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Radial dependence of the angular momentum density of a paraxial optical vortex
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We obtain general analytic expressions for the linear and angular momentum density of an elliptically polarized
paraxial laser beam. As a partial case, we obtain expressions for the linear and angular momentum density of a
paraxial elliptically polarized optical vortex. It is shown that for an arbitrary vortex field with rotational symmetry
and with circular polarization the effect of the “angular tractor” takes place, which means that the flux of light
energy rotates around the optical axis clockwise or counterclockwise at different radii in the beam cross section.
It is also shown that the axial component of the angular momentum density of the vortex light field changes its
sign at the same radii in the beam cross section. Microparticles trapped in the vortex Bessel beam at different
radii are experimentally shown to rotate simultaneously clockwise and counterclockwise.
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I. INTRODUCTION

The orbital angular momentum (OAM) of a light field was
introduced into optics 25 years ago [1], but the vortex laser
beams carrying OAM have not lost their relevance until now.
In the first paper about the OAM of a paraxial light field, a
formula was obtained for the OAM density of the Laguerre-
Gaussian beams [2]. However, there is no general formula for
the OAM density of an arbitrary circularly polarized paraxial
field in Ref. [2]. There is only a general formula for the linear
momentum density of an arbitrary paraxial light field. It was
shown in Ref. [3] that for the Laguerre-Gaussian beam (LG) the
azimuthal projection of the linear momentum density vector is
proportional to the product of the optical vortex topological
charge n and the spin factor σ = ±1, which determines left
or right circular polarization of light. Thus, a spin-orbital
interaction of the LG beams in free space was demonstrated.
In Ref. [4], total linear and angular momenta (AM) were
studied for arbitrary nonparaxial laser beams. In Ref. [5], exact
equations are given for the distribution of the Poynting vector
(PV) and of the AM density of a symmetrical nonparaxial
Bessel beam with circular polarization. In Ref. [6], the AM of a
sharply converging Gaussian beam was considered. It has been
shown numerically that when a circularly polarized Gaussian
beam is sharply focused, its spin AM partially transforms into
the orbital AM. This is because the electric field in the focus
has the increased longitudinal component, which carries a unit
topological charge Ez(r,ϕ) = E0(r,z) exp(iσϕ). In Ref. [7],
the AM of a vortex Gaussian beam in the sharp focus area is also
theoretically considered. It is shown that for n � 2 and σ = –1,
an inverse flux of light energy takes place near the optical axis
with respect to the direction of the light beam. The inverse
energy flux with respect to the beam propagation direction is
called the “optical tractor” [8]. In Ref. [9], a formula was ob-
tained for the total OAM of a Gaussian beam with an embedded
optical vortex shifted from the optic axis. Approximate formu-
las for the PV and AM of nonparaxial LG beams were obtained
in Ref. [10]. In Ref. [11], exact expressions are obtained for
the AM of vectorial Hankel beams with circular polarization.

In Ref. [12], expressions for the AM of a vectorial linearly
polarized Gaussian optical vortex are obtained in the form of a
series. In Ref. [13], the behavior of PV and AM for the beams
of the “swallowtail” type is numerically studied. In Ref. [14],
the OAM of paraxial Hankel-Bessel beams [15] is investigated.
Note that another approach and another definition of AM and
OAM are used in Ref. [16]. In Ref. [16] instead of the Poynting
vector S = c Re[E∗ × H], where c is the speed of light, and E
and H are the electric and magnetic field strength vectors, the
canonical momentum density P = 0.5Im[E∗∇E + H∗∇H] is
introduced. Therefore, all the expressions related with the AM
look different from the usual consideration [2,3].

