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Far-field phase contrast from orbiting objects: Characterizing progenitors of binary mergers
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We propose an idea to determine the size of a binary, composed of two compact stars or black holes, its
diffractive power, the distance between components, and the distance to an observer, in exploiting the emergence
of intensity contrast by free-space propagation when the phase of coherent light from a very distant background
source is affected by diffraction. We assume that this effect can be characterized by the projected real part of an
effective refractive index n. Here we model the according two-dimensional exit phase-map by a superposition of
two Gaussians. In the extreme far field, phase information is captured by scaling functions which are analyzed
here. Both spatial and temporal scanning of the intensity contrast are discussed. While the former mode can be
used, e.g., to determine the distance to the observer, the latter allows, e.g., one to measure the overall diffractive
power of the binary in terms of the particular dependence of a scaling curve on the projected spatial separation
between the binary’s components. Both modes of observation may be of relevance in monitoring the progenitor
dynamics of binary collapse using radio telescopes.
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I. INTRODUCTION

In imaging, the emergence of intensity contrast from
free-space propagation of a phase-modulated, paraxial, and
coherent wave field is increasingly exploited to infer properties
of a three-dimensional (3D) object [1–9]. The according
information is encoded in a stack of angularly displaced two-
dimensional (2D) projections of the purely real refractive index
n. For each exposure direction (optical axis) the corresponding
projection defines the phase map φ(x⊥), where x⊥ denotes
the vector of 2D coordinates in the object exit plane, that
is, in the plane perpendicular to the optical axis immediately
downstream of the object. Here, projections of the “refractive
index” along parallel “lines of sight” through the object refer
to respective travel-time differences of monochromatic and
spatially coherent light. According to the van Cittert-Zernike
theorem, the latter property is guaranteed when exploiting
distant light sources [10]. Even though the electromagnetic
radiation emitted by extended and strong sources, such as
quasars, initially is spatiotemporally incoherent (it stems from
an extended source with no phase correlations between individ-
ual atomic transitions and it exhibits a broad frequency spec-
trum, usually close to a black-body shape), it becomes spatially
coherent upon propagation across astrophysical distances.
Upon impinging on isolated stars, binaries (white dwarfs,
neutron stars, black holes), or more extended objects, the wave
field suffers frequency and transverse-coordinate-dependent
phase shifts which are converted into intensity modulation
upon further free-space propagation towards the observer.
Lenseless observation within a narrow spectral bandwidth
of this intensity contrast assures temporal coherence for the
detected signal; for a scheme of this situation see Fig. 1. To
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describe the diffraction physics leading to the phase shifts,
an effective refractive index or speed of propagation can be
introduced, e.g., in case of a given, locally curved gravitational
background space-time (gravitational lense). Here, phase shifts
depend on the transversely variable effective straight-line
speeds of light defined in comparison with the constant speed
of light along actual geodesics.

In general, the conversion from an observed 2D map of
intensity contrast to the 2D phase map—phase retrieval—
represents a highly nonlocal and nonlinear problem [11].
However, under certain symmetry constraints on the phase
map, such as 2D rotational or axial symmetry as well as
resorting to the extreme far-field situation, exact phase retrieval
often is not necessary to infer the main features of the
diffracting object. Rather, essential information on the object’s
dimensions and diffractive power can already be extracted from
the central intensity contrast’s response to the variation of a
length scale induced by a physical process. This is because
the corresponding intensity-contrast curves are characteristic
of an overall scaling of the exit phase map, defined as

φ → Sφ, (1)

where S is a positive real number. Roughly speaking, S

correlates with the overall diffractive power of the system
for light emitted by a sufficiently strong, ergodic, and distant
source, e.g., a quasar. That is, a reference exit phase map φ

experiences a scaling (S > 0) at each spatial point x⊥ in the
(transverse) exit plane (that is, the heights of the phase function
φ are globally rescaled to Sφ), induced by a change of some
physical parameter of the diffracting system, e.g., the masses
of the constituent stars or black holes in a binary, leading to an
associated scaling of local diffraction angles (given in terms of
the gradient of Sφ). Since the projected distance a between the
gravitational centers of the binary’s constituents varies in the
course of one orbit, the central intensity contrast, emergent
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FIG. 1. Principle of the here-proposed phase-contrast modality:
A distant light source of sufficient luminosity (quasar) emits elec-
tromagnetic radiation which becomes spatially coherent by propa-
gation (defined wave fronts at given wavelength). On traversing a
gravitational field (hatched area), provided by a binary system, the
light waves travel along nontrivial geodesics. For each asymptotic
deflection angle α � 1 (constant as a function of propagation distance
due to negligibility of gravitational bending outside of the interaction
region) there is a contribution to the emergent wave field in the
thus-defined exit plane coming from deflected and an undeflected
rays. To linear order in α there is no modulation of the exit wave
field’s amplitude, but there is phase modulation. Upon free-space
propagation to a terrestrial observer intensity (or amplitude), contrast
emerges which can be analyzed without an optical system but the
selection of a small spectral band.

upon free-space propagation and measured by a terrestrial
observer, is a function of a. This function, however, is specific
for each value of S.

The ultimate goal of the here-presented feasibility analysis
is to help establish an observational modality, appealing to
propagation-based phase contrast in the extreme far field, to
investigate the progenitor dynamics in gravitationally bound
binaries of compact stars or black holes well before their
eventual merger when emitted gravitational waves become suf-
ficiently strong to allow for terrestrial detection [12]. Note that,
as of yet, there are strong observational limits in identifying
and characterizing progenitors leading to supernovas and/or
merging well before these events actually take place [13]. Here,
we propose the observation of the spatiotemporal structure of
the induced intensity contrast within radio-frequency bands as
a promising venue to learn about progenitors, see again Fig. 1.

