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Changes of phase structure of a paraxial beam due to spin-orbit coupling
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We analytically derive an expression for the optical field describing the spin Hall effect of a paraxial Gaussian
beam in a lenslike inhomogeneous medium using the matrix optics method. Interestingly, we found changes in the
phase structure and rotation of the polarization of the Gaussian beam induced by spin-orbit coupling, in addition
to a polarization-dependent transverse deflection of the entire beam. This rotation of the polarization of the beam
is not the result of the Berry phase. In addition, we show that the intrinsic optical angular momentum density of the
beam is changed due to the spin-orbit coupling, and we also know that polarization-dependent rotation of the beam
occurs when a circularly polarized nonaxisymmetric beam propagates in a lenslike inhomogeneous medium. Our
results provide further potential applications of the spin Hall effect of light in optical signal processing.
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I. INTRODUCTION

The spin Hall effect of light produces a polarization-
dependent transverse deflection of the propagation trajectory
of light when circularly polarized light propagates in an
inhomogeneous medium [1–10] or is reflected and refracted at
a dielectric interface [11–16]. When circularly polarized light
propagates along a helical trajectory, there is an additional
polarization-dependent geometrical phase called the Berry
phase [17–20]. Spin-orbit coupling is known to play a key role
in the Berry phase and the spin Hall effect of light [10]. Because
these polarization-dependent effects have strong potential for
application in different fields, the spin Hall effect of light and
Berry phase have attracted significant attention in recent years.

In the geometrical optics approximation, the propagation of
a circularly polarized light wave in a smoothly inhomogeneous
isotropic medium is equivalent to the evolution of a massless
spin-1 particle (photon) in an external field. On the basis of the
geometrical optics approximation, which can be considered a
semiclassical approximation, the Berry phase and spin Hall
effect of light have been investigated in the framework of
semiclassical quantum theory, and some theoretical results
in agreement with experimental results have been obtained
[1–10]. The spin Hall effect of light can be generally described
by the following expression [3,6,7]:

ṙ = p
p

− σ

k0

p×ṗ
p3

, (1)

where the dot denotes the derivative with respect to the ray
parameter s, which is related to the ray length l, as dl = nds;
n is the refractive index of the optical medium; p is the
momentum of photons, p = ∇n; k0 is the wave number in
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vacuum; and σ = ±1 denotes the wave helicity corresponding
to right and left circular polarization of light. Introducing
a small geometrical optics parameter, μ = λ/L � 1, where
λ = 2π/k0, and L|∇n/n|−1 is the characteristic scale of
the medium inhomogeneity, we see that the second term in
Eq. (1) corresponds to the first-order approximation of the
geometrical optics and describes the polarization-dependent
transverse deflection of the propagation trajectory of light
induced by spin-orbit coupling. Equation (1) gives a good
description of the spin Hall effect of light both theoretically
and experimentally [6,10]. However, Eq. (1) is clearly based
on the dynamical evolution of the light ray (or photons) and
describes only the motion of the center of gravity of the light. In
other words, Eq. (1) cannot completely describe the evolution
of a circularly polarized beam in an inhomogeneous medium
because the optical beam cannot simply be replaced by a
light ray, as it possesses a unique intrinsic structure. Although
the spin Hall effect of the beam has been investigated in
[5,8], and Eq. (1) can be used to describe the polarization-
dependent transverse deflection of a circularly polarized beam
propagating in an inhomogeneous medium, to the best of our
knowledge, a complete analytical description of the evolution
of the beam has not been presented in the literature.

Here we investigate the spin Hall effect of a circularly
polarized paraxial beam in an inhomogeneous isotropic
medium on the basis of matrix optics and analytically derive
the expression for a circularly polarized Gaussian beam in
a lenslike inhomogeneous medium. It is known that when
the incident direction of a beam is in the meridian plane of a
lenslike medium, there is no Berry phase during evolution of
the light [7]. We show that there is a polarization-dependent
phase correction induced by spin-orbit coupling, which leads to
a change in the phase structure and rotation of the polarization
of the circularly polarized Gaussian beam, in addition to the
spin Hall effect that is a polarization-dependent transverse
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deflection of the entire beam. This polarization-dependent
phase change is completely different from the Berry phase in
previous works [6,7]. By analyzing the Poynting vector and
angular momentum of the circularly polarized Gaussian beam,
we know that there is a change of the intrinsic optical angular
momentum density of the beam induced by the spin-orbit
coupling which may lead to the change of intrinsic structure
of the light in inhomogeneous media. We also show that
polarization-dependent rotation of the beam occurs when a
nonaxisymmetric beam propagates in a lenslike inhomoge-
neous medium. Here we present an analytical expression for
a circularly polarized paraxial beam in an inhomogeneous
medium that describes the spin Hall effect of light.