From this brief review of the papers related with the OAM
theory, it is clear that a general formula for the AM density
of an arbitrary paraxial laser beam with circular polarization
was not obtained. In this paper, we obtain general expressions
for the linear and AM densities of an arbitrary paraxial laser
beam with elliptical polarization. Using these expressions, we
analyze in detail the effect of the “angular tractor,” when
the transverse energy flux (or the azimuthal projection of
the linear momentum vector) at different distances from the
optical axis rotates either clockwise or counterclockwise for
the fixed values of the topological charge n and spin parameter
σ . This phenomenon was briefly studied in Ref. [7] for
circularly polarized Gaussian beams. Here we (i) study it for
arbitrary beams, including non-Gaussian ones, and (ii) show
that this effect is impossible for linearly polarized beams. It
is also shown that the axial projection of the AM density
vector changes its sign according to the change in the rotation
direction of the transverse energy flux.

II. LINEAR MOMENTUM OF A PARAXIAL LASER BEAM

Now we obtain an expression for the linear momentum
of a paraxial light field with elliptical polarization. Let the
transverse Cartesian components Ex and Ey of the electric
field strength vector E be related as follows:

Ey = iσEx, (1)
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where σ is an arbitrary complex number, for example, σ =
1 for right circular polarization and σ = –1 for left circular
polarization. The longitudinal component Ez of the electric
vector can be found from the Maxwell’s equation of continuity
divE = 0:

Ez = i

k

∂Ex

∂x
− σ

k

∂Ex

∂y
, (2)

with the condition that ∂Ez/∂z ≈ ikEz, where k is the
wavenumber of light. The time-averaged linear momentum
density of the light field reads as

p = 1
2 Re[E∗ × H]. (3)

Projections of the magnetic field strength vector H can be
obtained from the Maxwell’s equation for a monochromatic
field with a cyclic frequency ω (magnetic permeability μ = 1):

∇ × E = iωH. (4)

Thus, projections of the magnetic vector read as

Hx ≈ −i

ω

(
∂Ez

∂y
+ kσEx

)
≈ − ikσ

ω
Ex,

Hy ≈ −i

ω

(
ikEx − ∂Ez

∂x

)
≈ k

ω
Ex, (5)

Hz = −i

ω

(
iσ

∂Ex

∂x
− ∂Ex

∂y

)
.

Substituting Eqs. (1), (2), and (5) into Eq. (3), we obtain an
expression for the linear momentum density of an elliptically
polarized paraxial light field:

p = −i

4ω
(1 + |σ |2)(E∗

x∇Ex − Ex∇E∗
x )

−Reσ

2ω
(E∗

x∇⊥Ex + Ex∇⊥E∗
x )

+ k

2ω
(1 + |σ |2)|Ex |2z, (6)

where

∇ = x
∂

∂x
+ y

∂

∂y
, ∇⊥ = −x

∂

∂y
+ y

∂

∂x
.

In Eq. (6), x, y, and z are unit vectors along the Cartesian
coordinate axes. At σ = 0 (linear polarization), Eq. (6) coin-
cides with the known expression from [2,3]. The difference
between Eq. (6) and the similar expression for the linear
momentum in Ref. [2] is in the second term. Instead of the
term E∗

x∇⊥Ex + Ex∇⊥E∗
x in Eq. (6), in Ref. [2] there is the

term [∂|A(r,z)|2/∂r]ϕ. However, it can be shown that

E∗
x∇⊥Ex + Ex∇⊥E∗

x = −1

r

∂|Ex |2
∂ϕ

r + ∂|Ex |2
∂r

ϕ,

where r, ϕ are the unit vectors along the polar coordinates.
Thus, an expression from [2] was obtained for the linear

momentum density of a paraxial beam with a rotationally
symmetrical intensity distribution |Ex | = A(r,z).

