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Decay of bound states in oscillating potential wells
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In this paper, we report the analytic solution of the oscillating box potential. We investigate the temporal
dependence of the amplitude of the ground state as a function of the system parameters. Our analysis reveals the
counterintuitive behavior that the loss of the ground state is a nonmonotonic function of the oscillation frequency.
On the basis of optical waveguides, we provide an experimental verification of our theoretical findings.
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I. INTRODUCTION

PT symmetry, as a peculiar extension of conventional
quantum mechanics [1], entered optics a few years ago [2,3].
Although originally based on a sensitive interplay of gain and
loss [4–6], it turned out that also systems without gain exhibit
features that can be associated with PT symmetry [7–11]. A
particular approach to realize appropriate losses in arrays of
evanescently coupled femtosecond-laser written waveguides
is to undulate the waveguides, in order to generate radiation
losses [12].

Due to the well-known quantum-optical analogy [13], an
undulated waveguide corresponds to a box potential that is
oscillating in time. Although very simple in nature, surpris-
ingly there exists no full analytic solution to this problem.
This is somewhat cumbersome, as oscillating box potentials
are ubiquitous to many fields in physics, including light-matter
interactions [14,15] and waveguide optics [12]. In our work,
we tackle this issue and provide an analytic solution of the
bound electric field in an oscillating box potential possessing
one bound mode only. We note that assuming only one bound
mode is not an approximation but rather exactly the situation
one finds in single-mode sinusoidal waveguides. The presence
of many bound modes might lead to interesting resonances
[15]; however, such a treatment goes beyond the scope our
current work.

From an analytical point of view, one wants to derive a
solution for the temporal evolution of the wave function that
acts as the instantaneous ground state of an oscillating potential
(illustrated in Fig. 1). At first glance, one might wish to apply
Fermi’s golden rule [16,17] in order to retrieve the exponential
decay rate. However, there are several inadequacies that lie
therein. By just applying Fermi’s rule, one would simply
postulate an exponential decay of the ground-state popula-
tion. This procedure could neither serve as a rigorous proof
of the average exponential decay nor provide the corrections
to this average behavior. As a matter of fact, throughout the
literature, a number of authors [18–24] have criticized the
mathematical grounds of Fermi’s derivation, presented gener-
alizations, and even showed the invalidity in certain scenarios.
Hence we cautiously avoid Fermi’s golden rule and present
a careful derivation based on first principles. The following

considerations shall concern potential oscillations of the form

x0(z) = d[1 − cos (ωz)],

where d and ω are the amplitude and frequency of the
oscillation, respectively. Although we will treat the exemplary
box potential, the findings can be generalized, in principal, to
an arbitrary potential. We consider a moving frame of reference
in which the potential is stationary again. The one-dimensional
(1D) Schrödinger equation for the field �(x,z) is transformed
according to

ξ = x − x0(z), ζ = z,

and in the new frame of reference the Schrödinger equation
becomes

i∂ζ � = −∂2
ξ � + V (ξ )� − iωd sin (ωζ )∂ξ�. (1)

All further calculations will be carried out in this frame of
reference. Equation (1) represents a 1D Schrödinger equation
equipped with a static potential V and an additional oscillating
term. It is interesting to note that Eq. (1) can equivalently be
transformed to a similar form where the term iωd sin (ωζ )∂ξ is
replaced by ω2d cos (ωζ )ξ . Applying this so-called Kramers-
Henneberger transformation, the equation is well known in
many fields of physics, as it represents the dynamics of an
electronic wave function under the influence of an external
electric field. In a recent publication [12], Eq. (1) was studied
numerically in the context of optical waveguides. It was found
that when �b(x) corresponds to the instantaneous ground
state of the oscillating potential, then the overall decay of
the population of �b(x) can well be approximated as being
exponential. Moreover, the simulations verified the intuition
that the decay rate vanishes for very small as well as for high
oscillation periods p. For moderate oscillation frequencies,
however, the decay rate shows a distinct maximum. An im-
portant qualitative finding is that the decay is negligibly small
as long as the oscillation period of the potential is smaller than
the phase oscillation period of the state �b(x) of the constant
box potential. At this specific frequency the exponential decay
suddenly starts to increase. Our analytical solution provides
deeper insight into the dependence of the evolution dynamics
on the system’s parameters and reveals a variety of surprising
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FIG. 1. Sketch of an oscillating box potential with the evolution
of the instantaneous fundamental mode of the potential.

properties. In a simple optical experiment we are able to
demonstrate the main features of our analysis.