In the present work we are content with a demonstration
of the principle of such a modality, and thus may assume a
simplified exit phase map φ which is composed of a normalized
superposition of Gaussians, each associated with one compo-
nent of the binary, to model the deflection effects imprinted
by the gravitational field. Note that for actual observations,
the precise phase delays induced by an isolated star or black
hole should be considered through geodesic rays. Whether
the ray-optics approximation in describing the gravitationally
induced phase changes is sufficient remains an open problem
which we refrain from addressing.

Here, we appeal to the nonlocality expansion of the diffrac-
togram induced by a phase map of finite support (localization),
which is particularly useful in the extreme far-field limit. In this
limit the lowest order of the nonlocality expansion captures the
entire diffractogram with the exception of vanishing spatial
frequencies [11]. Here, the term diffractogram refers to the 2D

Fourier transform of the intensity contrast gz(x⊥) ≡ (Iz(x⊥) −
I0)/I0, taking position x⊥ to frequency ξ . Here, Iz denotes the
intensity emergent upon free-space propagation over a distance
z. I0 is the (flat) intensity of the (parallel) and monochromatic
beam (wavelength λ) impinging on the object.

By virtue of Guigay’s relation [14] the nonlocality expan-
sion orders the contribution to a diffractogram according to
powers of the overlap of the phase map φ and its spatially
translated version where the translation vector depends on z

and ξ . Notice that such an expansion does not require S to be
small [11], in contrast to various linearizations in S (and z) of
the Fresnel forward problem employed for phase retrieval in the
literature [1,4–8]. In the extreme far field this overlap vanishes,
and the diffractogram is purely local, implying that essential
information on the inducing phase map Sφ already is encoded
in so-called scaling functions being separated from the ξ =
(ξx,ξy) dependence of the diffractogram [11,15]. In the case
of an astrophysical gravitational lense, which is background
illuminated by a distant light source (e.g., a quasar), the spatial
coherence of the impinging light can be considered perfect such
that in practice there is no limit on the propagation distance z,
guaranteeing the reliability of the lowest-order approximation
in the nonlocality expansion.

This work is organized as follows. For readers’ convenience,
in Sec. II, we review the theoretical developments on the non-
locality expansion performed in [11]. In Sec. III we introduce
a model for the phase map associated with the binary system.
This includes a normalization which separates the effects of
overall diffractive power from the influences introduced by
the spatial distance between the binary’s components. Explicit
expressions for the intensity contrast in the far field and the
extreme far field, both in 2D Fourier and position space, are
given in Sec. IV. Here, the concept of scaling functions is seen
to emerge. In Sec. V we discuss whether and to what extent
binaries composed of two white dwarfs may give rise to observ-
able signatures depending on their distance to the observer and
the wavelength regime employed for the observation. Thereby,
we distinguish two extreme cases: an observer at rest w.r.t. to
the center of mass of the binary (temporal scan) and an observer
who moves so fast that the internal motion of the binary
can be considered frozen for the spatial distances, covered
by the observer, being comparable the extent of gz’s support
(spatial scan). Section VI summarizes our results, points out the
potentially important role of radio-frequency observation, and
the possibility of combining the here-proposed phase-contrast
modality with gravitational wave observation to acquire a
more complete characterization of the precollapse dynamics
of binaries. Finally, Appendices A, B, C, and D provide details
on the phase-map normalization, the derivation of the far-field
diffractogram, the demonstration of its reality, and performing
the inverse Fourier transform to arrive at gz, respectively.

II. REVIEW OF NONLOCALITY EXPANSION: FAR-FIELD
LIMIT

The purpose of this section is to provide a number of
conceptual and technical cornerstones of the phase-contrast
modality we are proposing. Briefly speaking, the emergence of
intensity contrast from a phase-modulated (and not amplitude-
modulated) wave field �0 in the transverse exit plane enjoys a
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simple, local description in 2D Fourier space. The wave field
�0 is induced by elastic interaction of an incoming plane wave
(here assumed to be due to gravitational bending of its rays)
with a sufficiently symmetric object. In the course of free-space
propagation, self-interference generates intensity contrast ana-
lyzed by an observer far downstream of the exit plane. Though
highly nonlinear in the phase variations, the extreme far-field
situation assures that the 2D Fourier transform of this intensity
contrast is local and thus contains direct information about the
inducing phase map representing the projected object.

More specifically, when perfect spatial coherence of the
incoming light can be assumed (which is the case in the
setup of Fig. 1), Guigay’s representation of Iz in the detector
plane, emerging as a result of free-space propagation along a
distance z of the pure-phase exit wave field �0 = √

I0e
iφ(x⊥)

(no amplitude but only phase modulation in the transverse exit
plane), applies if the observation of Iz is restricted to a small
frequency band, centered at 3D wave number k = 2π

λ
. It is

given as [14]

FIz =
∫

d2x�0(x⊥,−)�∗
0 (x⊥,+)e−2πiξ ·x⊥ , (2)

where

x⊥,± ≡ x⊥ ± πz

k
ξ,

and F denotes 2D Fourier transformation. Expanding the
exponential in Eq. (2) and introducing the intensity contrast
gz = Iz−I0

I0
, we obtain [11]

(Fgz)(ξ ) = (FC)(ξ ), (3)

where the correlation function C is given as

C(x⊥,ξ ) =
∞∑

n=1

n∑
l=0

(−i)n

n!