This paper is organized as follows. The theoretical model
of the propagation of a polarized beam in inhomogeneous
medium is presented in Sec. II. The numerical calculation
results of the evolution properties of a circularly polarized
Gaussian beam in a lenslike inhomogeneous medium is pre-
sented in Sec. III. This paper is concluded in Sec. IV.

II. THEORY MODEL

Matrix optics provides a connection between geometrical
optics and the diffraction theory of light [21]. It can be used to
investigate the propagation of various beams in various media
[22–31]. To investigate the spin Hall effect of a polarized light
beam using the matrix optics method, the ray matrix should
first be obtained. Propagation of an electromagnetic wave in a
smoothly inhomogeneous isotropic dielectric medium can be
described by the following wave equation:

∇2E + k2E − ∇(∇ · E) = 0, (2)

where k = k0n is the wave number of light in the medium.
The last term on the left-hand side of Eq. (2) includes a
correction term for the light-matter interaction induced by the
inhomogeneity of the medium [1]. In a smoothly inhomo-
geneous isotropic medium, the electric field of a light wave
remains nearly transverse, ∇ · D = ∇ · (n2E) = 0, and one
obtains ∇ · E = −2(∇ ln n) · E. Then, Eq. (2) becomes

∇2E + k2E + 2[(∇ ln n) × ∇] × E = 0. (3)

A ray-accompanying frame (η1,η2,s) is introduced with the
unit vectors (e1,e2,t), where t = dr/ds is the tangent direction
of the ray. The electric field of light can be written in ray
coordinates as E = E⊥ + E‖, where E⊥ = E1e1 + E2e2 is the
transverse component of the field and E‖ = E3t is the longitu-
dinal component. It is known that E3 � E1,E2, therefore, the
wave equation (3) can be written as

∇2E⊥ + k2E⊥ + 2[(∇ ln n) × ∇] × E⊥ = 0. (4)

Linearly polarized light can be considered as a superposition of
right and left circularly polarized light, E⊥ = E+e+ + E−e−,
where E± = (E1 ∓ iE2)/

√
2 and e± = (e1 ± ie2)/

√
2; then

the wave equation (3) can be written in the form

k−2
0 ∇2Eσ + n2Eσ − 2ik−2

0 t · [(∇ ln n) × ∇]Eσ = 0, (5)

where σ = ±1 denotes the wave helicity of right and left
circular polarization. The last term on the left-hand side of
Eq. (4) corresponds to the spin-orbit coupling correction and
is associated with the spin Hall effect of light. If we take Eσ as

the wave function of photons and −ik−1
0 ∇ as the momentum

operator of photons [3,5,6,9], Eq. (4) can be written as the
semiclassical Schrödinger-type equation ĤEσ = 0, and then
the Hamiltonian of photons including the spin-orbit-coupling
correction is obtained. Using the canonical equation, we can
obtain the motion equation of photons describing the spin Hall
effect of light, which has the same form as Eq. (1). However, the
motion equation of photons just describes the evolution of the
center of gravity of a circularly polarized beam, and it cannot
provide a complete description of the evolution of the beam in
an inhomogeneous medium. According to the definition of a
circularly polarized light field, the wave function of photons
can be written as Eσ = A(r) exp[ik0ψ(r)] exp(−iσπ/4), and
the eikonal equation and amplitude transport equation are
obtained in the first-order geometrical optics approximation as

(∇ψ)2 − n2 − σ

(
2∇n × ∇ψ

k

)
· l = 0, (6)

2∇ψ · ∇A + A∇2ψ − σ

(
2∇n × ∇A

k

)
· l = 0, (7)

respectively. Obviously, the last terms in Eqs. (6) and (7)
originate from the spin-orbit-coupling correction terms. If we
ignore the last terms in Eqs. (6) and (7), these two equations
return to the well-known eikonal equation and amplitude
transport equation [30], respectively. From Eq. (6), we obtain

∇ψ = n
dr
ds

+ σ
∇n × ∇ψ

kn
. (8)

