization distributions em-
ployed by the elements of the bases. It is convenient to define
them in terms of their PWA representation, which is related to
that in physical space by the substitution u ↔ ∇/ik. Hence,
the first operator, written as Vu, must satisfy the transversality
condition u · Vu = 0; the second operator, given by u × V†

u,
satisfies this condition automatically. The polarization opera-
tors considered here are multiplicative in the PWA space and
differential in physical space (other options are used, e.g., in
Ref. [36]). These operators are of the general form

Vu = V(E)
u (p1) + V(M)

u (p2), (13a)

u × V†
u = V(M)

u (p∗
1) − V(E)

u (p∗
2), (13b)

where the electric-like and magnetic-like dipolar distributions
are defined as

V(E)
u (p) = u × p × u = p − u(u · p), (14a)

V(M)
u (p) = u × V(E)

u (p) = u × p, (14b)

with p being a vector indicating the direction of the dipole
moment.

Three particular polarization distributions of this type are
considered, all of which resemble the focusing of a colli-
mated field with a simple incident polarization according
to the Richards-Wolf theory [29]. These are (i) the “quasi-
linear” polarization basis, which resembles the focusing of
linearly polarized beams in the x and y directions and
for which Vu = V(E)

u (x̂) − V(M)
u (ŷ); (ii) the “quasicircular”

polarization basis, which resembles the focusing of beams
with circular polarization ε± = (x̂ ± iŷ)/2, for which Vu =
21/2 exp(iπ/4)[V(E)

u (ε+) + iV(M)
u (ε+)]; and (iii) the “TE-TM”

polarization basis, which resembles the focusing of beams with
azimuthal and radial polarizations, for which Vu = −V(E)

u (ẑ).
Figure 2 shows the polarization vectors along the sphere of
directions corresponding to the quasilinear and TE-TM oper-
ators. It is worth mentioning that for the TE-TM polarizations
the paraxial limit leads not to LG and PG beams but to related
cylindrical vector beams [54].

FIG. 2. Polarization vectors Vu and u × V†
u in PWA space for the

(a) quasilinear and (b) TE-TM polarizations.
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IV. SCATTERING

A. Translation equation

The first step for solving the scattering problem is to express
the field in terms of vector multipoles centered around the
scattering particle, assumed to be located at the origin (which
does not necessarily coincide with the focus of the incident
field). To do this for the elements of both types of basis, the
decomposition of V(E)

r (p)�l,m(r − ρ0) and V(M)
r (p)�l,m(r −

ρ0) is required, where ρ0 is a complex shift. This allows us
to treat simultaneously the imaginary shift of the CF fields

controlling the directionality through the parameter q as well
as the real shift, r0, locating the focus of the field with respect
to the scatterer. It is shown in Appendix B that the result is

V(E)
r (p)�l,m(r − ρ0) =

∑
L,M

[
η

(l,m)
L,M �

(I)
L,M (r) + ξ

(l,m)
L,M �

(II)
L,M (r)

]
,

(15a)

V(M)
r (p)�l,m(r − ρ0) =

∑
L,M

[
ξ

(l,m)
L,M �

(I)
L,M (r) − η

(l,m)
L,M �

(II)
L,M (r)

]
,

(15b)

where

η
(l,m)
L,M (ρ0,p) = ip ·

{√
(L + 1)

L(2L + 1)(2L − 1)

[−√
(L − M)(L − M − 1)γ (l,m)

L−1,M+1(ρ0)ε+

+
√

(L + M)(L + M − 1)γ (l,m)
L−1,M−1(ρ0)ε− −

√
(L − M)(L + M)γ (l,m)

L−1,M (ρ0)ẑ
]

+
√

L

(L + 1)(2L + 1)(2L + 3)

[−√
(L + M + 2)(L + M + 1)γ (l,m)

L+1,M+1(ρ0)ε+

+
√

(L − M + 2)(L − M + 1)γ (l,m)
L+1,M−1(ρ0)ε− +

√
(L + M + 1)(L − M + 1)γ (l,m)

L+1,M (ρ0)ẑ
]}

, (16a)

ξ
(l,m)
L,M (ρ0,p) = 1√

L(L + 1)
p · [√

(L − M)(L + M + 1)γ (l,m)
L,M+1(ρ0)ε+

+
√

(L + M)(L − M + 1)γ (l,m)
L,M−1(ρ0)ε− + Mγ

(l,m)
L,M (ρ0)ẑ

]
. (16b)