(
n

l

)
(−1)lφl

−φn−l
+ , (4)

where φ± ≡ φ(x⊥,±). Whether the phase-overlap product
φ−φ+ for a localized object is small, exhibiting spatial scales
a1, a2, . . . , is decided by the largest Fresnel number in

F1 = a2
1

λz
, F2 = a2

2
λz

, . . . being smaller than the dimensionless
frequency squared, σ = ξ 2πλz = (ξ 2

x + ξ 2
y )πλz. Note that the

symbol F on the right-hand side of Eq. (3) actually is a slight
abuse of notation, since C = C(x⊥,ξ ) already depends on the
conjugate wave-number vector ξ (pseudo Fourier transform).
Expanding C in Eq. (4) in powers of φ−φ+, we may write

C(x⊥,ξ ) =
∞∑
l=0

(Cl,cen + Cl,cos + Cl,sin)

with the following definitions:

Cl,cen = 1

(l!)2
(φ−φ+)l(1 − δl0),

Cl,cos = (φ−φ+)l
∞∑
k>l

(−1)k+l

(2k − l)!l!
(φ2(k−l)

+ + φ
2(k−l)
− ),

Cl,sin = i(φ−φ+)l

×
∞∑
k�l

(−1)k+l

(2k + 1 − l)!l!
(φ2(k−l)+1

+ − φ
2(k−l)+1
− ). (5)

Thus we arrive at

Fgz =
∞∑
l=0

Fgz,l =
∞∑
l=0

(FCl,cen + FCl,cos + FCl,sin). (6)

Here we refer to gz,l as the lth onion shell because it contains
the layers of leading, subleading, etc. powers of φ+. These
arise by expanding the nth power of the binomial φ+ − φ−
appearing in the expansion of the exponential in Eq. (2) upon
substitution of �0 = √

I0e
iφ− and �∗

0 = √
I0e

−iφ+ , compare
with Eq. (4) (Pascal’s triangle).

For the pseudo Fourier transforms appearing on the right-
hand side of Eq. (6) we have explicitly (after shifting integra-
tion variables appropriately)

FCl,cen = 1

(l!)2
(1 − δl0)F(φ−φ+)l ,

FCl,cos = 2F(φ−φ+)l ∗
[

cos(σ )
∞∑
k>l

(−1)k+lFφ2(k−l)

(2k − l)!l!

]
,

FCl,sin = 2F(φ−φ+)l ∗
[

sin(σ )
∞∑
k�l

(−1)k+lFφ2(k−l)+1

(2k + 1 − l)!l!

]
,

where ∗ demands 2D convolution.
In the extreme far field the contribution gz,l=0 in Eq. (6)

dominates the entire diffractogram (with the exception of ξ =
0, see [11]). Considering that FC0,cen = 0 and (φ−φ+)0 = 1,
the zeroth onion shell reads

Fgz,0 = 2 cos(σ )
∞∑

k=1

(−1)kFφ2k

(2k)!

+ 2 sin(σ )
∞∑

k=0

(−1)kFφ2k+1

(2k + 1)!
. (7)

The (good) approximation of the diffractogram, represented by
Eq. (7), can be Fourier transformed to position space to gain
back the intensity contrast gz(x⊥) in the far-field limit.

III. TOY MODEL FOR COLLISION OF PROJECTED
OBJECTS WITHIN A BINARY

In this section we study the extreme far-field diffractogram
and intensity contrast of a phase map meant to model the
collision of projected objects within a binary, effectively giving
rise to a phase map φ. As we have argued in Sec. II, the
far-field situation is reached when the diffractogram becomes
sufficiently local such that it is captured by the zeroth onion-
shell approximation. On top of this, an additional simplification
arises when all Fresnel numbers are sent to zero by effectively
letting z → 0 (extreme far field). In this case, the σ dependence
of the diffractogram is universal: it exhibits rotational symme-
try. In actual calculations we appeal to a Gaussian model for
φ. This simplified version of admittedly more complex phase
maps in realistic observational scenarios bears the advantage
of being accessible to a largely analytical treatment.

A. Superposition of Gaussians in the phase map

Thus we study a phase map φ composed of two transversely
separated Gaussian bumps of width

√
ω whose maxima are a
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distance |a⊥| apart. Such a phase map reads

φ = S

(
e

−(x⊥− a⊥
2 )2

2ω + e
−(x⊥+ a⊥

2 )2

2ω

)
,

where x⊥ ≡ (x,y)T and a⊥ ≡ (ax,ay)T . The two Gaussian
bumps are chosen to be separated along the x axis without loss
of generality. In the following, we write ax = a. Therefore,

φ = S

[
e

−(x− a
2 )2

2ω + e
−(x+ a

2 )2

2ω

]
e− y2

2ω ≡ φ−a + φ+a. (8)

Since we wish to control the strength of phase variations in the
phase map φ solely via the parameter S, we need to normalize
φ/S to the interval [0,1] for all x, a, and ω.

B. Normalization of φ

It is useful to identify the following dimensionless variables
in Eq. (8):

F = a√
ω

, U = x√
ω

, V = y√
ω

.

With these definitions Eq. (8) is recast as

φ(U,V,F ) = S
[
e− 1

2 (U− F
2 )2 + e− 1

2 (U+ F
2 )2
]
e− V 2

2 . (9)

In Appendix A, the maxima φ/S are derived, depending on
F in three domains.

I : F ∈ [0,2] : U0 = 0,

II : F ∈ [2,≈4] : U02,3 = ±
(

W (F ) + F

2

)
,

III : F ∈ [≈4,∞] : U02,3 = ±F

2
, (10)

where W (F ) is defined in Eq. (A5) of Appendix A. Upon
computing φ/S at U0, one arrives at the normalized phase map
φ̂ as

φ̂(U,V,F ) = φ(U,V,F )

N (F )
. (11)

The phase map φ̂ exhibits a maximum value S. For all F the
function N (F ) in Eq. (11) is given as

N (F ) = φ(U0,0,F )

S
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 e− 1

2 ( F
2 )2

, I

e− 1
2 (W (F )+F )2 + e− 1

2 W (F )2
, II

1 + e− F2

2 , III.

For small values of F,W (F ) → −F
2 , implying U0 → 0. Thus

N (F ) is a continuous function throughout regimes I,II. For
large F,W (F ) → 0, as is easily seen from Eq. (A5). Therefore,
N (F ) is continuous also throughout regimes II,III, see Fig. 2.

For notational simplicity we drop the hat symbol in what
follows (φ̂ → φ). As shown in Fig. 3,φ/S indeed is normalized
to a maximum of unity.

FIG. 2. Plot of N (F ) for all F [including regimes I,II,III defined
in Eq. (10)]. Notice the smoothness of N (F ).

