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Superthermal photon bunching in terms of simple probability distributions
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We analyze the second-order photon autocorrelation function g(2) with respect to the photon probability
distribution and discuss the generic features of a distribution that results in superthermal photon bunching
[g(2)(0) > 2]. Superthermal photon bunching has been reported for a number of optical microcavity systems
that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number
distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order
autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed
from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode
distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the
photon probability distribution responsible for creating superthermal photon bunching. We relate our general
considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be
approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics
of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the
sense that it can generate statistics that contain no other features but the superthermal bunching.
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I. INTRODUCTION

The second-order photon autocorrelation function g(2) is
an important quantity to analyze the statistical properties of
a light source [1]. It can be interpreted as a measure for the
coincidence rate of photons and is defined as

g(2) = 〈n2 − n〉
〈n〉2

, (1)

with the photon number operator n = b†b, and it can be
measured, e.g., in a Hanbury Brown and Twiss setup [2].

In particular, the characterization of light emitted by optical
microcavity devices requires the study of the statistical features
of the light like g(2) to demarcate various regimes of emission.
For single-photon sources, a value of g(2) well below 0.5
indicates the creation of a single photon [3,4]. In general, values
of g(2) < 1 cannot occur for a classical continuous field, but
only for quantized field excitations [5].

On the other hand, quantum light sources that emit a
large number of photons also require a characterization by
g(2) measurements. The threshold in lasers is indicated by a
transition from g(2)(0) = 2 (typical for thermal states) below
the threshold to g(2)(0) = 1 (typical for lasing states) above
the threshold [6]. In microlasers, the high ratio of spontaneous
emission into the lasing mode (β factor close to 1) leads to an
almost linear behavior of the input-output curve at the threshold
and thus hinders the determination of the laser threshold by
the intensities alone [7]. There are several other indicators of
lasing in a microlaser that go beyond the input-output curve,
such as first-order coherence [8] or leakage into nonlasing
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modes [9]. However, the change in the photon autocorrelation
at the lasing threshold is directly related to the change in the
emission mechanism from spontaneous to stimulated emission
[10]. Therefore, g(2) is one of the most reliable measures for
lasing in microcavity devices [11–13].

When effects become relevant that go beyond spontaneous
and stimulated emission into a single cavity mode from an
ensemble of independent emitters, the statistics of the emitted
light becomes more intricate. A very prominent representative
for this is the superthermal values of the photon autocorre-
lation [g(2)(0) > 2], which will be the focus of this paper.
Superradiant coupling of the emitters in the gain medium has
been reported to lead to g(2) values far above the thermal
value [14–17]. Also, the phase difference of coherent laser
driving can increase g(2) above 2 [18]. Another source that can
produce superthermal light is the cathodoluminescence of an
ensemble of nitrogen vacancy centers in nanodiamonds [19]
or the resonance fluorescence of quantum dot-metal nanopar-
ticles [20]. In bimodal lasers, the gain competition [21,22],
dissipative mode coupling [23], temporal mode switching [24],
intermode kinetics [25], external feedback [26], mode coupling
[27,28], and short-pump-pulse-induced quench [29] can lead to
superthermal photon autocorrelations. Besides these quantum
effects, which are known to produce superthermal photon
bunching, there are also pseudothermal light sources [30–32],
which emit intense light with g(2) = 2 or even exceed this value
[33,34].

Photon correlations have been used since the seminal work
of Hanbury Brown and Twiss [35]. It is reported that the
large intensity fluctuations present in thermal light can improve
the phase sensitivity in interferometry experiments [36], help
to detect subwavelength interference [37], and improve the
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reconstruction of photon number distributions by using thermal
light as a probe [38]. A high probability of photon pairs,
which is indicated by a large g(2), is relevant for applica-
tions relying on nonlinear optical processes [39,40] such as
two-photon luminescence microscopy [30] or thermal ghost
imaging [32,41,42]. The aforementioned applications could
profit from the superthermal photon correlations discussed
here, especially when they are created by a bimodal laser where
it is known that the mode that exhibits superthermal bunching
also has narrow linewidths typical for lasers [43].

