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Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams
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Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest
themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately.
Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of
light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion
under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported
so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular
momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin
of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new
degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in
optical spin and orbit interaction, light-beam shaping, or optical manipulation.
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I. INTRODUCTION

In addition to energy and linear momentum, angular mo-
mentum (AM) is another important attribute of light beams
[1]. Generally speaking, photons may have two different types
of AM: optical spin angular momentum (SAM) and optical
orbital angular momentum (OAM). The former is related to
the state of polarization of light beams, left- and right-circular
polarizations usually being thought as its two eigenstates [2].
The latter, OAM, is associated with the helical wave front of
light beams, namely, a vortex phase structure exp(imφ) (m
is the topological charge and φ is the azimuthal angle) [3].
When interacting with a small particle, the optical SAM or
OAM of light beam can transfer to the particle, resulting in
the particle spinning around its own axis [4–6] or orbiting
around the beam axis [7–9]. Such intriguing mechanical effects
have been widely used in applications regarding light-matter
interactions like optical manipulations [10,11], biology [12],
and optomechanical systems [13].

Although optical SAM and OAM are two different rotation
degrees of freedom of light beams that are nearly independent,
they can be strongly coupled under some specific conditions
such as light-matter interaction in inhomogeneous [14],
anisotropic [15], or structured media [16], focusing or scatter-
ing of a circularly polarized beam [17]. This AM interacts, ap-
pearing between the spin and orbital terms, called optical spin-
orbit interaction (SOI), which has attracted intensive attention
recently for its novel fundamental and emerging applications
[18–20]. The main SOI phenomena in optics cover: spin-Hall
effects in inhomogeneous media [21], spin-dependent effects
in nonparaxial fields [22], spin-controlled shaping of light us-
ing anisotropic structures [23], as well as spin-directional cou-
pling via evanescent near fields [24]. These SOI phenomena,
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however, involve only the spin affecting and controlling on
the spatial structure of phase of light beams [14–24].

One would expect that the inverse phenomenon can take
place. But, there were no previous proposals showing the
OAM to SAM conversion, which is still an open question.
In this paper, we show the spatial phase structure of light beam
can induce a localized spin by strongly focusing an azimuthal
polarization vortex (APV) beam. As we know, when a paraxial
beam is highly focused, the initial paraxial SAM or OAM will
be redistributed between the nonparaxial SAM and OAM in
the focal field due to the conservation of total AM [25,26]. For
example, tightly focusing a circular polarization (CP) beam,
the SAM of the incident beam will be partly transferred into
the OAM of the focused field, characterized by the vortex
phase on the axial field [22]. Here, we propose to adopt the
APV beam (with nonzero OAM) as the input field. Even
though the total SAM is zero, the focused field, focused by a
high-numerical-aperture (NA) objective lens, has the localized
longitudinal SAM, arising from its purely transverse field
structure that has a π/2 phase difference between the radial and
azimuthal components. When considering trapping particles,
the focused field of APV tends to induce an axial spinning
motion of the trapped particle. The focusing properties of
the APV beams have been reported in the literature at both
theoretical and experimental levels [27–29]. This paper focuses
on the AM interaction and transfer in the focusing process
and the light-matter interaction. The influences of different
parameters, such as the sign of the topological charge, the ratio
of the pupil radius to the beam waist of the input beam, and
the characteristics of the particle, on the SAM density and the
optical torque are presented.

II. FOCUSING OF AZIMUTHAL POLARIZATION
VORTEX BEAMS

The focusing of incident vector beams under a high-
NA objective lens can be numerically analyzed with the
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FIG. 1. Intensity (a) and phase (b) distributions in the entrance
pupil plane of incident APV1 beam. The white lines with arrows in
(a) indicate the local polarization directions.