The second term in Eq. (8) indicates that there is a polarization-
dependent transverse deflection of the light propagation trajec-
tory, and describes the spin Hall effect of light. Equation (8) can
also be written in another form, ∇ψ = nσ dr/ds, where nσ =
n + σ (∇n×)/k can be considered as the refractive indices of
right and left circularly polarized light. From this viewpoint, a
smoothly inhomogeneous isotropic medium becomes a weakly
anisotropic medium for light with different circular polariza-
tions [2]. Equation (7) describes the energy flow of the light and
indicates that there will be a polarization-dependent transverse
energy flow induced by spin-orbit coupling. According to the
eikonal equation (8), the ray equation and ray matrix for dif-
ferent inhomogeneous media can be obtained easily. Because
there is a polarization-dependent transverse deflection of the
light ray trajectory, the ray matrix describing the spin Hall
effect should be a 4×4 matrix for the two orthogonal directions.
In the next section, we will investigate the spin Hall effect of a
circularly polarized Gaussian beam in the lenslike inhomoge-
neous medium based on the ray matrix derived from Eq. (8).

III. NUMERICAL RESULTS AND DISCUSSION

For simplicity, we consider that a circularly polarized parax-
ial beam propagates in a lenslike inhomogeneous medium with
the refractive index distribution n(r) = n0(1 − αr2), where
r2 = x2 + y2, and n0 is the refractive index along the optical
axis, α is a small coefficient of gradient refractive index, and
the incident direction of the beam is in the meridian plane of
the medium. In this case, it is known that the ray matrix is
a 2×2 matrix because the light ray is always in the meridian
plane without the spin-orbit-coupling correction. Considering
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the spin-orbit coupling, a 2×2 ray matrix cannot describe the
polarization-dependent transverse deflection of the light ray.
Then, in the paraxial approximation, the ray matrix can be
obtained using Eq. (8), and has a 4×4 matrix form,

T =

⎡
⎢⎣

Ax Bx Ex Fx

Cx Dx Gx Hx

Ey Fy Ay By

Gy Hy Cy Dy

⎤
⎥⎦, (9)

where[
Ax Bx

Cx Dx

]
=

[
Ay By

Cy Dy

]
=

[
A B

C D

]

=
[

cos(z
√

2α) −√
2α sin(z

√
2α)

sin(z
√

2α)/
√

2α cos(z
√

2α)

]
, (10)

[
Ex Fx

Gx Hx

]
= −

[
Ey Fy

Gy Hy

]

=
[
β(C + Az) β(D + Bz)

βCz βDz

]
, (11)

and β = 2σα/k. According to the results in [32], the prop-
agation of a circularly polarized paraxial beam in a lenslike
inhomogeneous medium obeys the expression

E(x,y,z) = − ik

2πC
exp(ikz)

∫∫
dx0dy0E(x0,y0,z = 0)

× exp

{
ik

2C

[
D

(
x2

0 + y2
0

) + A(x2 + y2)

−2(x0x + y0y) + 2βz(x0y − xy0) + 2βCxy
]}

.

(12)

Obviously, if the polarization-dependent correction terms
are neglected in Eq. (12), then Eq. (12) returns to the well-
known Huygens-Fresnel integral. By using Eq. (12), the evo-
lution of a paraxial beam in a lenslike inhomogeneous medium
can be obtained. Let us consider that a circularly polarized
Gaussian beam propagates in the lenslike inhomogeneous
medium. The field distribution of the Gaussian beam on the
input plane is

E(x0,y0,z = 0) = exp

[
ik

(
x2

0 + y2
0

)
2q0

]
, (13)

where q0 = −iL and L = kw2
0/2. By substituting Eq. (13) into

Eq. (12), the analytical expression describing the evolution of
a circularly polarized Gaussian beam in the lenslike inhomo-
geneous medium is obtained,

E(x,y,z) = w0

wz

exp

[
− (x − δx)2 + (y − δy)2

w2
z

]
exp(ikβxy)

× exp

{
ik

2Rz

[(x − δx)2 + (y − δy)2]

}

× exp

{
i

[
kz − arctan

(
C

LD

)]}
, (14)

where δx = βzy, δy = −βzx, Rz = (C2 + L2D)/(AC +
L2BD), and w2(z) = w2

0(C2 + L2D)/L2 correspond to the

radius of the curvature and the size of the beam. Obviously,
when the polarized light beam propagates in free space,
β = 0, A = D = 1, B = 0, C = z, and Eq. (14) becomes
the general expression of a Gaussian beam in free space.
Equation (14) completely describes the evolution of a
polarized Gaussian beam in a lenslike inhomogeneous
medium, including the transverse shift of the center of gravity
of the beam and the change of the beam phase front.