The photon autocorrelation can be rewritten as g(2) =
1 + [Var(n) − 〈n〉]/〈n〉2, emphasizing that it corresponds to
information about the variance of the photon number dis-
tribution Pn. To further characterize the statistics of a light
source, one can determine higher-order correlations g(k), which
contain information about the skewness (k = 3), the kurtosis
(k = 4), etc. of the photon number distribution Pn. They can
be determined experimentally [44–47] and theoretically, e.g.,
by a cumulant expansion [48,49] or by a direct solution of the
von Neumann–Lindblad equation [50] (Appendix A discusses
the problem of how the photon distribution and its statistical
features such as the g(n) inside a leaky cavity transfer to
the photon-detection statistics outside the cavity). However,
the knowledge of the intensity and first moments of the
photon distribution reveals only a fraction of the information
contained in the full photon distribution. For well-known or
elementary systems, this information may be sufficient to
properly characterize its states. For more complex or less
studied systems, knowledge of the first moments of photon
distribution Pn might not be sufficient since the same value
of the autocorrelation can be associated with very different
photon statistics. Recently, direct methods to measure the full
photon statistics have been applied to vertical cavity surface
emitting lasers [51] and using a transition edge sensor [52] or a
streak camera [6,53] to microlasers. Using an acousto-optical
modulator, it is also possible to generate arbitrary classical
photon statistics [54].

Understanding which features of the measured statistics
are relevant to produce the observed photon bunching effects
in general will help to interpret these experiments. It is
therefore important to discuss the generic features that a photon
distribution needs to have in order to produce superthermal g(2)

values.
The paper is organized as follows: In Sec. II A, we employ

the maximum-entropy method (MEM) to find the simplest
unbiased photon distribution that has a superthermal g(2) value.
We demonstrate that only two anticorrelated photon modes
can produce such an unbiased photon distribution that contains
only information about the intensities and the second-order cor-
relations. Going a step further in simplification in Sec. II B, we
then introduce a fitting model for the single-mode distribution
based on a linear combination of a low-intensity thermal state
and a lasinglike state. In the last part of this section, we discuss
the implications of statistics that are composed of incoherent
mixtures of simple known states, and demonstrate that these
statistics can produce arbitrary high g(2). In a last step, we
show in Sec. III that the introduced fitting model is sufficient to
reproduce and interpret the statistics of real physical systems.
To this end, we solve the von Neumann–Lindblad equation of a
single-emitter bimodal laser and compare its photon statistics

to our fitting model. Section IV concludes the paper. In
Appendix A, we discuss the detection of the statistical features
of a photon distribution from a leaky cavity. In Appendix
B, we proof analytically that 2 is the upper bound of g(2) in
the second-order maximum-entropy distribution (MED), and
briefly discuss the shape of the third-oder MED. In Appendix
C details of the fitting model are given, and in Appendix D the
switching of the system in time is discussed in terms of Monte
Carlo trajectories.

II. SIMPLEST SHAPE OF SUPERTHERMAL
DISTRIBUTIONS

A. Maximum-entropy method

In this section, we discuss which shapes an unbiased photon
distribution that produces superthermal g(2) can have. The
standard procedure to create an unbiased distribution Pn from
any given information contained in the expectation values
〈Ai〉 = ∑

PnAi(n) is the MEM. This method creates the
MED, which maximizes the entropy S = −∑

Pn ln Pn under
the constraints given by the expectation values 〈Ai〉 [55].
Equivalent to maximizing the entropy is finding the Lagrange
multipliers λi of

Pn = exp

[
−

∑
i

λiAi(n)

]
, (2)

so that the distribution can be normalized and produces the
requested expectation values 〈Ai〉. For a given intensity and
photon autocorrelation 〈n〉,g(2) = f (〈n〉,〈n2〉), one has to de-
termine three Lagrange multipliers λi for the operators Ai = ni

(i = 0,1,2) since the normalization is always implemented by
A0. This can be done by solving the system of equations

〈nj 〉 =
∑

n

nj exp

(
−

O∑
i=0

λin
i

)
(3)

for all λj (j = 0,1,2) and the 〈nj 〉 corresponding to the given
intensity and photon autocorrelation. Here, O refers to the
order of the MED (in our case, O = 2).

The numerically determined Lagrange multipliers λj are
shown in Fig. 1 for a wide range of 〈n〉,g(2). One can see
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FIG. 1. Numerically determined Lagrange multipliers λi of the
second-order MED for a given intensity 〈n〉 and autocorrelation
g(2). Negative and positive regions are separated by a black curve.
Autocorrelations above 2 yield negative λ2, indicating that the MED
cannot be normalized in this case.
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that λ2 is only positive for g(2) < 2 and thus that the second-
order MED with an arbitrary large photon number cannot be
normalized for any superthermal value of g(2). The existing
values of λ2 for g(2) > 2 are an artifact of the finite number
of states used to determine the MED numerically and depend
on the number of considered photon states. In Appendix B 1,
we prove analytically that no MED of second order that has
a g(2) > 2 and an infinite number of photon states exists [56].
Although it is possible to find a MED with g(2) > 2 with a finite
number of photon states [57], limiting the number of photon
states to a maximum value is neither unbiased nor a physically
meaningful result. Note that there is also a lower bound for the
photon autocorrelation g(2) � 1 − 1/〈n〉, which results from the
quantized nature of the field [5].