Expression (6) is a general expression for the linear mo-
mentum (or for the Umov-Poynting vector S, since S = cp,

where c is the speed of light in vacuum) and it can be specified
for an optical vortex with the following complex amplitude:

Ex = A(r,z)exp(inϕ), (7)

where (r , ϕ, z) are the cylindrical coordinates. In the cylindrical
coordinates, the nabla operators from Eq. (6) read as

∇ = r
∂

∂r
+ ϕ

∂

r∂ϕ
, ∇⊥ = −r

∂

r∂ϕ
+ ϕ

∂

∂r
, (8)

Then, for the linear momentum of an elliptically polarized
paraxial optical vortex instead of Eq. (6), we get

p = 1 + |σ |2
4c

F r

+ 1

2ω

[
n

r
(1 + |σ |2)|A(r,z)|2 − Reσ

∂|A(r,z)|2
∂r

]
ϕ

+1 + |σ |2
2c

|A(r,z)|2z, (9)

where

F = −i

k

(
A∗ ∂A

∂r
− A

∂A∗

∂r

)
.

From Eq. (9) follows that the flux of light energy (or a linear
momentum) for the paraxial light fields is always directed
along the beam propagation:

pz = 1 + |σ |2
2c

|A(r,z)|2, (10)

and there is no effect of the reverse propagation of the
energy flux (the effect of the tractor [8]). But from Eq. (9)
it follows that the optical vortices have an “angular tractor.”
This phenomenon was briefly noted in Ref. [7]. Below, this
property is considered in more detail.

It is interesting that for the beams, whose phase of the radial
part A(r , z) in Eq. (7) does not depend on r , and therefore
F = 0, there is no energy flow [and a linear momentum (9)]
along the radial component. That is, such beams are modes
and propagate without diffraction. The Bessel beam is an
example of such a diffraction-free vortex laser beam: A(r,z) =
Jn(krr) exp(ikzz), where Jn(krr) is the Bessel function; kr , kz

are the transverse and longitudinal components of the wave
vector. An opposite example, used in Ref. [14], is the divergent
paraxial Hankel-Bessel vortex beam [15]. For such beams, the
energy flux along the radial coordinate is nonzero, and the
function F is also different from zero, because the phase of
their amplitude function (7) depends on r:

A(r,z) = H
(1)
n/2

(
kz + kr2

4z

)
Jn/2

(
kr2

4z

)
, (11)

where H
(1)
n/2(x) is the Hankel function of the first kind of the

semi-integer order.
Now we explain what is meant above by the words “angular

tractor.” It is seen in Eq. (9) that in the cross section of the
vortex beam the energy moves along a circle, since the linear
momentum vector has a nonzero azimuthal projection:

pϕ = 1

2ω

[
n

r
(1 + |σ |)2|A(r,z)|2 − Reσ

∂|A(r,z)|2
∂r

]
. (12)
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Moreover, as seen in Eq. (12), if polarization is not linear
(σ �= 0), then the azimuthal projection of the linear momentum
vector can change its sign; that is, the energy flux at different
radii in the beam cross section rotates clockwise or counter-
clockwise for the fixed values of n and σ . In the case of circular
polarization (σ = ±1), the equation for the radii, where the
azimuthal linear momentum projection changes its sign, has
the form

2n

σ
|A(r,z)|2 = r

∂|A(r,z)|2
∂r

. (13)

III. ANGULAR MOMENTUM OF A PARAXIAL
LASER BEAM

Knowing the linear momentum (6) of a paraxial light field,
it is possible to obtain an explicit analytic expression for the
angular momentum,

j = r × p, (14)

of an arbitrary paraxial light field E with elliptical polarization:

j = −i

4ω
(1 + |σ |2)z(E∗

x∇⊥Ex − Ex∇⊥E∗
x )