Here, γ
(l,m)
l′,m′ are the coefficients of the corresponding scalar translation equation [45],

�l,m(r − ρ0) =
∑
l′,m′

γ
(l,m)
l′,m′ (ρ0)�l′,m′ (r), (17)

where

γ
(l,m)
l′,m′ (ρ0) =

∫
Y ∗

l′,m′ (u)Yl,m(u)e−ikρ0·ud�

=
l+l′∑

j=|l−l′ |
(−1)m

′
√

(2l′ + 1)(2j + 1)(2l + 1)

4π

(
l′ j l

0 0 0

)(
l′ j l

−m′ m′ − m m

)
�∗

j,m′−m(ρ∗
0), (18)

with (
l1 l2 l3
m1 m2 m3

)

being the Wigner 3j symbols. Note that these coefficients differ
from zero only if j has the same parity as l + l′, so the sum in
Eq. (18) is in steps of two.

Using this translation equation and the general form for the
polarization operators [Eq. (13)], the translated elements of the
bases can be written in terms of centered vector multipoles (we
write U (I,II)

n,m to denote either L(I,II)
n,m or Q(I,II)

n,m ) as

U (I)
n,m(r − r0; q) =

∑
L,M

(
μ̄

(n,m)
L,M �

(I)
L,M (r) − ῡ

(n,m)
L,M �

(II)
L,M (r)

)
,

(19a)

U (II)
n,m(r − r0; q) =

∑
L,M

(
υ

(n,m)
L,M �

(I)
L,M (r) + μ

(n,m)
L,M �

(II)
L,M (r)

)
.

(19b)

The complete dependence of the coefficients and exact form
is given as follows: for the NLG basis,

υ
(n,m)
L,M (r0,q; p1,p2) =

n∑
p=0

α(p)
n,m(q)

[
η

(|m|+p,m)
L,M (r0 + iq ẑ,p1)

+ ξ
(|m|+p,m)
L,M

(
r0 + iq ẑ,p2

)]
, (20a)

μ
(n,m)
L,M (r0,q; p1,p2) =

n∑
p=0

α(p)
n,m(q)

[
ξ

(|m|+p,m)
L,M (r0 + iq ẑ,p1)

− η
(|m|+p,m)
L,M (r0 + iq ẑ,p2)

]
, (20b)
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and for the NPG basis,

υ
(n,m)
L,M (r0,q; p1,p2)

=
n∑

p=0

β(p)
n,m(q)

{
η

(|m|,m)
L,M [r0 + i(2p + 1)q ẑ,p1]

+ ξ
(|m|,m)
L,M [r0 + i(2p + 1)q ẑ,p2]

}
, (21a)

μ
(n,m)
L,M (r0,q; p1,p2)

=
n∑

p=0

β(p)
n,m(q)

{
ξ

(|m|,m)
L,M [r0 + i(2p + 1)q ẑ,p1]

− η
(|m|,m)
L,M [r0 + i(2p + 1)q ẑ,p2]

}
. (21b)

For the sake of brevity, we use the shorthand μ̄
(n,m)
L,M =

μ
(n,m)
L,M (r0,q; p∗

1,p
∗
2) (and similarly for υ

(n,m)
L,M ) and omit the

dependence in what follows.

B. Scattering of basis elements

When the incident field is any of the elements of the NLG
or NPG bases, by virtue of the multipole expansion derived in
the previous section, it can be written as

E(i)(r − r0) = E0

∑
L,M

[
κ

(I)
L,M�

(I)
L,M (r) + κ

(II)
L,M�

(II)
L,M (r)

]
, (22)

where κ
(I,II)
L,M are the appropriate coefficients from Eqs. (19)

and E0 is a constant amplitude factor. The scattered field, E(s),
must be expressed in terms of outgoing vector multipoles, �(I)

l,m

and �
(II)
l,m, which have the same form as the regularized vector

multipoles in Eq. (4), with the exception of the replacement
of the spherical Bessel function, jl , by the spherical Hankel
functions of the first kind, h

(1)
l , thus giving

E(s)(r) = E0

∑
L,M

[
χ

(I)
L,M�

(I)
L,M (r) + χ

(II)
L,M�

(II)
L,M (r)

]
. (23)

Since the scattering process is linear, the coefficients of the
scattered field are related to those of the incident field via

χ = T · κ, (24)

where κ (χ ) is the ordered vector of the incident (scattered)
field coefficients, κ (I,II)

L,M [χ (I,II)
L,M ], and T is a matrix (conveniently

called the T matrix) that incorporates all the relevant informa-
tion of the scattering particle [13–15].