Since we cannot find a superthermal distribution solely
from the knowledge of (〈n〉,g(2)), more information is needed.
Effects that can produce superthermal g(2), such as superradi-
ance or mode competition in bimodal lasers, have in common
that an additional constituent of the system is correlated with
the superthermal photon mode. This suggests going to a
complex system, with additional degrees of freedom, to create a
distribution with superthermal g(2). An alternative way would
be to include g(3), i.e., going to a third-order MED, which
results in superthermal distributions that can be normalized.
However, this approach leaves arbitrariness in the much less
accessible third-order photon correlation g(3) and leads to
distributions that are qualitatively identical to the bimodal
ones we discuss below (see Appendix B 2), and provides
very little insight into the physics of superthermal photon
bunching.

A bimodal system is the simplest system that allows one
to derive a second-order MED with superthermal g(2). The
general form of the MED of Oth order for a bimodal system
reads

Pn1,n2 = exp

⎛
⎝−

i+j=O∑
i,j=0

λi,jn
i
1n

j

2

⎞
⎠. (4)

From Pn1,n2 , one can extract the single-mode distribution by
summation over the extra degree of freedom, e.g.,

Pn1 =
∑
n2

Pn1,n2 . (5)

For the bimodal MED of second order, we not only require
information about the individual intensities 〈ni〉 and photon
autocorrelations g

(2)
i of modes i = 1,2, but also information

about the cross correlation,

gx = 〈n1n2〉
〈n1〉〈n2〉 . (6)

Without gx (i.e., λ1,1 = 0), we see that the second-order MED
factorizes into a product of two single-mode MEDs. Since we
have already proven that no superthermal g(2) exist for a single-
mode MED of second order, we know that the cross correlation
of a MED with superthermal photon bunching has to have
a nontrivial value gx �= 1. Figure 2(a) depicts the Lagrange
multipliers λ2,0,λ0,2, and λ1,1, in dependence of gx for a generic
MED with g

(2)
1 = 2.5 and g

(2)
2 = 1.3. The depicted λi,j need

to be positive when an infinite number of photon states is con-
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FIG. 2. (a) Numerically determined Lagrange multipliers λij

for the bimodal MED of second order, with one mode exhibiting
superthermal g

(2)
1 in dependence of the cross correlation gx . Only

for sufficiently anticorrelated modes, all Lagrange multipliers of
second order are positive and thus the MED exists. (b) The maximal
value of the cross correlation gx

max for a given superthermal g
(2)
1 in

one mode that results in positive λij of second order. The higher
the superthermal g

(2)
1 is, the stronger the two modes have to be

anticorrelated. Parameters: 〈n1〉 = 7, 〈n2〉 = 17, g
(2)
1 = 2.5, g

(2)
2 =

1.3, with 80 basis states in each mode.

sidered. We see that only for sufficiently anticorrelated modes,
this requirement is fulfilled. Figure 2(b) demonstrates that this
observation can be generalized to all second-order bimodal
MEDs. It shows the maximum value of gx that a second-order
bimodal MED can have for increasing g(2) values in one of the
modes, with the constraint that the MED is normalizable (i.e.,
λ2,0,λ0,2,λ1,1 > 0). This reveals that the higher the superther-
mal photon bunching is, the stronger the anticorrelations of the
modes need to be. Figure 3(a) shows a typical bimodal MED
with superthermal g(2) and pronounced anticorrelation, visible
in the low probability along the n1 = n2 line. Figure 3(b) shows
the corresponding single-mode statistics which can be obtained
by summing over the other mode, as indicated by the � in
Fig. 3(a) (more details in the next section).

In summary, two anticorrelated photon modes are in the
sense of the MEM the simplest system that can produce
superthermal photon bunching, when no information beyond
the second-order correlations is to be included.

B. Fitting the single-mode statistics with a mixture of a lasing
and a thermal state

A bimodal MED with superthermal g(2) in one of the modes
results in a very specific single-mode statistics [see Fig. 3(b)].
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FIG. 3. (a) Bimodal MED Pn1,n2 as contour plot. (b) Single-mode
photon statistics obtained from Pn1,n2 compared to the fitting model
introduced in Eq. (7). Lagrange multipliers: λ1,0 = 0.73, λ0,1 = 0.76,
λ2,0 = −0.016, λ0,2 = −0.05, λ1,1 = −0.015.
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The shape of the statistics suggests a fitting model consisting
of a linear combination of a thermal distribution P T

n with a
low intensity and a normal distribution P N

n with an intensity
comparable to the one of the original statistics,

Pn(μ,σ,β,a) = aP N
n (μ,σ ) + (1 − a)P T

n (β), (7)