+Reσ

2ω
z(E∗

x∇Ex + Ex∇E∗
x ) + 1 + |σ |2

2c
|Ex |2e

+
[

i

4ω
(1 + |σ |2)(E∗

x∇Ex − Ex∇E∗
x )e

+ Reσ

4ω
(E∗

x∇⊥Ex + Ex∇⊥E∗
x )e

]
z, (15)

where e = yx–xy. Expression (15), which follows from the
general expression (6), absent in Ref. [2], is also absent in this
classical paper. Further, Eq. (15) allows obtaining the angular
momentum density of a circularly polarized paraxial optical
vortex with the amplitude described by Eq. (7). To do this, it is
convenient to use the polar coordinate system and use Eq. (8)
along with the following transition formulas:

x = cos ϕr − sin ϕϕ,

y = sin ϕr + cos ϕϕ,

∂

∂x
= cos ϕ

∂

∂r
− sin ϕ

∂

r∂ϕ
, (16)

∂

∂y
= sin ϕ

∂

∂r
+ cos ϕ

∂

r∂ϕ
,

e = −rϕ, e∇ = − ∂

∂ϕ
, e∇⊥ = −r

∂

∂r
.

Then, instead of Eq. (15), we obtain the angular momentum
density for an optical vortex:

j = −z

2ω

[
n

r
(1 + |σ |2)|A(r,z)|2 − Reσ

∂|A(r,z)|2
∂r

]
r

+1 + |σ |2
2c

[ z

2
F − |A(r,z)|2r

]
ϕ

+ 1

2ω

[
n(1 + |σ |2)|A(r,z)|2 − Reσr

∂

∂r
|A(r,z)|2

]
z. (17)

In Eq. (17), the function F is the same as in Eq. (9). It is seen
in Eq. (17) that in the case of circular polarization (σ = ±1),
the axial projection of the AM density can change its sign
depending on the radial coordinate r:

jz = 1

ω

[
n|A(r,z)|2 − σr

2

∂|A(r,z)|2
∂r

]
. (18)

If the topological charge is positive (n > 0), then in the
case of right-handed polarization (σ > 0), the AM projection
(18) can be negative (jz < 0) at those points in the cross
section of the optical vortex, where the radial derivative of the
intensity I = |A(r,z)|2 is positive (∂I/∂r > 0). Vice versa, for
left-handed polarization (σ < 0) the AM projection (18) can
be negative (jz < 0) in those areas of the transverse section of
the optical vortex, where the radial derivative of the intensity is
negative (∂I/∂r < 0). For a linearly polarized optical vortex
(σ = 0), the AM density (17) is positive (jz > 0) everywhere
in the beam cross section if the topological charge is positive
(n > 0).

Thus, it is shown that the longitudinal projection of the
AM density of a circularly polarized paraxial optical vortex
can change its sign and be equal to zero for any topological
charge n. For optical micromanipulation, this means that a
microscopic particle, trapped at different distances from the
beam center, rotates either clockwise or counterclockwise.
A similar property was previously observed in the vectorial
Hankel beams with circular polarization [15] and in sharply
focused Gaussian vortices [7]. We note that this phenomenon
is similar for paraxial and nonparaxial light fields.

For circular polarization, the radii, where the axial projec-
tion of the angular momentum (18) changes its sign and where
jz = 0, can be found from the following equation:

2n|A(r,z)|2 = σr
∂|A(r,z)|2

∂r
. (19)

Note that Eq. (19) coincides with Eq. (13): Where the
direction of rotation of beam energy changes, axial AM
projection there changes direction as well. For example, for
the Bessel beam A(r) = Jn(krr), where Jn(x) is the nth-order
Bessel function of the first kind and kr is the transverse
component of the wave vector, Eq. (19) reads as

n

σ
Jn(krr) = r

∂Jn(krr)

∂r
. (20)

From Eq. (20) it follows that the axial projection of the AM
is negative, jz < 0 (if n/σ > 0), when

Jn(krr)[(1 − σ )Jn−1(krr) + (1 + σ )Jn+1(krr)] < 0;

i.e., Jn(krr)Jn+1(krr) < 0 for right circular polarization and
Jn(krr)Jn−1(krr) < 0 for left circular polarization. It is known
that the zeros of the Bessel functions of the adjacent orders are
interlacing (expression 9.5.2 in Ref. [17]):