II. THEORETICAL SECTION

In this paper, Eq. (1) is solved analytically using perturba-
tion theory. Assuming ωd to be small, the perturbation term
is readily linear in this parameter. In this sense, the general
solution strategy is to expand the field � in terms of the
modes of the static potential and to perform a first-order
perturbation approximation afterwards. In Appendix A we
have exhaustively revisited the properties of the modes of the
static box potential

V =
{−�, |ξ | < a,

0, else.

Throughout our analysis, we will assume that the potential
exhibits only one bound state with transverse mode profile
�b(x) and an eigenvalue ωb. Having this in mind, the field can
be written as

�(ξ,ζ ) = cb(ζ )�b(ξ ) eiωbζ +
∫ ∞

0
[cs(ζ,ν)�s(ξ )

+ ca(ζ,ν)�a(ξ )]eiνζ dν,

where for each frequency ν > 0 there is one symmetric
mode, �s(ξ ), and one antisymmetric mode, �a(ξ ), in the
continuous spectrum. The coefficients c represent yet unknown
coefficients which vary with propagation distance ζ . At this
point the goal of the analysis is to find the ζ dependence of
the coefficient cb, which represents the amplitude of the bound
mode. We want to show that, to first order, cb is given by
an exponential decay, i.e., cb ∼ e−
ζ . Inserting �(ξ,ζ ) into
Eq. (1) and projecting it onto each of the eigenmodes of the
straight waveguide one obtains the system of coupled equations

∂ζ cb = ωd sin (ωζ )
∫ ∞

0
caIbae

iωabζ dωa,

∂ζ cs = ωd sin (ωζ )
∫ ∞

0
caIsae

iωasζ dωa,

∂ζ ca = ωd sin (ωζ )

{
cbIabe

iωbaζ +
∫ ∞

0
csIase

iωsaζ dωs

}
,

(2)

which links the ζ -dependent coefficients ci . In this system
of equations the dependence on the transverse coordinate is
eliminated and implicitly expressed in the overlap integrals
Iij = 〈�i |∂ξ |�j 〉

‖�i‖2 ; we also abbreviate ωij = ωi − ωj , where i,j ∈
{a,b,s}.

At this point, it is necessary to fix the set of initial conditions.
Here, we treat the case of ca(ζ = 0) = cs(ζ = 0) = 0 and
cb(ζ = 0) = 1, which represents the fact that initially all
light is confined in the bound mode. Despite the change of
coordinates, for d = 0 we always find cb = 1. The equations
for ca and cs can now be formally integrated. From this, one
gets ca and cs , which can be iteratively inserted into the first
equation of the system Eq. (2). Following this strategy one
obtains an integro-differential equation for the coefficient cb.
In the spirit of first-order perturbation theory subsequently
all terms with (ωd)4 or higher powers of the perturbation
parameter will be neglected. This poses a joined condition on
the oscillation frequency and amplitude, namely ωd � 1. With
this the equation for cb reduces to

∂ζ cb = ω2d2 sin (ωζ )
∫ ∞

0
g(ωa)dωa,

(3)

g(ωa) : =
∫ ζ

0
sin (ωτ )cb(τ )IabIbae

iωbaτ eiωabζ dτ.