IV. FAR-FIELD INTENSITY CONTRAST

In Fourier space, the zeroth onion shell, computed from the
phase map of Eq. (11), reads (see Appendix B for a derivation)

Fgz,0

4πω
= cos(σ )

∞∑
k=1

(−1)k

2k

(
S

N (F )

)2k

e
−σFω
2π(2k)

×
2k∑

k′=0

e− k′
2 (1− k′

2k
)F 2

k′!(2k − k′)!
e+ i

2 (1− 2k′
2k

)
√

σxFa
π

+ sin(σ )
∞∑

k=0

(−1)k

2k + 1

(
S

N (F )

)2k+1

e
−σFω

2π(2k+1)

×
2k+1∑
k′=0

e− k′
2 (1− k′

2k+1 )F 2

k′!(2k + 1 − k′)!
e+ i

2 (1− 2k′
2k+1 )

√
σxFa

π , (12)

where

Fω = ω

λz
, Fa = a2

λz
, F =

√
Fa

Fω

,

σx = ξ 2
x πλz , σy = ξ 2

y πλz , σ = σx + σy.

FIG. 3. Plot of normalized phase map φ/S for three different
values of F : F = 1 (dashed), F = 2.5 (solid line), F = 10 (dotted).
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Equation (12) is valid only for Fa,Fω � 1 (far-field limit), and
one can show that the right-hand side is real (see Appendix C.).

The extreme far-field case of the zeroth onion shell is
obtained from Eq. (12) by performing the limits Fa → 0 and
Fω → 0 while simultaneously keeping the square root of their

ratio F =
√

Fa

Fω
fixed and finite. This yields

Fgz,0

4πω
= cos(σ )

∞∑
k=1

(−1)k

2k

(
S

N (F )

)2k

×
2k∑

k′=0

e− k′
2 (1− k′

2k
)F 2

k′!(2k − k′)!

+ sin(σ )
∞∑

k=0

(−1)k

2k + 1

(
S

N (F )

)2k+1

×
2k+1∑
k′=0

e− k′
2 (1− k′

2k+1 )F 2

k′!(2k + 1 − k′)!
. (13)

Motivated by Eq. (13) we introduce the scaling functions
S1(S,F ) and S2(S,F ). They depend only on S and the ratio

F =
√

Fa

Fω
, which represents a measure of compactness of the

binary. We have

S1(S,F ) =
∞∑

k=1

(−1)k

2k

(
S

N (F )

)2k 2k∑
k′=0

e− k′
2 (1− k′

2k
)F 2

k′!(2k − k′)!
,

S2(S,F ) =
∞∑

k=0

(−1)k

2k + 1

(
S

N (F )

)2k+1 2k+1∑
k′=0

e− k′
2 (1− k′

2k+1 )F 2

k′!(2k + 1 − k′)!
,

(14)

such that Eq. (13) is recast as

Fgz,0

4πω
= cos(σ )S1(S,F ) + sin(σ )S2(S,F ). (15)

After transforming Fgz,0 to position space, the intensity
contrast gz,0 of the zeroth onion shell is given in Eq. (D8)
of Appendix D. In practice, the sums in Eq. (14) need to be
truncated at kmax. Evaluating gz,0 for increasing values of S

generally requires increasing values of kmax. In Fig. 4 a plot of
gz,0 is shown.

In some observational situations only the much simpler
expression for the extreme far field is needed. In this limit both
Fa and Fω are considered very small parameters, justifying that
only their linear order is retained in expanding Eq. (D8) about

Fa = 0,Fω = 0 (keeping F ≡
√

Fa

Fω
finite). Equation (D8) then

reduces to

gz,0 = Fω

π

[
sin(ρ)

∞∑
k=1

(−1)k

2k

(
S

N (F )

)2k 2k∑
k′=0

e− k′
2 (1− k′

2k
)F 2

k′!(2k − k′)!

+ cos(ρ)
∞∑

k=0

(−1)k

2k + 1

(
S

N (F )

)2k+1

×
2k+1∑
k′=0

e− k′
2 (1− k′

2k+1 )F 2

k′!(2k + 1 − k′)!

]
, (16)

FIG. 4. 3D Plot of gz,0 in Eq. (D8) for S = 1 and λz = 4.41 ×
1017 m2, truncating the sum over k at kmax = 50, which is reliable,
see discussion in Sec. V. We have set F = 10, Fω = 0.001, Fa =
0.1, a = 2.1 × 107 m. The corresponding phase map is represented
in Fig. 3 (dotted line).

where

ρ ≡ x2 + y2

4πλz
.

The same result is obtained by letting Fa → 0 and Fω → 0
in Eq. (12) and performing the inverse Fourier transformation
subsequently. Notice that the expression on the right-hand side
of Eq. (16) is cylindrically symmetric (it depends on x,y only
via ρ). In terms of the scaling functions, defined in Eq. (14),
Eq. (16) reads

gz,0 = Fω

π
[S1 sin(ρ) + S2 cos(ρ)]

= Fω

π

√
S2

1 + S2
2 sin

(
ρ + arctan

S2

S1

)
. (17)

V. OBSERVABILITY OF THE INTENSITY CONTRAST

In the following example, we choose a binary with equal
component masses and sizes (e.g., white dwarfs) to induce
the diffraction of coherent background light when assumed
to be modeled by the phase map of Eq. (11). Since the
direct observation of SNe Ia progenitors is lacking [13], the
characterization of such systems by virtue of their diffractive
properties may be useful for the prediction of a particular nova
and a potential standard candle assignment.

The typical diameter of a white dwarf is approximately√
ω ≈ 2 × 107 m [16]. To work with sufficiently small Fresnel

numbers (Fω < 0.001 and Fa � 1), we demand λz ≈ 4.4 ×
1017 m2 [17]. This implies, e.g., λ ≈ 5 × 10−7m (red light)
⇒ z > 8.8 × 1023m ≈ 0.3Mpc ≈ 9.3 × 105 ly or λ ≈ 0.3 m
(radio waves) ⇒ z > 1.5 × 1018m ≈ 48 pc ≈ 155 ly. How an
effective value of F arises by projection of the binary orbit is
depicted in Fig. 5 for a particular observational situation.