P N
n (μ,σ ) = CN exp

[
− (n − μ)2

2σ 2

]
,

P T
n (β) = CT exp (−βn),

where σ is the variance, μ the center, CN the normalization
constant of the normal distribution and CT the normalization
constant, and β the effective temperature of the thermal
distribution. Since n is discrete and non-negative, the standard
expressions forCN,μ, andσ ofP N

n , known from the continuous
case, do not hold. For large photon numbers (for our purposes,
photon numbers above ∼5), the normal distribution with mean
value 〈nN〉 and variance σ 2 = 〈nN〉 is a good approximation
for a Poisson distribution, which is typical for a lasing state.
The width of the fitted normal distribution is in general larger
than the one of the Poisson distribution, which results from
the diagonal orientation of the bimodal statistics. As one can
see in Fig. 3(b), this model (depicted by the dashed curve)
approximates the single-mode distributions obtained from the
second-order MEM very accurately (for details on the fitting
procedure, see Appendix C). The fitting model proposed in
Eq. (7) also corresponds well to the notion of two anticorrelated
lasing modes, meaning that each mode is not lasing when
the other one is, and hence Pn has one maximum at n = 0
and one at n ≈ 〈nN〉. The characteristic structure with two
maxima, which is reproduced by our fitting model, is well
known in the literature and has been observed among others in
ring lasers [58–60] and quantum dot microlasers [21,25]. More
importantly, the fitting model reveals a simple mechanism to
create superthermal photon bunching in a single mode, i.e.,
the mixture of a thermal and lasinglike state, created, e.g., by
switching processes in the time domain [24] (see Appendix D)
or a bistability in the switch-on behavior [52].

To emphasize the consequences of this model, we show
how one can generate arbitrary large g(2) values with a photon
distribution,

Pn = aP 1
n + (1 − a)P 2

n , (8)

that is an incoherent mixture of two distributions with known
values for g(2) (G1, G2) and 〈n〉 (I1, I2). We choose the indices
so that I1 � I2 and define the ratio of the intensities as R =
I1/I2. The autocorrelation of the composed distribution,

g(2) = aG1R
2 + (1 − a)G2

[aR + (1 − a)]2
, (9)

depends solely on the ratio of the intensities R, the g(2) values
of the constituents, and the mixing parameter a. Note that this
equation was also derived in [61] in the context of photon
antibunching. The dependence of the resulting g(2) on a and R

is shown in Fig. 4(a) for G1 = 2 and G2 = 1, which resembles
a composition of a thermal and Poisson distribution. The
black curve marks the parameter region for which g(2) > 2.
Figure 4(b) shows three examples for a mixture of a thermal
and a Poisson distribution with increasing and ultimately
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FIG. 4. (a) Autocorrelation of a convex combination of two
distributions with autocorrelation values G1 = 2 and G2 = 1 as a
function of the mixing parameter a and the ratio of the intensities
R. The black curve separates the regions with g(2) values greater and
smaller than 2. The values in the darkest area in the upper-left corner
can become arbitrarily high for small R. (b) Single-mode photon
statistics for the parameters marked by circles in (a).

superthermal g(2) > 2. From Eq. (9) and Fig. 4(a), we see that
a mixture of a thermal and a lasing distribution can create all
values of g(2) � 1. For small a, the autocorrelation is almost
independent of R and is mainly determined by a. Although R is
independent of the absolute value of the intensities, high values
of g(2) clearly favor I 1 ≈ 0, especially in microcavity devices
where intensities are relatively low. Note that another conse-
quence of Eq. (9) is that any combination of two statistics with
properly chosen (R,a) can produce g(2) > 2, e.g., two Poisson
or two thermal distributions where the higher-temperature
distribution acts as the heavy tail of the lower-temperature
distribution [29].

III. SINGLE-EMITTER BIMODAL MICROCAVITY LASER

In this section, we relate our general considerations and the
introduced fitting model to a simple physical model. From a
theoretical point of view, the simplest laser is a single-emitter
single-mode laser [62–64], so we generalize this to a bimodal
laser with a single emitter. Its steady state is described by the
stationary solution of the von Neumann–Lindblad equation,

dtρ = i[H,ρ] +
∑

i

γi

(
LiρL

†
i − 1

2
L
†
i Liρ − 1

2
ρL

†
i Li

)
,

(10)

for the density operator ρ. The Hamiltonian of the system is
given by

H =
∑
i=1,2

εi |i|〉|〈i| +
∑
j=1,2

ωjb
†
j bj

+
∑
j=1,2

(gjb
†
j |1|〉|〈2| + g∗

j bj |2|〉|〈1|), (11)

where |i〉 denote the states of the two-level emitter with
energies εi , and b

(†)
j denotes the bosonic annihilation (creation)

operator for photons in mode j with energy ωj . The strength
of the light-matter interaction in the dipole and rotating wave
approximation is given by gj . The collapse operators Li and the
corresponding rates γi in the second term in Eq. (10) describe
the pumping (L1 = |2|〉|〈1|, γ1 = P ), spontaneous emission
into nonlasing modes (|1|〉|〈2|, γ2 = τ−1

sp ), and cavity losses
(L3,4 = b1,2, γ3,4 = κ1,2). As one can see in Eqs. (10) and