Richards-Wolf vectorial diffraction method [30,31]; then, the
focused electric field in the vicinity of the focus can be
expressed in an integral as

E(r) = −ikf

2π

∫ ϑ

0

∫ 2π

0
A(θ,φ) exp(ik · r) sin θdφdθ, (1)

where k is the wave number in the image space and f is the
focal length; ϑ is the maximal converging angle determined by
the NA; vectors r and k separately designate the observation
point position in the image space and the wave vector of the
refracted rays (focused by the objective lens); and A(θ , φ)
stands for the apodized field, which is related to the input field
A0(θ,φ) at the entrance pupil according to the transform rule
[32]

A(θ,φ) = (cos θ )1/2

[
eθ 0
0 eφ

](
A0ρ

A0φ

)
, (2)

where (eθ ,eφ) are the unit vectors in the θ and φ directions,
respectively, and (A0ρ,A0φ) are the radial and azimuthal

components of the input field A0(θ,φ). For the APV beam
discussed here, the input field can be written as the product of
the amplitude, phase, and polarization vector as

A0(θ,φ) =
(

β0
sin θ

sin ϑ

)|m|
exp

[
−β2

0

(
sin θ

sin ϑ

)2
]

exp(imφ)eφ,

(3)

where β0 is the ratio of the pupil radius and the beam waist;
eφ is the unit vector in azimuthal direction in the input plane.
Obviously, the input field has no SAM, carrying only the OAM
of mh̄ per photon.

Integrating along the azimuthal direction in (1), it is found
that the axial field vanishes and the transverse field components
(Eρ,Eφ), in cylindrical coordinates (ρs,φs,zs), are{

Eρ

Eφ

}
= Cimeimφs

∫ ϑ

0
cos1/2θ sin θA0(θ )eikzs cos θ

×
{
i[Jm+1(β) + Jm−1(β)]
Jm+1(β) − Jm−1(β)

}
dθ. (4)

Here C = kf/2 and β = kρs sin θ ; A0(θ ) denotes the ampli-
tude function of the input field (3), Jm(β) is the mth-order
Bessel function of the first kind. We see that the focused field is
purely transverse in polarization, with a radial field component
more than an azimuthal component only, compared to the
focused field of a commonly azimuthal polarization (AP) beam
[31], due to the vortex phase structure of the incident field.

The intensity and phase profiles in the entrance pupil plane
of the incident APV1 beam are plotted in Fig. 1. The focal
field of the incident APV1 and APV−1 beams passing through a
high-NA (= 1.26) objective lens are calculated in Fig. 2, where
the subscripts represent the sign and value of the topological
charge m. The incident power is assumed to be P = 100 mW,

FIG. 2. (a)–(c) Intensity distributions in the focal plane of highly focused incident APV1 beam.(d) Line scans along the x axis of the total
intensity distributions. (e)–(h) Corresponding phase distributions of the radial and azimuthal field components in the focal plane for APV1 (e)
and (f), and APV−1 (g) and (h) beams, respectively. The white circles with arrows in (c) indicate the local polarization ellipses.
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the incident wavelength is λ0 = 1.064 μm, the image space
refractive index n1 = 1.33, and the ratio β0 = 1.5. As shown
in Fig. 1, the incident APV1 beam has an annular intensity
distribution and a polarization distribution along the azimuthal
direction, and a vortex phase distribution. Shown in Figs. 2(a)–
2(c) in turn are the intensity components Iρ,Iφ , and the total
intensity Itot for the focused APV1 beam. Different from
focusing an AP beam where the intensity in the focal plane has a
doughnut shape, the APV illumination with m = 1 generates a
sharp focal spot. The local polarization ellipses of the focused
field are plotted as shown in Fig. 2(c). Notice that the field
is strictly circularly polarized in the focus and elliptically
polarized away from the focus. When changing the topological
charge m = 1 to −1, it finds that the intensity distributions have
the same shape regardless of the sign of the topological charge.
To clarify this further, both the total intensity distributions of
the focused APV1 and APV−1 along the x axis are plotted
in Fig. 2(d). It is clearly seen that the intensities of the two
cases are coincident completely. Shown in Figs. 2(e)–2(h) are
the corresponding phase distributions, which are plotted in the
region where the total intensity is greater than one-tenth of the
peak intensity for the focused APV1 and APV−1 beams. Here,
Pρ represents the phase of the radial electric-field component
and similarly for Pφ . The periodic phase distributions along
the azimuthal direction are evident, suggesting the presence of
OAM in the focused field. Along the radial direction, Pρ keeps
constant while Pφ has a π -phase jump. The comparisons of
the phase distributions between focused APV1 and APV−1

beams manifest that the radial (azimuthal) field components
have π -phase difference. Notice that the radial and azimuthal
field components are π/2 out of phase, just as can be seen from
Eq. (4).