According to Eq. (14), the intensity of the Gaussian beam
is

I =
(

w0

wz

)2

exp

{
−2[(x − δx)2 + (y − δy)2]

w2
z

}
. (15)

Evidently, there is a polarization-dependent transverse shift of
the center of gravity of the Gaussian beam, which is responsible
for the spin Hall effect of the beam [8]. Further, Eq. (14)
also shows that there is a polarization-dependent shift of
the entire phase front, which corresponds to a polarization-
dependent shift of the amplitude. This means that there is
a polarization-dependent shift of the entire Gaussian beam,
which corresponds to the spin Hall effect of the beam and has
been investigated in [8]. More interestingly, Eq. (14) shows
a polarization-dependent phase exp(ikβxy). Considering that
the incident direction of the beam is in the meridian plane of
the medium, there is no Berry phase in our theoretical model.
Thus, this polarization-dependent phase differs from the Berry
phase. From Eq. (14), we also know that the Gouy phase shift
is independent of the polarization of the beam. Because of
the presence of the phase exp(ikβxy), the phase front of the
Gaussian beam will be changed. For the sake of simplicity,
as shown in Fig. 1, we present the phase front change of the
beam using the combination of the general phase of the Gaus-
sian beam and the polarization-dependent correction phase,
exp[i(x2 + y2)/R] exp(iβxy), where R is a constant indicating
the curvature radius of the phase front. In fact, according to
Eq. (12), the phase front change exp(ikβxy) will be retained for
the evolution of any paraxial beam in inhomogeneous medium.
This is a different polarization-dependent effect due to the
spin-orbit coupling.

Periodic beam self-focusing and self-defocusing are known
to occur when a Gaussian beam propagates in a lenslike inho-
mogeneous medium, and the waist of the beam is minimum
and maximum at some specific locations z = Nπ/

√
2α and

z = (N + 1/2)π/
√

2α, respectively, where N = 1,2,3, . . . .

Consequently, the phase front of the Gaussian beam also
changes periodically, and the phase front is a plane at those spe-

FIG. 1. Schematic diagram of phase front change of (a) right
and (b) left circularly polarized Gaussian beam due to the spin-orbit
coupling.
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FIG. 2. Phase distribution of (a) right and (b) left circularly polar-
ized Gaussian beam at the position z = Nπ/

√
2α; the corresponding

phase fluctuations around the center of gravity of the beam are shown
in (c) and (d), respectively.

cific positions if spin-orbit coupling is neglected. According to
Eq. (14), we know that the phase correction term exp(ikβxy)
is independent of the propagation distance and can be written
as exp(ikβx ′y ′) if we ignore the terms of the order β2, where
x ′ = x − δx and y ′ = y − δy . Then, in order to clearly display
the change of the phase structure of the Gaussian beam induced
by spin-orbit coupling, we can directly use the correction term
exp(ikβxy) to describe the phase distribution of right and left
circularly polarized Gaussian beams at the specific locations
Z = Nπ/

√
2α, just as shown in Fig. 2. Obviously, the phase

front is no longer a plane, and the phase distribution of the
Gaussian beam demonstrates a polarization-dependent asym-
metrical distribution. Figures 2(c) and 2(d) show that there is a
periodic azimuthal phase fluctuation around the center of grav-
ity of the beam. We also know there is a phase difference π/2 of
the azimuthal phase fluctuation for the right and left circularly
polarized Gaussian beam. It is known that a linearly polarized
light can be considered as a superposition of right and left circu-
larly polarized light. Then, when a linearly polarized Gaussian
beam propagates in the meridian plane of a lenslike inhomo-
geneous medium, there will be a polarization rotation due to
spin-orbit coupling, which is completely different from the
polarization rotation corresponding to the Berry phase [6,7].