For the particular case of a spherical scatterer of radius R

and relative (to the external medium) index of refraction ν0, the
T matrix is diagonal and its entries are the well-known Mie
coefficients [9],

a
(s)
l (kR,ν0) = ψl(kR)ψ ′

l (kν0R) − ν0ψl(kν0R)ψ ′
l (kR)

ν0ψl(kν0R)ζ ′
l (kR) − ζl(kR)ψ ′

l (kν0R)
,

(25a)

b
(s)
l (kR,ν0) = ν0ψl(kR)ψ ′

l (kν0R) − ψl(kν0R)ψ ′
l (kR)

ψl(kν0R)ζl
′(kR) − ν0ζl(kR)ψ ′

l (kν0R)
,

(25b)

with ζl(z) = zh
(1)
l (z) and ψl(z) = zjl(z). The corresponding

scattered field can then be written as

E(s)(r) = E0

∑
L,M

[
a

(s)
L κ

(I)
L,M�

(I)
L,M (r) + b

(s)
L κ

(II)
L,M�

(II)
L,M (r)

]
.

(26)

A similar expression can be obtained for the internal field, E(w),
although expressed in terms of regularized vector multipoles:

E(w)(r) = E0

∑
L,M

[
a

(w)
L κ

(I)
L,M�

(I)
L,M (ν0r) + b

(w)
L κ

(II)
L,M�

(II)
L,M (ν0r)

]
,

(27)

where

a
(w)
l (kR,ν0) = ν0ψl(kR)ζ ′

l (kR) − ν0ζl(kR)ψ ′
l (kR)

ν0ψl(kν0R)ζ ′
l (kR) − ζl(kR)ψ ′

l (kν0R)
,

(28a)

b
(w)
l (kR,ν0) = ν0ψl(kR)ζ ′

l (kR) − ν0ζl(kR)ψ ′
l (kR)

ψl(kν0R)ζl
′(kR) − ν0ζl(kR)ψ ′

l (kν0R)
.

(28b)

Figure 3 shows the total field after the scattering of the
quasilinearly polarized field L(II)

1,1 with kq = 15 by a spherical
particle of radius kR = 3 and relative index of refraction ν0 =
1.38 + 10−4i. Note that the plots are in the field’s system of
reference, rf = r − r0, in which the particle location is simply
given by rp = −r0.

Having the total field, the forces and torques exerted on the
spherical scatterer can be computed at any given point. These
are obtained after integration of the force and torque densities
expressed in terms of Maxwell’s stress tensor. Adapting the

FIG. 3. Intensity profiles over the Cartesian planes for the total
field generated by the scattering of the basis elementL(II)

1,1 quasilinearly
polarized alongy with kq = 15 by a spherical particle of relative index
of refraction ν0 = 1.38 + 10−4i and radius kR = 3 located at rp =
(0,0,0) [(−2.5,2.5,0)] in the first (second) row. Note that the position
of the particle is specified relative to the focus of the beam and the
red circles show the cross section of the sphere by the corresponding
plane (hence the smaller size in the last two figures).
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results presented in Ref. [10] to our notation gives

Fx + iFy = 4π2E2
0εi

k2

∑
L,M

( −i

L + 1

√
(L + M + 2)(L + M + 1)L(L + 2)

(2L + 1)(2L + 3)

{[
2a

(s)
L a

(s)∗
L+1 + aL + a

(s)∗
L+1

]
κ

(I)
L,Mκ

(I)
L+1,M+1

∗

+ [
2b

(s)
L b

(s)∗
L+1 + b

(s)
L + b

(s)∗
L+1

]
κ

(II)
L,Mκ

(II)
L+1,M+1

∗} + i

L + 1

√
(L − M + 1)(L − M + 2)L(L + 2)

(2L + 1)(2L + 3)

× {[
2a

(s)∗
L a

(s)
L+1 + a

(s)∗
L + a

(s)
L+1

]
κ

(I)
L,M

∗κ (I)
L+1,M−1 + [

2b
(s)∗
L b

(s)
L+1 + b

(s)∗
L + b

(s)
L+1

]
κ

(II)
L,M

∗κ (II)
L+1,M−1

}
−

√
(L + M + 1)(L − M)