III. ANGULAR MOMENTUM OF THE FOCUSING FIELDS

We now turn to the calculation of the AM of the focused
field. The Minkowski form of the electromagnetic momentum
density g = ε1μ1(E × H), which is proportional to the energy
flow described by the Poynting vector with E and H being the
electric and magnetic fields, respectively, and ε1 and μ1 being
the permittivity and permeability of medium, respectively, is
adopted. Then the AM density j of the light beam can be
expressed as [33]

j = r × g = ε1μ1r × (E × H), (5)

which can be rewritten as j = L + S with L and S being,
respectively, the orbital and spin parts. For monochromatic
light beam with an angular frequency ω, and by adopting
the electric-magnetic democracy or dual-symmetry formalism
[34,35], the time-averaged OAM and SAM densities can be
written as [36]

〈L〉 = 1

4ω
Im[ε1E∗ · (r × ∇)E + μ1H∗ · (r × ∇)H], (6)

〈S〉 = 1

4ω
Im[ε1E∗ × E + μ1H∗ × H]. (7)

Here the superscript * denotes the complex conjugate. Usu-
ally, in light-matter interactions, both the particle and the

surrounding medium are nonmagnetic, such that the particle
predominantly reacts to the electric part of the field [37].
Hence, we focus on the AMs originated from the electric-
field part and the corresponding mechanical effects. For the
orbital part according to Eq. (6), the focused field (4) has
nonvanishing OAM density due to the vortex phase structure
exp(imφs), as also can be seen from Fig. 2. Where the spin
part (7) is concerned, the term Im[E∗ × E] is not equal to zero,
implying that the focused field carries the SAM density which
is, of course, purely longitudinal. This is different from the
azimuthally directed SAM occurring in the focused circular or
radial polarization field [8].

The normalized longitudinal SAM density Sz and OAM
density Lz of the focused APV1 and APV−1 beams are
plotted in Fig. 3. As a comparison, the cases of left- and
right-hand circular polarization (LCP and RCP) beams are
also shown. The magnitudes of the SAM densities dominate
near the focus [upper row of Figs. 3(a)–3(d)], while those of
the OAM densities exhibit annular distributions [lower row
of Figs. 3(e)–3(h)]. Similar to focusing the CP beams where
the orientations of Sz and Lz are in line with the handedness
of circular polarization, those of the focused APV beams are
controlled by the sign of the topological charge. At a fixed
point, the orientation of Sz as well as Lz reverses when the
sign of the topological charge is changed. In addition, the
magnitudes in arbitrary units of the Sz and Lz along the x axis
are plotted in Figs. 3(i) and 3(j); all values are normalized to the
maximum of Sz and Lz of the focused CP case, respectively.
The absolute magnitudes of both Sz and Lz remain unchanged
when the topological charge changes from m = 1 to −1 for
the focused APV beams, or the handedness changes from left-
to right-hand for the focused CP beams. Note that the Sz for
focused APV1 (APV−1) beam is in fact negative (positive)
on the outer side of the ring of maximum intensity, while it
reverses the sign on the inside. This arises directly from the
phase change of the azimuthal component as shown in Fig. 2.
Calculations present that the maximal absolute value of Sz for
the focused APV beam is 0.83-fold that of the focused CP
beam, while on the contrary, the maximal absolute value of
Lz for the focused APV beam is much larger than that of the
focused CP beam.

The aforementioned discussion shows that the focused field
of the APV input has locally nonvanishing optical OAM as well
as SAM densities. We now turn to calculate the global OAM
and SAM of the focused field. In the nonparaxial regime, the
total AM crossing some plane can be computed by evaluating

the integral of the angular momentum tensor
←→
M = r × ←→

T ,
or in component form Mij = ∑

klεiklrkTlj , where εikl is the

Levi-Civita symbol and
←→
T is Maxwell stress tensor or called

momentum flux density, defined as [33]

Tij = 1
2δij (ε1E

2 + μ1H
2) − ε1EiEj − μ1HiHj , (8)

with δij denoting the usual Kronecker delta. The z component
of AM flux density Mzz can be expressed as

Mzz = 1
2 Re[y(ε1ExE

∗
z + μ1H

∗
x Hz)

−x(ε1EyE
∗
z + μ1H

∗
y Hz)]. (9)
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FIG. 3. Normalized longitudinal SAM and OAM density distributions in the focal plane for focused APV1 (a) and (e); APV−1 (b) and (f);
LCP (c) and (g); and RCP (d) and (h) beams, respectively. Line scans along the x axis of the normalized SAM (i) and OAM (j) densities.