Let us assume that the period of orbit Tb of the binary is
much larger than the time �t required to cover a transverse
distance

�r = �tvt =
√

x2 + y2 = 2π
√

λz. (18)
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FIG. 5. Binary system with projected values of F for the partic-
ular case that the optical axis lies in the plane of orbit. E refers to a
(terrestrial) observer. The more general situation of an inclined orbital
plane is straightforward.

This expression for �r follows from setting �ρ ≡ ρ2 − ρ1 =
π to be able to sample one half of the spatial period of gz,
see Eq. (17) and Fig. 6. Then F can be considered a constant.
Here vt denotes the component of the relative velocity that is
perpendicular to the optical axis between the center of mass of
the binary and the observer. For example, if vt is determined
by the tangential velocity of earth’s orbit, that is, vt = 2.6 ×
109 m/d, and setting �r = 2 × 109 m (see Fig. 6), we obtain
�t = 0.77 d. Comparing this with a typical period of orbit in
the range Tb = 0.44 . . . 3.22 d [18], we conclude that much
higher values of vt are required. Assuming this to be the case,
Eq. (18) can be solved for z as

z = 1

λ

(
�r

2π

)2

. (19)

Thus, the spatial structure Iz can be used to determine the
distance to the binary. Moreover, a sufficiently dense spatial
sampling of Iz, whose average then determines I0, yields gz,
which, in turn, can be fitted to the expression in Eq. (17) to
determine

√
ω, S, and F . With kmax = 50 summations defining

FIG. 6. Plot of gz,0(x,y = 0) (solid line) and gz,0(x = 0,y)
(dashed line) according to Eq. (D8), demonstrating a slight asymme-
try. Parameters are set as in Fig. 4. An increasing value of S > 1 only
affects the normalization of gz in a nonlinear way. On the other hand,
an increasing value of F increases the asymmetry of gz,0(x,y = 0) vs
gz,0(x = 0,y).

FIG. 7. Plot of π

Fω
gz,0(ρ → 0) in Eq. (16) as a function of F ∈

[0,10] for S = 1,2,3,5,8,10. The sum defining the scaling function
S2 in Eq. (14) is truncated at kmax = 50.

the scaling functions S1 and S2 in Eq. (17) [see Eq. (14)]
converge to within machine precision for 0 � F � 10 and
0 < S � 20.

Alternatively, if Tb � �t = �r
vt

, then a temporal scan of
gz at, e.g., x = y = 0 = ρ, can be performed to examine the
scaling behavior in S and F . That is, for each fixed value S there
is a characteristic F dependence of gz which is normalized in
terms of Fω. Observing Iz(ρ = 0) at N equidistant times ti
(i = 1, . . . ,N), the period Tb can be determined. Assuming
that the plane of the binary’s orbit contains the optical axis, the
following dependence of Fi on ti is substituted into Eq. (17):

Fi = F0 cos

(
2π

ti

Tb

+ ϕ

)
, (20)

where F0 and the phase ϕ are fit parameters in addition to I0, S,
and Fω.

We now discuss the characteristic F dependence of gz(ρ =
0). In Figs. 7 and 8 plots of π

Fω
gz,0(ρ → 0), as defined in

Eq. (16), are depicted as functions of F for various values
of S.

In analyzing these results, we refer to the F regimes as
defined in Eq. (10). For regime I there is parabolic behavior; in

FIG. 8. Plot of π

Fω
gz,0(ρ → 0) in Eq. (16) as a function of F ∈

[0,6] for S = 12,15,20. The sum defining the scaling function S2 in
Eq. (14) is truncated at kmax = 50.
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regime III all curves are constant for F > 6 (loss of correlation
between the binary’s components, see Fig. 7). Regime II
exhibits genuine structure. Namely, for S = 5, S = 8 and S =
10 there are two local extrema. For larger values of S additional
extrema develop within regime II (see Fig. 8). Therefore,
counting extrema allows to identify useful priors for the fit
of the S dependence.

VI. SUMMARY

In the present paper we have investigated the zeroth or-
der of the nonlocality expansion [11] of intensity contrast
in the free-space propagation of phase-modulated, perfectly
spatiotemporally coherent wave fields when applied to an
extreme far-field situation. In particular, we have assumed the
inducing phase map to be a superposition of two equal-width
Gaussians that are spatially separated. The motivation for this is
the study of binary systems in astronomy that, due to their low
luminosity, so far cannot be observed (e.g., white-dwarf binary
as a progenitor of a SN Ia, neutron-star or black-hole binaries
as progenitors to merger events which are accompanied by
the emission of detectable gravitation waves). The idea is
to exploit a coherent wave field, provided by a very distant
and sufficiently luminous background source, whose phase is
affected by transit through the binary via gravitational light
bending. The more compact the binary’s components, the
better the approximation using Gaussian bumps in the effective
phase map since the ratio between gravitational range and the
extent of the mass distribution increases. In principle, the ef-
fective phase map emerges by analyzing the time delays along
geodesics with associated deflection angles. This introduces
quantitative differences compared to the assumed Gaussian
shapes. Qualitatively, however, the use of Gaussian bumps is
sufficient to point out the potential of our formalism. It is worth
pointing out that radio observations are favored since in this
case the far-field condition is easily satisfied for relatively small
object-to-observer distances. In Sec. V we have discussed the
example of a white-dwarf binary employing a wavelength of
λ = 0.3 m. This is well contained, e.g., within the wavelength
coverage of the square kilometer array (SKA).