γv,1 < γv+1,1 < γv,2 < γv+1,2 < γv,3 < · · · ,

where γν,m is the mth zero of the νth-order Bessel function.
Therefore, for right circular polarization the angular tractor can
be observed for the radii γn,m < krr < γn+1,m (m = 1,2, . . .),
i.e., on the inner sides of the light rings (starting from the
second ring), while for left circular polarization it happens at
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γn−1,m < krr < γn,m (m = 1,2, . . .), i.e., on the outer sides of
the light rings (starting from the first one).

Note that the radial and longitudinal components of the AM
density vector in Eq. (17) differ only by the factor −(z/r). It
follows from this property that on the radii, determined by
Eq. (19), simultaneously with the longitudinal component of
the AM its radial component also changes its sign. That is,
the azimuthal projection of the linear momentum in Eq. (9),
which shows rotation of the light energy flux around the optical
axis, produces not only the axial projection of the AM (17),
but produces radial projection in the cylindrical coordinate
system as well. Similarly to the axial projection of the AM
and the azimuthal projection of the linear momentum, radial
projection of the AM changes sign at the same radii determined
by Eqs. (13) or (19).

From Eq. (19), another interesting property of the AM
density follows, which has not been noted before: Maximal
value of the axial projection of the AM density jz does not
coincide with the maximal value of the intensity in the beam
cross section. Indeed, from Eq. (18), an equation follows for
finding the extrema jz:(

2n

σ
− 1

)
∂I

∂r
= r

∂2I

∂r2
. (21)

It follows from Eq. (21) that the axial AM density has a
maximal positive value at a radius greater than the radius of
the first maximum of intensity (∂I/∂r = 0), on which ∂2I/∂r2

< 0 (for n/σ > 0).
Using Eq. (17), we obtain the total AM of an elliptically

polarized paraxial optical vortex (let F = 0):

L =
∫ ∞

0

∫ 2π

0
jrdrdϕ. (22)

In cylindrical coordinates, we get

Lr = −π
z

ω
[n(1 + |σ |2) + Reσ ]

∫ ∞

0
I (r,z)dr,

Lϕ = −π
1 + |σ |2

c

∫ ∞

0
I (r,z)r2dr, (23)

Lz = π
n(1 + |σ |2) + 2Reσ

ω

∫ ∞

0
I (r,z)rdr.

It follows from Eq. (23) that for the modal laser beams
(Bessel beams [3]) with the infinite time-averaged energy (or
power),

W = 1 + |σ |2
2

2π

∫ ∞

0
I (r)rdr → ∞, (24)

all three AM components (23) are also infinite. However, if we
consider the AM, normalized by the energy (24), then only the
azimuthal component remains infinite,

Lϕ

W
= −1

c

∫ ∞
0 I (r,z)r2dr∫ ∞
0 I (r,z)rdr

→ ∞, (25)

while the radial AM component is zero,

Lr

W
= − z

ω

(
n + Reσ

1 + |σ |2
) ∫ ∞

0 I (r,z)dr∫ ∞
0 I (r,z)rdr

→ 0, (26)

and only the longitudinal AM component has finite value,

Lz

W
= 1

ω

(
n + 2Reσ

1 + |σ |2
)

, (27)

and for circular polarization it is proportional to (n ± 1).
It also follows from Eq. (27) that the longitudinal AM

component of a paraxial optical vortex is propagation invariant,
since it is independent of z. In particular, for linear (σ = 0) and
circular (σ = ±1) polarization we get a simple expression,
coinciding with that obtained in Ref. [2]:

Lz

W
= n + σ

ω
.