Up to this point, considering Eq. (3), neither the explicit shape
of the modes nor the structure of the perturbation operator
have been used. Hence Eq. (3) can be considered as a general
expression for any sinusoidally oscillating potential. In order
to further simplify and even solve Eq. (3) the kernel of the
integral needs to be evaluated:

IabIba = −|〈�b|∂ξ |�a〉|2
‖�b‖2‖�a‖2

= −αS(ωa),

α : = 2�2(ωb + �)κ2 cos2(κ1a)

π [� cos2(κ1a) + (ωb + �)κ2a]
, (4)

S(ωa) : = k2 sin2 (k1a)

ωa + � cos2 (k1a)

1

(ωa − ωb)2 ,

where κ1 = √
ωb + �, κ2 = √−ωb, k1 = √

ωb + ωa + �,
and k2 = √

ωb + ωa . Note that α is a constant factor with
respect to the integration in Eq. (3) as it only depends on
parameters of the static potential. Furthermore, it is assumed
that in Eq. (4) one has k1/2 = k1/2(ωa). Continuing the analysis
of Eq. (3) it is advantageous to reverse the order of integration
and rewrite it as

∂ζ cb = −αω2d2 sin (ωζ )h(ζ ),

h(ζ ) : =
∫ ζ

0
sin (ω(ζ − τ ))cb(ζ − τ )

∫ ∞

0
S(ωa)eiωabτ dωadτ,

(5)

where Eq. (4) as well as the substitution τ = ζ − τ was
used. Investigating the temporal behavior of the kernel∫ ∞

0 S(ωa)eiωaτ dωa numerically, one finds that it differs only
significantly from zero in a very small interval τ < τc. More-
over, in this interval, cb is only slowly varying and, hence, can
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FIG. 2. Exponential decay rate as a function of the potentials
oscillation period: (a) analytical solution for a = 31.271, � = 2.0 ×
10−4, d = 24.51 × 104; (b) analytical solution for a = 48.175, � =
2.82 × 10−4, d = 24.51 × 104. (c) Sketch of how a phase singularity
is created by a curved waveguide.

be regarded as constant around τ ≈ 0, i.e.,

cb(ζ − τ ) ≈ cb(ζ ).

With the same argument, the upper limit of the temporal
integration in Eq. (5) can be extended to infinity. Under this
approximation, the differential Eq. (5) can be solved to find
the exponential decay of cb (see Appendix B for a detailed
explanation):

cb ∼ exp

{
−παω2d2

4
S̃(ωb + ω)ζ

}
,

(6)

S̃(ωb + ω) : =
{
S(ωb + ω), ω � |ωb|,
0, ω < |ωb|.

Inserting the argument ωb + ω into the definition of S in Eq. (4)
one finds that the exponential decay rate can be written as


 =
{

παd2

4
k2 sin2 (k1a)

ωb+ω+� cos2 (k1a) , ω � |ωb|,
0, ω < |ωb|,

(7)

where, as before, k1 = √
ωb + ω + �, k2 = √

ωb + ω, and
cb ∼ e−
ζ .

Figures 2(a) and 2(b) display the exponential decay rate as
a function of the oscillation period 2π/ω. The most prominent
feature is the vanishing decay for oscillation periods larger
than the 2π/ωb. In this regime no loss occurs, i.e., the bound
state can follow the oscillating potential in an adiabatic manner.
The sharp transition between the lossless and the lossy regime
can be attributed to the physical fact that light is scattered
into only one radiation mode. As a second prominent feature,
several nodes appear towards smaller oscillation periods. A
very intuitive explanation is based on Fig. 2(c) which illustrates
the creation of a phase singularity being associated with every
curved region of the waveguide. A curvature strong enough to
bring the singularity inside the evanescent field of the guided
mode causes a strong perturbation and hence scattering of
the guided field into the bulk. In a sinusoidal waveguide,
light is radiated away from each bent. Hence, in Fig. 2(a),
each minimum corresponds to a situation in which light,
that is emitted from successive bends, interferes destructively.
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FIG. 3. (a) Fluorescence image of a sinusoidally bent waveguide
with an oscillation period of 3.9 mm. (b) Light intensity extracted
from the sinusoidally bent waveguide with a period of 3.9 mm (blue
line). The red line indicates the extracted decay rate and serves as a
guide for the eye.