Let us discuss two extreme modes of observation under the
simplifying assumption that the binary’s orbital plane contains
the optical axis. (For an inclined plane, more fit parameters
arise.) We have shown that a spatial scanning of the intensity
(assuming a fast transverse, relative motion between observer
and binary) allows the extraction of the distance to the binary
in a controlled and simple way if the frequency bandwidth
of observation is not too large. Moreover, spatial scanning
allows fitting the unmodulated intensity I0, the two Fresnel
numbers relating to the components’ size and separation, and
the diffractive power of the overall system. Intensity contrast
is small (typically 10−4 or lower), and the question arises
whether the observational signal-to-noise ratio (Poisson noise
of detectors can be reduced by increased exposure times and/or
spectral bandwidths) allows the measurement of such small
intensity variations. Alternatively, if transverse, relative motion
is slow, a temporal scan reveals the binary’s orbital period and
can also be used to fit I0, the two Fresnel numbers, and, in
particular, the overall diffractive power. A direct extraction of
the distance to the binary is impossible in this mode. Often the

FIG. 9. The case F = 10. The Gaussian bumps in φ/S are
separated along the U axis, and their two (degenerate) maxima
practically do not exceed unity.

observational situation will be a mix of these two cases, and
more sophisticated strategies of data analysis are in order.

To the best of the authors’ knowledge, the modality of
propagation-based phase contrast has not yet been applied to
astronomical observation. If realizable, then a bimodal strategy
(gravitational waves and propagation-based phase contrast) of
observing in spirals appears possible to detect and analyze the
binary well before the merger occurs, given the existence of a
distant, luminous, and ergodic background light source.
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APPENDIX A: DERIVATION OF PHASE
NORMALIZATION FACTOR N(F)

Plotting φ/S of Eq. (9) for selected values of F indicates
the problem in normalizing the phase map to a maximum value
of unity (see Figs. 9, 10, and 11).

To control the diffractive power, as imprinted into the phase
map, solely via S, we need to normalize φ/S in terms of N (F )
such that for an arbitrary value of F the maximum of φ

N(F )S
always is unity:

∀F ∈ Rmax
φ(U,V,F )

N (F )S
= 1. (A1)

To find the extrema of φ/S we analyze the conditions ∂φ

∂U
= 0

and ∂φ

∂V
= 0. Straightforward calculation yields

V = 0 ,

tanh

(
UF

2

)
= ±2U

F
. (A2)

The transcendental equation, Eq. (A2), which is reminiscent
of the equation satisfied by the magnetization in the mean-
field treatment of the 1D Ising model [19], requires a closer
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FIG. 10. The case F = 2.5. The Gaussian bumps overlap one
another so the two (degenerate) maxima now exceed unity.

examination. For various values of F , we numerically obtain
the following roots U0 of Eq. (A2):

Since limx→∞ tanh x = 1, large values of F imply that the
approach U02,3 → ±F/2 is exponentially fast. On the other
hand, for F → 0 we have U0 = 0. As one can easily argue
by expanding the left-hand side of (A2) about zero and by
appealing to the convexity of U (F ), there is critical behavior
at Fc = 2, as indicated in Fig. 12.

To analyze the transition indicated in Fig. 12 by the solid
line, we require an approximate solution to Eq. (A2). Table I
suggests to expand the hyperbolic tangent in powers of W ≡
(U − F

2 ). Up to quadratic order this yields

tanh

(
UF

2

)
≈ tanh

(
F 2

4

)
+ 1

cosh2
(

F 2

4

) F

2

(
U − F

2

)

− tanh
(

F 2

4

)
cosh2

(
F 2

4

) F 2

4

(
U − F

2

)2

. (A3)

FIG. 11. The case F = 1. The two Gaussian bumps now overlap
substantially such that a single, global maximum arises at U = 0.

FIG. 12. Plot of φ/S for F = 2.3 (dotted), F = Fc = 2.0 (solid
line), F = 1.8 (dashed), S = 1. With smaller F , the two Gaussian
bumps overlap such that their shared, local minimum at U = 0
(dotted) switches to a global maximum (dashed).

Introducing the following abbreviations in Eq. (A3),

C0(F ) = tanh

(
F 2

4

)
,

C1(F ) = 1

cosh2
(

F 2

4

) ,
C2(F ) = tanh

(
F 2

4

)
cosh2

(
F 2

4

) ,
Eq. (A2) approximates as

C0(F ) + F

2
C1(F )W − F 2

4
C2(F )W 2 = 2

F

(
W + F

2

)
. (A4)

Solving Eq. (A4) for W , we arrive at

W (F ) =
(

2

C2(F )F 2

)[
−
(

2

F
− F

2
C1(F )

)

+
√(

2

F
− F

2
C1(F )

)2

− C2(F )F 2[1 − C0(F )]

]
.

(A5)

TABLE I. Values of F and related extrema U0.

Values of F Extrema U0

F = 1 U0 = 0
F = 2 U0 = 0
F = 3 U01 = 0

U02,3 = ±1.463
F = 4 U01 = 0

U02,3 = ±1.999
F = 6 U01 = 0

U02,3 = ±3
F = 10 U01 = 0

U02,3 = ±5
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FIG. 13. Plot of U0(F ) = +[W (F ) + F

2 ], illustrating the loca-
tions of maxima U0 in dependence on F as predicted by the
approximate solution (A5) of Eq. (A2) for 1.9 � F � 4.

Notice that the alternative solution, replacing the plus sign by
a minus sign in front of the square root in Eq. (A5), would
violate the smallness assumption on W , and therefore needs
to be discarded. Accordingly, the locations of the maxima are
approximately given by U0(F ) = ±[W (F ) + F

2 ], exploiting
the Z2 symmetry of φ. This is depicted in Fig. 13.

APPENDIX B: DERIVATION OF F gz,0 OF EQ. (12)

We note that Eq. (7) involves the Fourier transform of the
nth power of the phase map Fφn. We calculate

φn = (φ−a + φ+a)n =
n∑

k′=0

(
n

k′

)
φk′

−aφ
n−k′
+a ,

in which

φk′
−a =

(
S

N (F )

)k′

e−(x− a
2 )2 k′

2ω e− y2k′
2ω ,

φn−k′
+a =

(
S

N (F )

)n−k′

e−(x+ a
2 )2 n−k′

2ω e− y2(n−k′)
2ω .