More interestingly, these changes of the phase structure lead
to the change of the complex amplitude of the beam and will
induce a polarization-dependent azimuthal energy flow which
is closely related to the intrinsic orbital angular momentum of
the beam. The time-averaged Poynting vector of the circularly
polarized beam can be written as [33]

c

8π
(E∗ × B + E × B∗) = c

8π

[
iω(u∇⊥u∗ − u∗∇⊥u)

+ 2ωk|u|2ez + ωσ
∂|u|2
∂r

eθ

]
,

(16)

FIG. 3. Numerical azimuthal energy flow ωkrβ cos 2θ |u|2 in-
duced by the spin-orbit coupling for a (a) right and (b) left circularly
polarized Gaussian beam in lenslike inhomogeneous medium when
z = Nπ/

√
2α, where the background of (a) and (b) is the intensity of

the beam. (c),(d) The corresponding change of the angular momentum
density.

where u is the complex amplitude describing the field dis-
tribution of the paraxial beam. The first term is a transverse
component of energy flow which is a radial component if we
ignore the spin-orbit-coupling correction; the second term is a
longitudinal component of energy flow in the propagation di-
rection of the beam; the last term denotes the azimuthal energy
flow component relating to the spin angular momentum of the
beam. Considering the propagation of a circularly polarized
paraxial beam in an inhomogeneous medium, there will be an
azimuthal energy flow induced by the spin-orbit coupling. By
substituting the field distribution given by Eq. (14) into the first
term of Eq. (16), we obtain

iω(u∇⊥u∗ − u∗∇⊥u)

= ωkr

{
β sin(2θ ) + 1

Rz

[(cos θ − βz sin θ )2

+ (sin θ + βz cos θ )2]

}
|u|2er + ωkrβ cos 2θ |u|2eθ . (17)

Obviously, the last term in Eq. (17) represents an azimuthal
component of energy flow induced by the spin-orbit coupling,
which is shown in Fig. 3. We find that the direction of the
azimuthal energy flow changes with the different azimuth
angle. It is known that the azimuthal energy flow is closely
related to intrinsic optical angular momentum of the beam [33].
Based on Eqs. (16) and (17), we can obtain the total intrinsic
angular momentum density in the z direction,

Jz = σr

2ω

∂|u|2
∂r

+ σαr2

ω
cos 2θ |u|2. (18)
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FIG. 4. Rotation of (a) right and (b) left circularly polarized
elliptical Gaussian beam in lenslike inhomogeneous medium.

The first term in Eq. (18) is the spin angular momentum density
component; the second term in Eq. (18) is a correction of intrin-
sic angular momentum density induced by the spin-orbit cou-
pling, which is shown in Figs. 3(c) and 3(d). Yet, this correction
does not really change the total intrinsic angular momentum
of the beam because the integral of (σαr2/ω) cos 2θ |u|2 is
zero. Namely, the optical angular momentum of the beam is
conserved. According to Eqs. (14) and (15), the transverse
deflection of the beam is δr = δxex + δyey = −βzreθ . It
means that there is a tiny azimuthal rotation of the center
of gravity of the beam, which leads to a periodic change of
the extrinsic orbital angular momentum density of the beam.
The synchronous changes of intrinsic and extrinsic optical
angular momentum of the beam can maintain the conservation
of the total optical angular momentum of the beam. Then, the
polarization-dependent angular momentum density also can
be considered as a manifestation of the spin Hall effect of the
beam.

When the field distribution of the incident beam is non-
axisymmetric, for example, for a circularly polarized elliptical
Gaussian beam, there will be a polarization-dependent rotation

of the beam, just as shown in Fig. 4. The intrinsic structure of
the beam is deformed if a beam possessing intrinsic orbital
angular momentum propagates in a bending ring-core fiber
[34]. This rotation also can be considered as a joint effect of the
polarization, propagation trajectory, and spin-orbit coupling of
the beam [35]. A similar rotation has been investigated for a
circularly polarized Airy beam propagating in an inhomoge-
neous medium [36].

IV. CONCLUSION

In summary, we analytically derived the expression for a
circularly polarized Gaussian beam in a lenslike inhomoge-
neous medium using the matrix optics method. We found that
there is a change of the phase structure of the beam and rotation
of the polarization induced by spin-orbit coupling, besides the
polarization-dependent transverse deflection of the entire beam
which is called the spin Hall effect of the beam. In addition,
we noted that the spin-orbit coupling leads to a change of
the angular momentum density of the beam. And we also
found that when an asymmetrical circularly polarized beam
propagates in a lenslike inhomogeneous medium, the spin-
orbit coupling induces a polarization-dependent rotation of the
beam. The research technique in this paper can be extended to
the investigation of the evolution of various paraxial beams,
such as the Airy beam [37,38], the Laguerre-Gaussian beam
[33], and the Ince-Gaussian beam [39]. These polarization-
dependent effects indicate more potential applications of spin-
orbit coupling in optical manipulation and signal processing
based on spin optics.
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