Intuitively, this behavior can be compared to light scattering
at a diffraction grating. Intuitively, this behavior relates to the
scattered light leaving the waveguide in a tagential direction.
On top of the appearance of extrema, Figs. 2(a) and 2(b) show
a transition to a lossless scenario at very short periods. In this
limit, the bound mode cannot follow the oscillation, meaning
that the fast oscillating potential constitutes an effective z-
independent potential. In this regime the loss has to be zero
although the eigenvalue of the bound mode is not ωb anymore.
Appendix C provides a mathematical treatment of this regime.

III. EXPERIMENT IN LASER-WRITTEN
GLASS WAVEGUIDES

Our experimental results described in the following will
demonstrate the main features of our analytical solution, that
is, a cutoff frequency, zero loss for at least one frequency
higher than the cut-off frequency, as well as the existence of a
maximum loss. As we choose a sinusoidally bent waveguide
as the oscillating potential, the decay predicted above is
manifested as loss of the guided light in the waveguide. In this
optical system, the eigenvalues of the modes are represented
by propagation constants, whereas the potential is given by the
refractive index landscape. The evolution coordinate, ζ , is in
the paraxial approximation simply equal to the propagation
distance of the light in the waveguide multiplied by k0 =
2π/λ, where λ is the light wavelength in vacuum [25]. Note
that the real transverse coordinate is ξ/(k0

√
2ns), the real

oscillation frequency is ωk0, and the real oscillation amplitude
is d/(k0

√
2ns). In Fig. 3(a) an exemplary evolution of the light

intensity at a wavelength of λ = 633 nm inside an oscillating
waveguide is shown, obtained using a fluorescence microscopy
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FIG. 4. Experimentally measured intensity decay rate (red dots)
and decay rate 
 (black line) plotted for a step index waveguide with
index step � = 2.80 × 10−4, full waveguide width 2a/(k0

√
2ns) =

5.84 μm, and a real oscillation amplitude of d/(k0
√

2ns) = 1.45 μm.
The substrate refractive index of our samples is 1.45.

technique [26]. We fabricated several samples with period
lengths ranging from 200 μm to 50 mm using the fs-laser
writing technology [27]. All samples share a common length
of 50 mm as well as a sine amplitude of d = 1.45 μm. For the
measurements, from which the light amplitude is extracted,
the waveguide oscillates orthogonal with respect to the focal
plane of the imaging objective [in contrast to Fig. 3(a) that was
taken only for illustration purposes]. In Fig. 3(b), we plot an
exemplary intensity decay in an oscillating waveguide (blue
line), extracted from a fluorescence image, for a waveguide
modulation period of 3.9 mm. After a propagation distance
of 12 mm the graph clearly shows a linear slope due to
the logarithmic scaling of the axis of ordinates (red dotted
line), indicating the exponential decay of the light intensity.
Notably, for propagation distances smaller than 12 mm, the
measured intensity deviates from the exponential behavior
obtained for larger propagation distances due to imperfect
mode overlap between the guided mode and the incoupling
objective. Consequently, in all samples this region was not
taken into account when evaluating the decay rate. In the
particular example shown in Fig. 3(b) the slope is −0.42 cm−1.
In Fig. 4 we plot the intensity decay rates as a function of
the oscillation period extracted from experimental data (red
dots) and compare them to our analytic 1D theory (black line).
For large period lengths >10 mm the extracted decay rate of
0.011 mm−1 does not differ significantly from the intrinsic
decay of the straight waveguides, which originates from the
fabrication process. Additionally, for very short periods ≈
200 μm, the extracted decay rate is also essentially equivalent
to the intrinsic decay in a straight waveguide. For intermediate
oscillation periods between 200 μm and 6 mm, the measured
data shows the predicted behavior. There indeed exists a single
maximum loss of 1.0 cm−1, at a period length of 1.2 mm,
exceeding the intrinsic waveguide loss for more than one order
of magnitude.

Importantly, we would like to point out that the experimental
results differ slightly from the analytic solution, presented in
Fig. 2: the theoretically predicted sudden drop in the decay
rates for increasing oscillation periods is slightly smoother in
the experiment. This deviation between theory and experiment
can be attributed to the underlying dimensionality. While

the experimental waveguides exhibit a 2D cross section, the
analytical model describes only one transverse dimension. In
contrast to the 1D model, a continuum of radiation modes
is excited at each bent and the sharp transition between the
lossless and the lossy region is smeared out.