053835-4



SUPERTHERMAL PHOTON BUNCHING IN TERMS OF … PHYSICAL REVIEW A 97, 053835 (2018)

0 10 20 30
n1

0

10

20

30

n
2

×Pmax(a)

0.010

0.075

0.150

0.225

0.300

0 10 20 30
ni

P
n

(b) Mode 1

Mode 2

Fit

FIG. 5. (a) Full photon statistics Pn1,n2 for the single-emitter bi-
modal laser for pump rate P = 9.3ν. (b) Single-mode photon statistics
obtained from Pn1,n2 compared to the fitting model introduced in
Eq. (7). The full set of parameters is given in the caption of Fig. 6,
where the input-output curves are shown.

(11), all parameters enter linearly and hence can be scaled
by a universal constant ν which only alters the timescale.
The steady state of Eq. (10) is obtained by numerically
integrating the equation with a modified version of QUTIP

[65]. With the resulting density operator, we can compute
the two-mode photon statistics Pn1,n2 = Tr(|n1,n2|〉|〈n1,n2|ρ),
which is depicted in Fig. 5(a), and all other desired observables.

Figure 5 has a striking resemblance to Fig. 3, revealing that
this single-emitter bimodal laser can generate almost perfectly
unbiased superbunching in the sense of the maximum entropy
principle. We also see in Fig. 5(b) that the proposed fitting
model [Eq. (7)] is, in analogy to the results of the previous
section, very well suited to approximate and interpret this
type of single-mode statistics (see Appendix C for fitting
parameters).

Figures 6(a) and 6(b) depict the intensities 〈ni〉, the photon
autocorrelationsg

(2)
i , and the cross correlationgx for increasing

pump rates. We see the typical behavior of a bimodal laser
[21,23,66,67]: at the lasing threshold, the competition for the
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FIG. 6. Laser characteristics and characteristics of the fitting
model vs the dimensionless pump power. Light orange curves belong
to mode 1; dark blue curves belong to mode 2; the gray area marks the
region where the fitting model is not suitable and the fitting routine
does not converge without manual aid. (a) Input-output characteristics
for the intensities 〈ni〉. (b) Photon autocorrelations g

(2)
i and the

cross correlation gx < 1 (dashed green curve). (c) Root-mean-square
deviation of the fitting model in Eq. (7) from the actual single-mode
distribution of the bimodal laser in ‰. (d): Variance σ of the normal
distribution in the fitting model divided by the variance σP of the
Poisson distribution with the same mean photon number. Parameters:
g1 = ν, g2 = 0.96ν, ω1 = 0.2ν, ω2 = ν, ε1 = 0, ε2 = ν, τsp = √

2/ν,
κ1 = 0.16/τsp, κ1 = 0.17/τsp.

limited gain sets in and, in this case, mode 1 (light orange
curves) is losing while mode 2 (dark blue curves) is winning
the gain competition. Furthermore, the losing mode exhibits su-
perthermal photon correlations and the two modes are strongly
anticorrelated (gx ≈ 0.5, dashed green curve). For pump rates
exceeding 15ν (not shown), we observe the typical quenching
effect of a single two-level emitter [68]. In Fig. 6(c), the devia-
tion of the fitting model [Eq. (7)] from the actual single-mode
distribution Pni

is depicted. We see that for all pump values, the
error is significantly less than 1%, meaning that the deviation
of the plotted distributions is barely visible. For small pump
rates, the proposed fitting model does not converge well (gray
area) and the error curve behaves quite erratically, indicating
a certain arbitrariness of the fitting parameters. Indeed, this
gray area marks the pump region in which the proposed fitting
model is not appropriate since the maxima of the thermal and
the lasinglike state are not yet separable. The low fitting error in
this region is a result of the simple form of the statistics and the
small number of Pni

with nonzero occupation. However, this
is not a downside of our fitting model since it is not designed to
describe the photon statistics for all possible pump powers, but
to fit and interpret the photon statistics leading to superthermal
photon bunching above the lasing threshold.

To produce the data in Fig. 6, we used Eq. (7) for each
mode separately; in particular, we have allowed different
mixing parameters ai . Since the two single-mode distributions
originate from a single bimodal distribution with strong an-
ticorrelations between the modes, the mixing parameters ai

are not independent. Indeed, Fig. 8(c) clearly shows that for
pump powers above the laser threshold, the mixing parameters
add up to unity. This justifies an ansatz for a bimodal fitting
model [Eq. (C1)], which relates to the observation that the
system is in one of two distinct states: (i) mode 1 lases and
mode 2 is thermal, or (ii) mode 1 is thermal and mode 2
lases. In this ansatz, only a single mixing parameter a exists
which describes the mixing between states (i) and (ii). In
Appendix D, we discuss how this mixing parameter a can be
interpreted within the framework of quantum trajectories as an
average dwell time in one of these states.