According to Barnett [25], the Mzz can be separated into
two gauge-independent contributions associated to the spatial
field structure and to the polarization

Morbit
zz = 1

4ω
Im

[
Ey

∂H ∗
x

∂φs

− H ∗
x

∂Ey

∂φs

+ H ∗
y

∂Ex

∂φs

− Ex

∂H ∗
y

∂φs

]
,

(10)

Mspin
zz = 1

2ω
Im[ExH

∗
x + EyH

∗
y ]. (11)

Integrating the flux density over the whole xy plane yields the
total AM flux through a plane of constant zs

Morbit
zz = 2π

μ1ω2
Re

[∫ {
(m + 1)Q0

m+1Q
1∗
m+1

+ (m − 1)Q0
m−1Q

1∗
m−1

}
ρsdρs

]
, (12)

Mspin
zz = 2π

μ1ω2
Re

[∫ (
Q0

m−1Q
1∗
m−1 − Q0

m+1Q
1∗
m+1

)
ρsdρs

]
,

(13)

where the coefficients Qn
m(n = 0, 1) are

Qn
m = C

∫ ϑ

0
cos1/2θ sin θl(θ )fn(θ )eikzs cos θJm(β)dθ, (14)

with functions f0(θ ) = 1 and f1(θ ) = k cos θ . In order to
identify the magnitude of the AM per photon, we need the
energy flux through the plane which is, after integrating the
time-averaged axial energy flux 1/2Re(E × H∗)z,

Fz = 2π

μ1ω
Re

[∫ (
Q0

m+1Q
1∗
m+1 + Q0

m−1Q
1∗
m−1

)
ρsdρs

]
. (15)

Given Eqs. (12), (13), and (15), it follows that

Morbit
zz + Mspin

zz

Fz

= m

ω
. (16)

From Eq. (16), it is seen that the focused field has total AM
of mh̄ per photon. This demonstrates that the total AM flux
across any transverse plane is conserved.
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FIG. 4. Dependences of the total OAM and SAM per photon of the focused field on (a) the axial distances and (b) the topological charge
of incident beam.

Accordingly, the orbital and spin components of AM per
photon are given by

J orbit = Morbit
zz

Fz/h̄ω
, J spin = Mspin

zz

Fz/h̄ω
. (17)

Figure 4(a) plots the changes of the total OAM J orbit and SAM
J spin per photon for incident APV1 and APV−1 beams with
axial distances. It shows that the total SAM is zero regardless
of which transverse plane is considered. The dependences of
the focal plane J orbit and J spin on the topological charge m

of the incident beam are plotted in Fig. 4(b). Note that the
total SAM of the focused field is always zero, while the OAM
is equal to that of the incident beam. Combining these results
and the above analysis show that the OAM of the incident APV
beam is not converted to a global SAM of the focused field but
induces a local distribution of the SAM.

IV. SPINNING OF PARTICLES IN THE FOCUSED FIELDS

Although a global SAM is absent, the mechanical effects
on probe particles can be induced by the localized optical
SAM. To illustrate this, we employ an absorptive particle
to detect the local SAM. If it does exist, the particle should
experience an optical torque along the axial direction and then
spin around its own axis. Under the illuminations of either
APV1 or APV−1 beam (Fig. 2), the particle will be trapped on
the beam axis as the intensity gradient [38]. However, due to
the equivalence of the OAM and SAM densities when spinning
a particle with size larger than the focal spot size, one cannot
distinguish between the two AM densities unless the particle
is small enough (Fig. 3). So, a Rayleigh spherical particle with
radius of a = 30 nm, which is much smaller than the trapping
wavelength and being unaffected by the OAM density when
trapped on the beam axis, is considered here. The particle, with
permittivity ε2, can be considered simply as an induced electric
dipole. Then, the induced dipole moment is p = αE, where α

is the polarizability given by [39]

α = α0

1 − i(2/3)k3α0
, α0 = 4πε1a

3 ε2/ε1 − 1

ε2/ε1 + 2
. (18)

In light-matter interaction, the transfer of optical AM from
light beam to the particle induces an optical torque � = p × E.