L(L + 1)

{[
2a

(s)∗
L b

(s)
L + a

(s)∗
L + b

(s)
L

]
κ

(I)
L,M+1

∗κ (II)
L,M − [

2a
(s)
L b

(s)∗
L + a

(s)
L + b

(s)∗
L

]
κ

(I)
L,Mκ

(II)
L,M+1

∗}),

(29a)

Fz = −8π2E2
0ε

k2

∑
L,M

Im

(
i

L + 1

√
(L − M + 1)(L + M + 1)L(L + 2)

(2L + 1)(2L + 3)

{[
2a

(s)
L+1a

(s)∗
L + a

(s)
L+1 + a

(s)∗
L

]
κ

(I)
L,M

∗κ (I)
L+1,M

+ [
2b

(s)
L+1b

(s)∗
L + b

(s)
L+1 + b

(s)∗
L

]
κ

(II)
L,M

∗κ (II)
L+1,M

} + M

L(L + 1)

[
2a

(s)
L b

(s)∗
L + a

(s)
L + b

(s)∗
L

]
κ

(I)
L,Mκ

(II)
L,M

∗
)

, (29b)

and

Nx + iNy = −8π2E2
0ε

k3

∑
L,M

√
(L − M)(L + M + 1)

({∣∣a(s)
L

∣∣2 + Re
[
a

(s)
L

]}
κ

(I)
L,Mκ

(I)
L,M+1

∗ + {∣∣b(s)
L

∣∣2 + Re
[
b

(s)
L

]}
κ

(II)
L,Mκ

(II)
L,M+1

∗),
(30a)

Nz = −8π2E2
0ε

k3

∑
L,M

M

L

{∣∣a(s)
L κ

(I)
L,M

∣∣2 + ∣∣b(s)
L κ

(II)
L,M

∣∣2 + Re
[
a

(s)
L

∣∣κ (I)
L,M

∣∣2 + b
(s)
L

∣∣κ (II)
L,M

∣∣2]}
, (30b)

with ε being the dielectric constant of the embedding medium.
As a simple example, Fig. 4 shows the force- and torque-

field maps for the incident fields shown in Fig. 1 and the same
scattering particle used for Fig. 3. Figure 4 shows the effects
of focusing on the forces and torques exerted on the scattering
particle. Clearly, stronger focusing results in increased forces
and torques, leading to enhanced trapping and manipulation
capabilities.

V. NONPARAXIAL LAGUERRE-GAUSS VS NONPARAXIAL
POLYNOMIALS OF GAUSSIANS

We now provide a brief comparison between the trapping
properties of elements of both the NLG and orthogonal NPG
bases with similar radial structure, OAM, and imaginary
displacement. Since their elements actually coincide for n = 0,
we use elements with higher-order radial structure. Consider
the elements of both bases with n = 2, m = 1, and kq = 10,
shown in Fig. 5. While their intensity distributions have
common features, there are clear differences, e.g., the NLG
basis is noticeably more focused even though the same q was
used for both.

Figure 6 shows the dimensionless forces (k2F/εE2
0 ) and

torques (k3N/εE2
0 ) exerted by these two fields on spherical

scatterers of relative index of refraction ν0 = 1.38 + 10−4i

and different radii. A clear difference can be noticed in the
axial force distribution of these fields, including their trapping
capabilities: the NLG field can trap particles of radii kR = 4,
5, and 8 since the corresponding curve has a stable equilibrium

FIG. 4. Force (first row) and torque (second row) field maps
overlaid on the corresponding intensity along the x − y plane. The
incident field is the quasilinearly polarized elementL(II)

1,1 with kq = 15
(5) in the first (second) column and the scattering particle is the same
as in Fig. 3.
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FIG. 5. Intensity profiles over the Cartesian planes for the basis
elementsL(II)

2,1 (first column) and the orthogonalQ(II)
2,1 (second column)

quasicircularly polarized with kq = 10.

point (a zero of negative slope), whereas the NPG field could
only trap a particle of size kR = 5 (being optimistic). Another
interesting difference is the location at which the maximum
torque is achieved: for the NLG field this maximum is always
located at the focus, while for the NPG field this location
depends on the size of the particle, probably because the focal
plane is not the location of maximum intensity for all the rings.
The force components along a transverse direction at the focal
plane are plotted in Fig. 7. An interesting feature that appears
for both fields is the reversal of azimuthal force with respect
to the vortex charge, although, this effect is less marked for
the NPG field. This behavior has already been reported in
multiringed fields [8].
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FIG. 6. Dimensionless force (first row) and torque (second row)
along the field axis, exerted on different-sized spherical scatterers by
the basis elementsL(II)

2,1 (first column) and the orthogonalQ(II)
2,1 (second

column) with quasicircular polarization and kq = 10.