In conclusion, we presented an analytic theory of an oscil-
lating potential and use our results to predict and explain the
loss behavior in modulated waveguides. We find that there is
virtually no additional loss in the waveguides for small and high
modulation frequencies, respectively, beyond their intrinsic
loss. For intermediate modulation frequencies, however, the
decay rate increases and a single pronounced maximum can
be observed. The results presented in this paper form the basis
of subsequent investigations, since they prove that sinusoidally
bent waveguides can be experimentally applied to mimic lossy
media. With this, it enables the implementation and study
of PT -symmetric and other dissipative structures. Certainly,
the investigation of oscillating potential wells with several
bound modes is also interesting, as these states might cause
complex resonances. This problem will be treated in future
work.
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APPENDIX A: STRAIGHT WAVEGUIDE REVISITED

This first section revisits the well-known case of a 1D
Schrödinger equation,

i∂t�(x,t) = −∂2
x�(x,t) + V (x)�(x,t),

with the time-independent box potential

V (x) =
{−�, |x| � a,

0, |x| > a,

where � and a are positive real constants representing the
potential’s depth and width, respectively. The fundamental
mode is given by

�b =

⎧⎪⎨
⎪⎩

cos (k1a)e
√−ωb(ξ+a), ξ < −a,

cos
(√

V0 + ωbξ
)
, |ξ | < a,

cos (k1a)e−√−ωb(ξ−a), ξ > a.

For the unbound symmetric modes one finds

�s(ξ,β) =

⎧⎪⎨
⎪⎩

Re
{
Ase

−ik2(ξ+a)
}
, ξ < −a,

cos (k1ξ ), |ξ | < a,

Re
{
Ase

ik2(ξ−a)
}
, ξ > a,

and the unbound, antisymmetric modes are

�a(ξ,β) =

⎧⎪⎨
⎪⎩

−Re
{
Aae

−ik2(ξ+a)
}
, ξ < −a,

sin (k1ξ ), |ξ | < a,

Re
{
Aae

ik2(ξ−a)
}
, ξ > a.
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In these formulas we have used

As := cos (k1a) + i
k1

k2
sin (k1a),

Aa := sin (k1a) − i
k1

k2
cos (k1a),

k1 := √
� + ω,

k2 := √
ω,

where ω � 0. The normalization of the modes is given by

〈�a/s(ν)|�a/s(ν
′)〉 = 2πk2|Aa/s |2δ(ν − ν ′)

for the radiation modes and

〈�b|�b〉 = cos (κ1a)

κ1κ2
[κ1 cos (κ1a) + κ2 sin (k1a)] + a

for the bound mode.

APPENDIX B: AUXILIARY STEPS IN THE
CALCULATION OF THE DECAY RATE �

The term sin(ω(ζ − τ )) in Eq. (5) of the main text is not
slowly varying within the interval 0 < τ < τc and has to be
fully considered. Integration of Eq. (5) with respect to τ and
finally ωa yields

∂ζ cb = αω2d2cb(ζ )

[
sin(ωζ )T (ωb,ω)

+ sin(2ωζ )

2
U (ωb,ω)

]
,

T (ωb,ω) : = πS̃(ωb + ω)

2
− iP

∫ ∞

0

(ν − ωb)S(ν)

(ν − ωb)2 − ω2
dν,

U (ωb,ω) : = P
∫ ∞

0

ωS(ν)

(ν − ωb)2 − ν2
dν + i

πS̃(ωb + ω)

2
,

S̃(ωb + ω) : =
{
S(ωb + ω), ω � |ωb|,
0, ω < |ωb|. (B1)

Note that both T (ωb,ω) and U (ωb,ω) are split into real and
imaginary parts which is ensured since both S̃ and the integrals
are purely real. One last integration of Eq. (B1) yields the final
expression for the amplitude of the bound mode within an
oscillating potential; it reads

cb = exp

{
αω2d2

2
T (ζ − sin (2ωζ ))

+ αωd2

4
U (1 − cos (2ωζ ))

}
.