Therefore, the time-averaged optical torque is [40,41]

〈�〉 = 1

2
|α|2Re

[
1

α∗
0

E × E∗
]
. (19)

Considering the spherical particle with a refractive index
of n2 = 1.59 + 0.005i illuminated by the focused APV1 and
APV−1 beams. Figure 5 shows the optical torque distributions
experienced by the particle in the xz plane. It is clearly seen
that the particle experiences a longitudinal optical torque
indeed and undergoes a spin around the beam axis, or its
own axis. With the topological charge m = 1, the spinning
is along the positive z axis, while for m = −1 the spinning
reverses the direction. Such a reversion is caused directly by
the change of the orientation of the SAM density as shown

FIG. 5. Optical torque distributions experienced by the particle in
the xz plane illuminated by highly focused (a) APV1 and (b) APV−1

beams, respectively.
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FIG. 6. Changes in the normalized longitudinal SAM density and
optical torque with the ratio β0 of the pupil radius to the beam waist
under APV1 illumination.

in Fig. 3, since optical torque 〈�〉 ∝ Re[(1/α∗
0 )E × E∗] ∝

Im[1/α∗
0 ]Im[E∗ × E], clearly showing that the torque exerted

on the particle comes from the SAM transferred from light
beam. Quantitatively, the longitudinal torque on the particle
at the equilibrium position is Γz = 0.93 (or −0.93) pN nm
for focused APV1 (or APV−1) beam. The cases for CP
illuminations are also calculated, Γz = 1.12 (or −1.12) pN
nm for focused LCP (or RCP) beam. The ratio of the torque
between focused APV and CP is roughly 0.83, the same as that
of the SAM density between both as mentioned above. Here
lies the fact that the torque is proportional to the SAM density.

In all preceding calculations, the ratio β0 of the pupil radius
to the beam waist for the input field is set to 1.5. In this section,
this value is variable. We may expect some changing results
for the longitudinal SAM density Sz and optical torque Γz on
varying the size of the ratio. In Fig. 6, it plots the curves of Sz,
which is normalized to the maximum of Sz of the focused LCP
case in Fig. 3(i), and Γz evaluated at the equilibrium position for
APV1 illumination as β0 varies. With increasing the value of
β0, both Sz and Γz firstly increase until a peak is reached at β0 =
1.3; thereafter, they decrease gradually. This demonstrates that
the localized SAM is changeable, despite of the null global
SAM. The similar variation tendency between the torque and
the SAM density proves once again that the mechanical torque
on the particle comes from the transferred localized SAM from
the light beam. In short, the beam has an optimal ratio of the
pupil radius to the beam waist corresponding to the maximum
optical torque.

Finally, the effect of the absorptivity (characterized by the
imaginary part of the refractive index) of the particle on the
longitudinal torque Γz for APV1 illumination is examined. In
the calculation, the ratio β0 takes the optimal value of 1.3 and
the real part of the refractive index is held at 1.59. According
to Fig. 7, as the absorption increases, the Γz increases in a

FIG. 7. Change in the longitudinal optical torque with the absorp-
tivity of the particle under APV1 illumination.

simple linear relation, indicating that the magnitude of the
torque can be increased further by increasing the absorptivity
of the particle.

V. CONCLUSIONS

In conclusion, we have proposed and revealed that the
incident OAM can affect the SAM distribution of the focused
field in strong focusing of an APV beam. Such incident field
that carries only OAM, through high focusing, generates a
purely transverse electric field with π/2 phase difference
between the radial and azimuthal field components, leading to
the localized longitudinal SAM occurring in the focused field,
which can be used to drive axial spinning of an absorptive
Rayleigh particle. The sign of the topological charge of the
input field determines both orientations of the SAM and OAM
densities of the focused field as well as the spinning direction
of the particle. The magnitudes of the localized SAM and
optical torque can be controlled by adjusting the ratio β0

of the input field, with both quantities attaining a maximum
value at β0 = 1.3. Moreover, the torque in magnitude can be
increased by properly increasing the particle’s absorptivity.
This investigation provides a new degree of freedom for
spinning particles by using a vortex phase, which may have
considerable potentials in optical spin and orbit interaction,
light-beam shaping, or optical manipulation.
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