�
�
�
�
�

�

�
�
�
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��

�
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�

� �

FIG. 7. Dimensionless radial (first row), azimuthal (second row),
and axial (third row) force along a transverse direction, exerted on
different-sized spherical scatterers by the basis elements L(II)

2,1 (first
column) and the orthogonal Q(II)

2,1 (second column) with quasicircular
polarization and kq = 10. The legend is the same as that in Fig. 6.

VI. CONCLUDING REMARKS

In summary, we presented the generalized Lorenz-Mie scat-
tering theory for a wide class of focused electromagnetic fields,
which correspond to the elements of complete sets of bases that
can be constructed from CF fields. They are given by simple
closed-form expressions that allow an analytic multipolar
expansion (necessary for the use of GLMT). Furthermore, they
exhibit many interesting properties, such as OAM, different
polarization distributions, and controllable degree of focusing,
thus providing an appealing alternative for future research in
Lorenz-Mie scattering and optical manipulation.

While the two types of field considered in this work present
similar radial and angular structure, they cannot be used
interchangeably. Their different functional form in terms of CF
fields leads to noticeable differences in the forces and torques
they exert on a scatterer. The choice between the NLG and
NPG bases should be made according to whether the paraxial
behavior of the incident field is best modeled by LG or PG
beams, respectively.

Since these fields are elements of complete bases, they
can be superposed to describe arbitrary incident fields. This
approach is justified particularly if the number of elements
needed to accurately describe the incident field in question is
considerably less than the number of standard multipoles used
in the decomposition. Let us stress, however, that the main
value of the fields studied here lies in their similarity to fields
of interest for trapping and manipulation experiments. This
point will be developed further in subsequent presentations.
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APPENDIX A: COMPUTATION OF COEFFICIENTS α, β

As mentioned in the main body, the elements of the bases are
composed of multipoles vectorized by a polarization operator
and displaced to a complex location. The coefficients α and
β in Eqs. (11) and (12) control the amount of each of these
building blocks in order to obtain complete bases. The recipe
to calculate these coefficients is given here for these bases
and the polarization operators discussed in the main body. For
further details we refer the interested reader to Refs. [36,37].

For the orthogonal bases, the formulas result from using the
method of moments [55]. An orthogonal set of polynomials
with respect to the weight function w(x) in the interval [x1,x2]
satisfies ∫ x2

x1

fn(x)wm(x)fn′(x)dx = h(m)
n δn,n′ , (A1)

where

fn(x) = K (n,m)
n xn + · · · + (−1)n−jK

(n,m)
j + · · ·

+ (−1)nK (n,m)
0 . (A2)

The index m on the weight relates to the topological charge
of the fields. The coefficients K

(n,m)
j and the normalization

constant h(m)
n can be computed in terms of the moments,

μ
(m)
j =

∫ x2

x1

wm(x)xjdx, (A3)

by the formulas

K
(n,m)
j

=

∣∣∣∣∣∣∣∣∣∣∣

μ
(m)
0 μ

(m)
1 · · · μ

(m)
j−1 μ

(m)
j+1 · · · μ(m)

n

μ
(m)
1 μ

(m)
2 · · · μ

(m)
j μ

(m)
j+2 · · · μ

(m)
n+1

...
...

. . .
...

...
. . .

...

μ
(m)
n−1 μ(m)

n · · · μ
(m)
n+j−2 μ

(m)
n+j · · · μ

(m)
2n−1

∣∣∣∣∣∣∣∣∣∣∣
(A4)

and

h(m)
n = K (n,m)

n K
(n+1,m)
n+1 . (A5)

We now give the details for each basis and polarization
distribution.