Figure 6(d) shows the variance σ of the laserlike part of
the fitting model compared to the variance σP of a Poisson
distribution with the same intensity. Above the lasing thresh-
old, the variance of the laserlike part of the winning mode 2 is
almost constant and close to the one of the Poisson distribution
(σ ≈ 1.4σP ), consistent with its lasing character. However,
the variance of the losing mode 1 is increasing drastically
and rises to values that exceed three times the values of the
corresponding Poisson distributions. This shows that the notion
of switching between nonlasing (thermal distribution) and
lasing (Poisson distribution) is too simplistic to describe this
system and that it is rather a switching between a nonlasing and
a broadened laserlike state, as described by our fitting model.
Nevertheless, we clearly see that the mixture of two simple
states, corresponding to the notion of a spontaneous temporal
switching, is very helpful to analyze superthermal statistics.

IV. CONCLUSION

We discussed the general features of photon statistics
with superthermal photon bunching. Using the principle of
maximum entropy, we have demonstrated that no unbiased
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single-mode photon statistics with g(2) > 2 can be constructed
without knowledge of its higher moments. We concluded
that two anticorrelated modes are the simplest system which
exhibits superthermal g(2) and provides insight into the physics
behind superthermal light sources. In accordance with results
obtained from the von Neumann–Lindblad equation, the bi-
modal maximum-entropy distribution justifies a fitting model
consisting of a mixture of a low-intensity thermal and a high-
intensity lasinglike state for the single-mode distributions. This
model reveals a generic mechanism to create arbitrary highg(2),
by pushing a small fraction of a lasinglike state to large photon
numbers in an otherwise thermal state. The proposed model
approximates the statistics of a single-emitter bimodal laser
very well. It is remarkable that this bimodal laser produces
the simplest possible superthermal statistics in the sense of the
maximum-entropy method, revealing that a bimodal laser is
an ideal system to generate a superthermal statistics without
additional correlations.
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APPENDIX A: MEASUREMENT OF HIGHER-ORDER
PHOTON AUTOCORRELATION FUNCTIONS BY

DETECTION OF LEAKED PHOTONS

To be able to interpret the statistical properties of the light
field, it is important to know whether they are the same on the
inside and on the outside of a light-emitting device. To this end,
we apply the general results obtained in [69] to the problem of
the measurement of the autocorrelation function.

Decaying cavity field. One elementary model to describe
the leakage of a cavity and to transfer the light field outwards
was proposed in [69]. The author assumed that the leakage of
photons is the only relevant process, especially that the cavity
is not pumped, when the measurement starts at time t1. The
probability P out

l to find l leaked photons at time t2 if the cavity
contains initially n photons is described by

d

dt2
P out

l = −(n − l)ηP out
l + (n − l + 1)ηP out

l−1, (A1)

where η is the loss rate of the cavity mode. The solution of this
equation in terms of the initial distribution inside the cavity,
P in

n , is [69]

P out
l (t1,t2) =

∞∑
n=l

P in
n

(
n

l

)
(1 − ζ )n−lζ l = BP in,

ζ = ζ (t1,t2) = (e−ηt1 − e−ηt2 )l , (A2)

where B is a matrix with binomial distributions in its columns,
which means that each initial P in

n is weighted by a binomial
distribution of the order of n.

This transformation has an interesting property: If we
connect the autocorrelation functions of arbitrary order

g(k) =
〈 ∏k−1

i=0 (n − i)
〉

〈n〉k (A3)

from the outside with the ones on the inside, we find a simple
relation for the involved expectation values,

〈
k−1∏
i=0

(n − i)

〉
out

= ζ k

〈
k−1∏
i=0

(n − i)

〉
in

, (A4)

and therefore all g(k) are the same on the inside and the outside
and do not change in time.

Besides the physical interpretation, Eq. (A2) produces a
mapping that allows one to scale a distribution with 〈n〉 to
another distribution that has the same g(k), but a smaller mean
value 〈ñ〉 ∈ [0,〈n〉]. Although there is an inverse transforma-
tionB−1 [69], it is not possible to use this transformation to find
a distribution with the same statistical features as the original
one (same g(k)) but with a larger mean value 〈ñ〉.