Pieced together, we have

φn =
(

S

N (F )

)n

e− ny2

2ω

n∑
k′=0

n!

k′!(n − k′)!

× e
−
[

(x− a
2 )2 k′

2ω
+(x+ a

2 )2 n−k′
2ω

]
. (B1)

The exponent in Eq. (B1) simplifies to(
x − a

2

)2 k′

2ω
+
(
x + a

2

)2 n − k′

2ω

= [n(x + a

2
)2 − 2k′ax]

1

2ω
.

Applying the Fourier transform to φn,

(Fφn) =
∫ ∞

−∞

∫ ∞

−∞
φne−iξxxe−iξyy dxdy , (B2)

we obtain

(Fφn) =
n∑

k′=0

n!

k′!(n − k′)!

(
S

N (F )

)n ∫ ∞

−∞
e− ny2

2ω e−iξyydy

×
∫ ∞

−∞
e−[n(x+ a

2 )2−2k′ax] 1
2ω e−iξxx dx .

In order to solve the integrals, we must complete the square in
each exponent. The y integral reads∫ ∞

−∞
e
−
(√

ny2

2ω
+iξy

√
ω
2n

)2

e−ξ 2
y

ω
2n dy .

Rearranging factors and multiplying by unity, this integral can
be performed as√

2ω

n
e−ξ 2

y
ω
2n

∫ ∞

−∞
e− n

2ω
(y+ξy

iω
n

)2

√
n

2ω
dy︸ ︷︷ ︸√

π

=
√

2πω

n
e−ξ 2

y
ω
2n .

(B3)
The next step is to evaluate the x integral. In analogy to the

y integration, we obtain√
2ω

n
e
− n

2ω

[
a2
x
4 −( iξxω

n
+ ax

2 − ax k′
n

)2

]

×
∫ ∞

−∞
e
− n

2ω

[(
x+( iξxω

n
+ ax

2 − ax k′
2 )
)2
]√

n

2ω
dx︸ ︷︷ ︸√

π

.
(B4)

Referring to Eqs. (B3) and (B4), Eq. (B2) becomes

(Fφn) =
(

S

N (F )

)n 2πω

n
e−ξ 2

y
ω
2n

n∑
k′=0

n!

k′!(n − k′)!

× e− n
2ω

[ a2
x
4 −( iξxω

n
+ ax

2 − ax k′
n

)2].

(B5)

In Eq. (B5), we may introduce the dimensionless variables

Fω = ω

λz
, Fa = a2

⊥
λz

, F =
√

Fa

Fω

,

σx = ξ 2
x πλz , σy = ξ 2

y πλz , σ = σx + σy, (B6)

where Fω, Fa are Fresnel numbers with respect to ω, a. While
Fω,Fa > 1 correspond to the near-field case, the opposite
situation Fω,Fa � 1 characterizes the far field.

Inserting Eqs. (B6) and Eq. (B5) into Eq. (7) and distin-
guishing the cases n = 2k and n = 2k + 1 (k = 0,1,2, . . . ),
we arrive at Eq. (12).

TABLE II. Pairing of terms in the cosine term under the sum
over k′ in Eq. (12). Here M is an integer running from M = 0 to
M = k − 1. The central term k′ = k is real by itself and represented
by the last line.

k′ 1
k′!(2k−k′)! − k′

2 (1 − k′
2k

)F 2 + i

2 (1 − 2k′
2k

)
√

σxFa

π

M 1
M!(2k−M)! −M

2 (1 − M

2k
)F 2 + i

2 (1 − M

k
)
√

σxFa

π

2k − M 1
M!(2k−M)! −M

2 (1 − M

2k
)F 2 − i

2 (1 − M

k
)
√

σxFa

π

k′ = k 1
(k!)2 − k

4 F 2 0
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APPENDIX C: PROOF OF REALITY OF RIGHT-HAND SIDE OF EQ. (12)

The factors e+ i
2 (1− 2k′

2k
)
√

σxFa
π and e+ i

2 (1− 2k′
2k+1 )

√
σxFa

π of Eq. (12) are complex and thus of magnitude unity. Let us now evaluate
the sum over k′ in order to check if the imaginary part of the expression vanishes.

Table II shows that there are pairings whose coefficients are identical and for which the exponents are complex conjugates of
one another. The center term in the sum

∑2k
k′=0 ... at k′ = k has no partner and is real by itself.

Treating the sin term in Eq. (12) analogously in identifying 2k → 2k + 1 reveals similar pairings. The only difference under
the sum

∑2k+1
k′=0 is the absence of the center term because there is an even number of summands. This proves that the expression

on the right-hand side Eq. (12) is real and can be recast as

Fgz,0

8πω
= cos(σ )

∞∑
k=1

(−1)k

2k

(
S

N (F )

)2k

e
−σFω
2π(2k)

⎧⎪⎪⎨⎪⎪⎩
k−1∑
k′=0

e− k′
2 (1− k′

2k
)F 2

k′!(2k − k′)!
cos

[
1

2

(
1 − 2k′

2k

)√
σxFa

π

]
+

centerterm︷ ︸︸ ︷
1

2

1

(k!)2
e− k

4 F 2

⎫⎪⎪⎬⎪⎪⎭
× sin(σ )

∞∑
k=0

(−1)k

2k + 1

(
S

N (F )

)2k+1

e
−σFω

2π(2k+1)

k∑
k′=0

e− k′
2 (1− k′

2k+1 )F 2

k′!(2k + 1 − k′)!
cos

[
1

2

(
1 − 2k′

2k + 1

)√
σxFa

π

]
.

APPENDIX D: TRANSFORMATION OF F gz,0 TO POSITION SPACE

The inverse Fourier transformation is defined as

gz,0 = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
(Fgz,0)e−iξxxe−iξyy dξxdξy.