1. Nonparaxial Laguerre-Gauss basis

In this case, the coefficients are given by the solution to the
following system of linear equations:

⎡
⎢⎢⎢⎣

K̄ (0)
n,m

K̄ (1)
n,m

...
K̄ (n)

n,m

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

p
(0)
0,m · · · p(0)

n,m

p
(1)
0,m · · · p(1)

n,m

...
. . .

...
p

(n)
0,m · · · p(n)

n,m

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α(0)
n,m

α(1)
n,m

...
α(n)

n,m

⎤
⎥⎥⎥⎦, (A6)

where

K̄ (i)
n,m = (−1)n−i K

(n,m)
i√
h

(m)
n

, (A7)

and p(i)
n,m is the coefficient of the ith power of the polynomial

σm
m

√
(2n + 2|m| + 1)n!

2(n + 2|m|)!
P

(|m|)
|m|+n(x)

(1 − x2)|m|/2
. (A8)

Note that the matrix p(i)
n,m is upper-triangular, which simplifies

the solution to the system of equations. Alternatively, the
coefficients α can be determined via a recurrence relation [56].
The functional form of the weight is fixed by the polarization
basis.

Quasilinear and quasicircular. The interval of integration
for Eq. (A3) is [−1,1] and

wm(x) = (1 + x)2(1 − x2)|m|e2kqx. (A9)

TE-TM (radial and azimuthal). The interval of integration
for Eq. (A3) is [−1,1] and

wm(x) = (1 − x2)|m|+1e2kqx. (A10)

2. Orthogonal nonparaxial polynomials of Gaussians

In this case, the coefficients are given by the simpler formula

β(i)
n,m = (−1)n−icm

√
kq

πh
(m)
n

K
(n,m)
i , (A11)

where

cm = 2|m||m|!
(−σm)|m|

√
4π

(2|m| + 1)!
. (A12)

Again, the weight depends on the topological charge m and its
functional form is fixed by the polarization basis.

Quasilinear and quasicircular. The interval of integration
for Eq. (A3) is [exp(−2kq), exp(2kq)] and

wm(x) =
(

1 + ln x

2kq

)2
[

1 −
(

ln x

2kq

)2
]|m|

. (A13)

TE-TM (radial and azimuthal). The interval of integration
for Eq. (A3) is [exp(−2kq), exp(2kq)] and

wm(x) =
[

1 −
(

ln x

2kq

)2
]|m|

. (A14)

3. Nonorthogonal nonparaxial polynomials of Gaussians

This basis is expressible in terms of Jacobi polynomials.
and the coefficients are simply given by

β(i)
n,m =

√
kqn!(2n + 2|m| + 3)(n + 2|m| + 2)!

22|m|+3π sinh (2kq)(n + |m| + s)!(n + |m| + t)!

× cmp(i)
n,m, (A15)
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where p(i)
n,m is the coefficient of the ith power of the polynomial

P (|m|+s,|m|+t)
n

[
x − cosh (2kq)

sinh (2kq)

]
. (A16)

The integers s and t are determined by the polarization
distribution.

Quasilinear and quasicircular. s = 0 and t = 2.
TE-TM (radial and azimuthal). s = t = 1.

APPENDIX B: DERIVATION
OF TRANSLATION EQUATION

Using the translation equation for the scalar multipoles we
can write

V(E)
r �l,m(r − ρ0) =

∑
l′,m′

γ
(l,m)
l′,m′ (ρ0)V(E)

r �l′,m′ (r)

=
∑
l′,m′

γ
(l,m)
l′,m′ (ρ0)

∫
4π

eiku·rV(E)
u Yl′,m′ (u)d�,

(B1)

and similarly for V(M)
r . Then we expand the integrand in terms

of the vector spherical harmonics, and since V(M)
u = u × V(E)

u ,
we have

V(E)
u Yl′,m′ (u) =

∑
L,M

a
(l′,m′)
L,M ZL,M (u) + b

(l′,m′)
L,M YL,M (u),

(B2a)

V(M)
u Yl′,m′ (u) =

∑
L,M

b
(l′,m′)
L,M ZL,M (u) − a

(l′,m′)
L,M YL,M (u),

(B2b)

where the coefficients are given by

a
(l′,m′)
L,M =

∫
Z∗

L,M (u) · V(E)
u Yl′,m′ (u)d�, (B3a)

b
(l′,m′)
L,M =

∫
Y∗

L,M (u) · V(E)
u Yl′,m′ (u)d�. (B3b)