Continuously pumped cavity field. To model the detection
of photons leaking out of a continuously pumped cavity, we
assume that the cavity is already in a steady state and that
every emitted photon is immediately fed back into the cavity
by the internal dynamics, or rather that the fluctuations are
small compared to the amount of photons. Under this premises,
Eq. (A1) changes to

d

dt
P out

l = −nηP out
l + (n + 1)ηP out

l−1, (A5)

i.e., the time derivative of P out
l no longer depends on the

number of already leaked photons and it is only necessary to
use one time t since P in

n is in a steady state. This equation has
the solution

P out
l (t) =

∞∑
n=0

P in
n

(nηt)l

l!
e−nηt = PP in, (A6)

where P is a matrix with Poisson distributions in its columns,
which means that now each initial P in

n is weighted by a Poisson
distribution with mean value nηt . This time, we find that

〈
k−1∏
i=0

(n − i)

〉
out

= (ηt)k〈nk〉in, (A7)

and, therefore, that the autocorrelations on the outside,

g
(k)
out = 〈nk〉in

〈n〉kin
, (A8)

are still constant over time, but not equal to those on the inside.
In the second order, the autocorrelation is always larger on the
outside,

g
(2)
out = g

(2)
in + 1

〈n〉in
> g

(2)
in . (A9)

However, since this model is only valid for relatively large
values of 〈n〉in, the difference in the autocorrelation of second
order is insignificant. In contrast to the first transformation,
this mapping allows one to scale the initial distribution to an
arbitrary mean value.
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APPENDIX B: SECOND- AND THIRD-ORDER
MAXIMUM-ENTROPY DISTRIBUTION

1. Proof of the upper bound of g(2) in the second-order
maximum-entropy distribution

It was shown by [56] that every continuous MED of O − 1th
order implies a boundary for the Oth moment of the Oth-
order MED. All steps of this proof are also valid for discrete
distributions. One can show that the sum over the products of
the total differentials of the Lagrange multipliers dλi and the
corresponding moments d〈ni〉,

O∑
i=0

dλid〈ni〉 � 0, (B1)

is always smaller than zero, and the equality holds for the trivial
case dλi = 0,∀i. To take advantage of this inequality, one con-
siders a valid O − 1th-order MED with Lagrange multipliers
(λ0, . . . ,λO−1,λO = 0) and moments (1,〈n1〉, . . . ,〈nO〉). If the
λi in the Oth-order MED are changed in such a way that only
the moment 〈nO〉 is altered, Eq. (B1) simplifies to

dλOd〈nO〉 � 0.

But, in order to normalize the MED, the Lagrange multiplier
of highest order has to be positive and therefore we find dλO �
0 ⇒ d〈nO〉 � 0, i.e., the moment 〈nO〉 in the Oth order is less
than or equal to the 〈nO〉 in the O − 1th order, if all other
moments stay the same.

In particular, in the first order (Pn ∝ e−λ1n), we have
the moments (1,〈n〉) and can calculate 〈n2〉 = 2〈n〉2 + 〈n〉
analytically. If we go to the second order and keep the moments
(1,〈n〉), we find immediately that 〈n2〉 � 2〈n〉2 + 〈n〉 and, for
the autocorrelation,

g(2) � 2〈n〉2 + 〈n〉 − 〈n〉
〈n〉2

= 2. (B2)

This finding does not generalize to higher orders. We used the
fact that we can construct a MED to every positive 〈n〉 in the
first order and therefore we have an upper bound in g(2) for
every valid set of Lagrange multipliers in the second order.
But, not every pair of moments (〈n〉,〈n2〉) that can be created
in the third order is also valid in the second order, i.e., there is
no general constraint for g(3) in the third order.

2. Third-order maximum-entropy distribution

Figures 7(a) and 7(b) show third-order single-mode MEDs,
compared to the corresponding single-mode distributions

0 20 40
n

0.0

0.2

P
n

(a) O=3, single-mode

O=2, bimodal

0 20 40
n

0.00

0.05 (b)

FIG. 7. Third-order single-mode MED (solid green curve) com-
pared to a single-mode distribution derived from the corresponding
second-order bimodal MED for (a) mode 1 and (b) mode 2. Lagrange
multipliers: O = 2: see caption of Fig. 3; O = 3: λ1 = 0.37, λ1 =
−0.028, λ3 = 0.00057.
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FIG. 8. Parameters of the fitting model for Fig. 6. (a) The inverse
temperature of the thermal distribution, (b) the center of the normal
distribution, (c) the mixing parameter of both modes and their sum
depicted as a black dashed curve, (d) the standard deviation, i.e., the
width of the normal distribution. The gray shaded area marks the
region for which the fitting model is not applicable.

derived from a second-order bimodal MED. The distributions
are virtually identical; however, in the main text, we discuss
only the bimodal MED. To construct a third-order MED, one
needs additional information from g(3), which we do not have
at hand, and it introduces additional arbitrariness. However,
the main reason for preferring the bimodal distribution over
the third-order MED is that the latter does not allow for deeper
insight into the physics of superthermal photon bunching.