Analyzing the structure of this result one can identify several
terms which are qualitatively different. Starting with the second
exponential, one finds that it only contributes to a periodic
oscillation, whereas the real part of U is responsible for an
amplitude oscillation and its imaginary part is responsible for
a corresponding phase oscillation. Also the first exponential
term contains an oscillating part and equal to the second
exponential it consists of both a phase and amplitude oscil-
lation. All oscillating terms in cb have the same frequency,

which corresponds to twice the oscillation frequency of the
waveguide. This observation was already made in connection
with the simulations in Fig. 3(b) of [12] and hence is in perfect
agreement. It is illustrated that the amplitude as well as phase
oscillations are only small and can be neglected for long-term
evolution. The only term in cb which contributes to a long-term
modulation is cb ∼ exp{ αω2d2

2 T (ωb,ω)ζ }. Since T consists of
both a real and an imaginary part, it follows that only one term
remains:

cb ∼ exp

{
παω2d2

4
S̃(ωb + ω)ζ

}
.

APPENDIX C: HIGH-FREQUENCY REGIME

The previous findings, i.e., their validity, are limited to
small frequencies, as stated in the main text. It was found
before [12] that the loss of a sinusoidally modulated waveguide
vanishes for very high frequencies. This section serves as a
rigorous proof of the numerical findings in [12], which we
call here the high-frequency limit. The starting point of the
subsequent analysis shall be the 1D Schrödinger equation with
the sinusoidally oscillating potential. In general, the field can
be decomposed into its Fourier components as

�(x,z) =
∫ ∞

−∞
�̃(x,β)eiβzdβ.

If it can be assumed that the spectral width of �(x,z) is limited
and there exists a frequency βmax for which holds that if |β| >

|βmax| then �̃(x,β) ≈ 0, then one can find a small longitudinal
interval Z with Z � 2/βmax so that

〈�(x,z)〉z = 1

Z

∫ z+ Z
2

z− Z
2

�(x,z′)dz′ = �(x,z).

This is true, because one can exchange the Fourier integral and
the z averaging and then for each Fourier component

1

Z

∫ z+ Z
2

z− Z
2

�̃(x,β)eiβz′
dz′ =

{
�̃(x,β)eiβz, |β| � |βmax|,
0, |β| > |βmax|.

Applying this moving average to the 1D Schrödinger equation
one finds

i∂z�(x,z) = −∂2
x�(x,z) + 〈V (x,z)〉z�(x,z),

where it was used that 〈∂z�〉z = ∂z〈�〉z as well as 〈��〉z =
〈�〉z�, employing the same argument as above. If the fre-
quency ω with which the potential V is oscillating is much
larger than 2π/Z, then the mean potential 〈V 〉z is constant
along the z axis. As a consequence, in this high-frequency
limit the field amplitude � only feels a constant potential
along the z direction. In general, the shape of the potential
changes due to the averaging procedure and it should be
stated that 〈V (x − x0)〉 �= V (x − 〈x0〉z). Instead, for a box
potential with the specific parameters d = 1 μm and a =
3 μm the potential is depicted in Fig. 5. In general, due
to the average potential being different from the original
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FIG. 5. Comparison between straight waveguide and average
potential for high oscillation frequencies with d = 1 μm and a =
3 μm. The blue line represents the straight box potential, whereas the
gray line shows the oscillating average potential. For the parameters
under consideration the eigenmode profile of both potentials (red line)
is almost identical.

potential also the shape of the bound mode changes. However,
for the specific parameters under consideration, both profiles
are almost identical. If such an averaged potential is excited
with its own bound mode then—in the high-frequency limit—
the evolution is stationary and �(x,z) = �(x)exp{iωbz}. In
this case βmax can simply be identified with ωb and one finds
the condition

ωb � 2

Z
<

2π

Z
� ω,

which relates the modulation frequency of the potential with
the propagation constant of the bound mode. This condition
determines the validity of the high-frequency approximation
above, for which the loss of the bound mode is perfectly
zero [12].
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