Performing the inverse Fourier transform of the expression in Eq. (12) using

2 cos(σ ) = eiσ︸︷︷︸
1st cos−term

+ e−iσ︸︷︷︸
2nd cos−term

(D1)

and

2i sin(σ ) = eiσ︸︷︷︸
1st sin−term

− e−iσ︸︷︷︸
2nd sin−term

(D2)

leads to

gz,0 = 2πω

(2π )2

∞∑
k=1

(−1)k

2k

(
S

N (F )

)2k 2k∑
k′=0

e− k′
2 (1− k′

2k
)F 2

k′!(2k − k′)!

×

⎡⎢⎢⎢⎣
∫∫

ei(ξ 2
x +ξ 2

y )πλze
− (ξ2

x +ξ2
y )ω

2(2k) e+ i
2 (1− 2k′

2k
)ξxae−i(ξxx+ξyy)dξxdξy︸ ︷︷ ︸

induced by 1st cos−term

+
∫∫

e−i(ξ 2
x +ξ 2

y )πλze
− (ξ2

x +ξ2
y )ω

2(2k) e+ i
2 (1− 2k′

2k
)ξxae−i(ξxx+ξyy)dξxdξy︸ ︷︷ ︸

induced by 2nd cos−term

⎤⎥⎥⎥⎦
+ 2πω

(2π )2

∞∑
k=0

(−1)k

2k + 1

(
S

N (F )

)2k+1 2k+1∑
k′=0

e− k′
2 (1− k′

2k+1 )F 2

k′!(2k + 1 − k′)!
1

i

×

⎡⎢⎢⎢⎣
∫∫

ei(ξ 2
x +ξ 2

y )πλze
− (ξ2

x +ξ2
y )ω

2(2k+1) e+ i
2 (1− 2k′

2k+1 )ξxae−i(ξxx+ξyy)dξxdξy︸ ︷︷ ︸
induced by 1st sin−term

−
∫∫

e−i(ξ 2
x +ξ 2

y )πλze
− (ξ2

x +ξ2
y )ω

2(2k+1) e+ i
2 (1− 2k′

2k+1 )ξxae−i(ξxx+ξyy)dξxdξy︸ ︷︷ ︸
induced by 2nd sin−term

⎤⎥⎥⎥⎦.

(D3)

Certain correspondences between these four integrals can be exploited. In Eq. (D3) the only integral which needs to be solved
explicitly is, e.g., the one induced by the first cos term. Let us therefore consider∫ ∞

−∞
dξxe

iξ 2
x πλze

− ξ2
x ω

2(2k) e+ i
2 (1− 2k′

2k
)ξxae−iξxx

∫ ∞

−∞
dξye

iξ 2
y πλze

− ξ2
y ω

2(2k) e−iξyy . (D4)

First, we complete the square in the exponent of the first line, given as{
ξ 2
x

(
iπλz − ω

2(2k)

)
+ ξx

[
i

2

(
1 − k′

k

)
a − ix

]}
,
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to arrive at

(
iπλz − ω

2(2k)

)⎛⎜⎜⎜⎜⎝
ξ ′
x︷ ︸︸ ︷

ξx −
( −i

4

(
1 − k′

k

)
a

iπλz − ω
2(2k)

+ ix

2
(
iπλz − ω

2(2k)

))
⎞⎟⎟⎟⎟⎠

2

−
⎛⎝ −i

4

(
1 − k′

k

)
a√

iπλz − ω
2(2k)

+ ix

2
√

iπλz − ω
2(2k)

⎞⎠2

. (D5)

In performing the Gaussian ξx integration, based on the exponent in Eq. (D5), we have

√
π√

ω
2(2k) − iπλz

e
−
(

−i
4 (1− k′

k
)a√

iπλz− ω
2(2k)

+ ix

2
√

iπλz− ω
2(2k)

)2

.

The remaining ξy integral in Eq. (D4), subject to the integrand

exp

[
ξ 2
y

(
iπλz − ω

2(2k)

)
− iξyy

]
,

can be performed in close analogy. One obtains
√

π√
ω

2(2k) − iπλz
e

y

2
√

iπλz− ω
2(2k) .

Having the integral associated with the first cos term at our disposal, the remaining three terms in Eq. (D3) can then be deduced as
follows. The term induced by the second cos term can be obtained from the one induced by the first cos term in letting λ → −λ.
To obtain the integrals induced by the two sin terms, we have to perform the following substitutions in the integrals. For the
integral associated with the first cos term we modify

2k → 2k + 1 and factor1 → factor
1

i
(D6)

to obtain the integral associated with the first sin term. Accordingly, we modify

2k → 2k + 1 and factor1 → factori (D7)

to map the integral associated with the second cos term to the one associated with the second sin term. Piecing everything together,
we finally arrive at the exact expression for the intensity contrast in position space,

gz,0 = Fω

2π

∞∑
k=1

(−1)k

2k

(
S

N (F )

)2k 2k∑
k′=0

e− k′
2 (1− k′

2k
)F 2

k′!(2k − k′)!

⎡⎢⎢⎣πe
−i

[
Fa (k′−k)2+2Fa (2k) x

a (k−k′)+(2k)2
(

x2+y2
λz

)]
2(2k)[2π(2k)+iFω ](

Fω

2(2k) − iπ
) + c.c.

⎤⎥⎥⎦

+ Fω

2πi

∞∑
k=0

(−1)k

2k + 1

(
S

N (F )

)2k+1 2k+1∑
k′=0

e− k′
2 (1− k′

2k+1 )F 2

k′!(2k + 1 − k′)!

⎡⎢⎢⎣πe
−i

[
Fa (2k+1−2k′)2+4Fa (2k+1) x

a (2k+1−2k′)+4(2k+1)2
(

x2+y2
λz

)]
8(2k+1)[2π(2k+1)+iFω ](
Fω

2(2k+1) − iπ
) − c.c.

⎤⎥⎥⎦, (D8)

where c.c. stands for the complex conjugate of the preceding term. Therefore, gz,0 is real, as it must be, since no cancellation of
imaginary parts may occur in between different onion-shell expansion terms.
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