APPENDIX C: FITTING THE MODEL TO THE
SINGLE-EMITTER BIMODAL LASER

To fit the four parameters required in Eq. (7), we have
minimized the root-mean-square deviation between the fitted
and the original distribution with SCIPY’s implementation of the
Broyden-Fletcher-Goldfarb-Shanno algorithm. The results for
the input-output characteristics presented in Fig. 6 are shown
in Fig. 8. For small pump rates (gray shaded region), the depen-
dence of the parameters on the pump rate is quite different from
the remaining part, which is best seen in Fig. 8(c). Initially, the
distribution is in a pure thermal state (a = 1). In the interval
P = (0,2ν], it is then broadened by the addition of a normal
distribution with μ ≈ 0. At P = 2ν, the parameter a increases
abruptly. At this pump value, the additional normal distribution
becomes visible by forming a turning point inPn. In accordance
with the strong anticorrelation for higher pump rates, μ and a

increase up to the point where both modes split.
In the gray shaded region, we had to regularize the cost

function to exclude negative values of μ and values of a

greater than one and avoid local minima of the cost function
manually. The relatively small errors (�0.25%) visible in Fig. 6
are predominantly a result of the simple shape and the small
number of relevant states of Pn. However, in the remaining
part (white area), after the modes have split and taken the
shape consistent with the fitting model, the fit routine converges
and is very stable. Furthermore, the extracted parameters can
provide further insight. (1) The inverse temperature β is given
by the logarithm of the slope of the distribution at n = 0 [see
Eq. (7)]. (2) Since the thermal part in the composite distribution
is scaled by a, this parameter can be obtained by dividing P0

of the original distribution by P T
0 . (3) The center of the normal
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distribution μ is approximately the mean value and can be
estimated in terms of a, the mean value of P T

0 , and of the one
of the original distribution.

As depicted by the dashed curve in Fig. 8(c), the mixing
parameters a of both modes add up to one. This originates
from the separation of the two maxima in Pn1,n2 corresponding
to the two modes (Fig. 5), i.e., from the strong anticorrelation
between the modes. Since lasing in one mode means nonlasing
in the other mode, the thermal part with weight a of one mode
is the lasing part with weight 1−a of the other mode. This
observation justifies the ansatz

Pn1,n2 = aP T
n1

P N
n2

+ (1 − a)P T
n2

P N
n1

, (C1)

for the full two-mode statistics, which is the simplest ansatz
resulting in the single-mode fitting model in Eq. (7). This
demonstrates that although the information about correlations
between the modes is lost in the single-mode distributions,
clear traces of the anticorrelation between two distinct states
of the system (i) and (ii), as defined in Sec. III, can still be ex-
tracted from the structure of the two single-mode distributions
using the proposed fitting model. The anticorrelation between
the two different states (i) and (ii) will be further examined in
the next section.

APPENDIX D: MONTE CARLO TRAJECTORIES

To gain intuition about the dynamics of the system, we
unravel the von Neumann–Lindblad (vNL) equation (10) in an
ensemble of quantum trajectories [70,71]. For a pump rate well
above the lasing threshold, we have depicted 〈ψk|nj |ψk〉(t)
in Fig. 9 for each mode, which results from a part of such
trajectory |ψk〉(t). We associate all occupations for which
〈n1〉 > 〈n2〉 holds, with state (i) (dark blue), and accordingly

0

25

n
1

(a)

state (i) state (ii)

5000 9000
time h̄/ω

0

25

n
2

(b)

(units of     ) 

FIG. 9. Part of 〈ψk|nj |ψk〉(t) from a Monte Carlo trajectory
|ψk〉(t) calculated from the vNL equation for the bimodal laser
with the same parameters as in Fig. 5. The values of 〈ψk|nj |ψk〉(t)
with n1 > (<)n2 are identified with state (i) [(ii)], respectively. The
probability over time for each mode and state is depicted on the right
margin (we used 106 time steps to create the statistics).

〈n1〉 < 〈n2〉 with state (ii) (light orange). On the right margin
of Fig. 9, we show the statistics P〈nj 〉 build up from a
single trajectory 〈ψk|nj |ψk〉(t) over time with a total time of
106 h̄/ω and 106 sample points. Besides the remaining noise,
which would vanish for infinite calculation time, the resulting
statistics clearly correspond to those shown in Fig. 5 and can be
separated into a thermal and a normal distributed part weighted
with ã. In this dynamical picture, ã can be interpreted as
the dwell time fraction in one of the states (i) and (ii), and
the system is spontaneously switching between them [72–74].
When the two parts of the statistics in the fitting model given
by Eq. (7) (thermal and lasinglike) are well separated, as in
this case, the values of the dwell time parameter ã = 0.32 and
the mixing parameter a = 0.30 are almost identical.
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