Recalling that V(E)
u = p − u(u · p) and using u · Zl,m = u ·

Yl,m = 0, we get

a
(l′,m′)
L,M = p ·

∫
u × Y∗

L,M (u)Yl′,m′ (u)d�, (B4a)

b
(l′,m′)
L,M = p ·

∫
Y∗

L,M (u)Yl′,m′ (u)d�. (B4b)

Using the following identity [53]:

Yl,m(u) = 1√
l(l + 1)

[c(−)
l,mYl,m+1(u)ε−

+ c
(+)
l,mYl,m−1(u)ε+ + mYl,m(u)ẑ], (B5)

where

c
(±)
l,m =

√
(l ± m)(l ∓ m + 1), (B6)

ε± = 1
2 (x̂ ± iŷ), (B7)

we can compute the second integral by using the orthogonality
between the scalar spherical harmonics:

b
(l′,m′)
L,M = 1√

L(L + 1)
p · [c(−)

L,Mδl′,Lδm′,M+1ε+

+ c
(+)
L,Mδl′,Lδm′,M−1ε− + Mδl′,Lδm′,M ẑ]. (B8)

However, more work is required for the first integral
[Eq. (B4a)]. Noting that

u × ε± = ∓i cos θε± ± i

2
e±iφ sin θ ẑ, (B9)

u × ẑ = sin θ (sin φx̂ − cos φŷ)

= −i sin θ (eiφε− − e−iφε+), (B10)

we have

a
(l′,m′)
L,M = p√

L(L + 1)
· (ε+I+ + ε−I− + ẑI0), (B11)

where

I0 =
∫

i

2
[c(−)

L,MY ∗
L,M+1e

iφ − c
(+)
L,MY ∗

L,M−1e
−iφ] sin θYl′,m′d�,

(B12a)

I± =
∫

[∓ic
(∓)
L,MY ∗

L,M±1 cos θYl′,m′

± iMY ∗
L,M sin θe∓iφYl′,m′ ]d�. (B12b)

Using the following results:

∫
Y ∗

L,Meiφ sin θYl′,m′d�

= −
√

(l′ + m′ + 2)(l′ + m′ + 1)

(2l′ + 3)(2l′ + 1)
δL,l′+1δM,m′+1

+
√

(l′ − m′)(l′ − m′ − 1)

4l′2 − 1
δL,l′−1δM,m′+1, (B13)

∫
Y ∗

L,Me−iφ sin θYl′,m′d�

= −
√

(l′ + m′)(l′ + m′ − 1)

4l′2 − 1
δL,l′−1δM,m′−1

+
√

(l′ − m′ + 2)(l′ − m′ + 1)

(2l′ + 3)(2l′ + 1)
δL,l′+1δM,m′−1, (B14)

∫
Y ∗

L,M cos θYl′,m′d� =
√

(l′ + 1)2 − m′2

(2l′ + 3)(2l′ + 1)
δL,l′+1δM,m′

+
√

l′2 − m′2

4l′2 − 1
δL,l′−1δM,m′ , (B15)
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we can solve the integrals in Eq. (B12) and obtain

a
(l′,m′)
L,M = ip ·

{√
(L + 1)

L(2L + 1)(2L − 1)
[−

√
(L − M)(L − M − 1)δm′,M+1ε+

+
√

(L + M)(L + M − 1)δm′,M−1ε− −
√

(L − M)(L + M)δm′,M ẑ]δl′,L−1

+
√

L

(L + 1)(2L + 1)(2L + 3)
[−

√
(L + M + 2)(L + M + 1)δm′,M+1ε+

+
√

(L − M + 2)(L − M + 1)δm′,M−1ε− +
√

(L + M + 1)(L − M + 1)δm′,M ẑ]δl′,L+1

}
. (B16)

Substituting Eq. (B2) into Eq. (B1) gives

V(E)
r �l,m(r − ρ0) =

∑
L,M

∑
l′,m′

γ
(l,m)
l′,m′ (ρ0)

[
a

(l′,m′)
L,M �

(I)
L,M (r) + b

(l′,m′)
L,M �

(II)
L,M (r)

]
, (B17)

which in turn leads to the result in Eqs. (15a) and (16) after using the results for the coefficients [Eqs. (B8) and (B16)] and using
the Kronecker deltas to eliminate one of the sums.
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