It follows from Eq. (27) that for elliptical polarization (σ =
γ eiβ, γ � 0, 0 < β < 2π ) the AM is fractional and can have
any values in the range from (n − 1)/ω to (n + 1)/ω.

y
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x

3,1

kr

4,1

kr

3,2
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4,2

kr
10

10
2,1

kr

3,1

kr

2,2

kr

3,2

kr

(a)

(b)

jz

jz

FIG. 1. Intensity distributions of the third-order Bessel modes
(n = 3) with the scaling factor kr = k/10 (i.e., paraxial beam) with
right (σ = 1) (a) and left (σ = –1) (b) circular polarization. Size
of the calculation area is 2R = 50λ. Plots (red solid curves) show
the longitudinal component of the angular momentum density vector.
Dashed arrows show the direction of rotation of the energy flux.
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D

L

I

FIG. 2. Experimental setup: L is a solid-state laser (λ = 532 nm),
L1, L2, L3, L4 are lenses with focal lengths (f1 = 150 mm, f2 =
350 mm, f3 = 350 mm, f4 = 150 mm), SLM is a spatial light modu-
lator (HOLOEYE, PLUTO-VIS), D is a diaphragm, WP is a quarter-
wave plate, M1 and M2 are mirrors, MO1 is a micro-objective (20×,
NA = 0.4), MO2 (16×, NA = 0.3), S is a substrate with a solution of
5-μm polystyrene spheres, I is a LED bulb, CMOS is a video camera.

For nonmodal finite-energy vortex beams, for example,
for the circularly polarized Gaussian vortex with the initial
amplitude,

Ex(r,ϕ) = exp

(
− r2

δ2
+ inϕ

)
, Ey = iσEx, (28)

where δ is the Gaussian beam waist radius, instead of Eq. (26)
we get that in the initial plane all three projections of the total
AM are finite:

Lr = 0, Lϕ = − 1

2c

(
πδ

2

)3/2

, Lz = πδ2

2

n + σ

ω
. (29)

IV. NUMERICAL SIMULATION

Figure 1 shows the intensity distribution of the Bessel mode
for the following parameters: wavelength λ = 532 nm; topo-
logical charge n = 3; scaling factor (transverse component of
the wave vector) of the Bessel beam kr = k/10; polarization—
right-handed (σ = 1) [Fig. 1(a)] and left-handed (σ = –1)
[Fig. 1(b)]; calculation area –R � x,y � R,R = 25λ. The
plots on the two-dimensional (2D) intensity distributions show
the longitudinal component of the angular momentum density
vector jz. It is seen in Fig. 1 that the axial component of the
angular momentum vector is negative on the inner sides of
the light rings (starting with the second one) for right circular
polarization and on the outer sides of the light rings (starting
with the first one) for left circular polarization.

V. EXPERIMENTAL ROTATION OF
POLYSTYRENE MICROSPHERES IN CIRCULARLY

POLARIZED BESSEL BEAMS

Shown in Fig. 2 is the optical setup used in the ex-
periment. A linearly polarized laser beam with Gaussian
intensity distribution was expanded by lenses L1 and L2

(f1 = 150 mm, f2 = 350 mm) and then directed to the spatial
light modulator SLM (HOLOEYE, PLUTO-VIS). The light
modulator was used to implement the phase mask τ (r , ϕ) of
an element generating the third-order Bessel beam, τ (r,ϕ) =
circ(r/R) sgn Jn(αr)exp(inϕ), where (r , ϕ) are the polar coor-
dinates, the α parameter is the scaling factor of the nth-order
Bessel function Jn(x), and R is the radius of the element. In
addition to the obtained phase mask, a gradient phase mask
was added for spatial separation of the nonmodulated zero
diffraction order and the first diffraction order in which the
Bessel beam was generated. Polarization of the Bessel beam
was converted from linear to circular by using a quarter-
wave plate WP. Using the lenses L3, L4 (f3 = 350 mm,
f4 = 150 mm) and the mirror M2, the phase modulated laser
beam reflected from the modulator was directed to the input
pupil of the micro-objective MO1 (20×, NA = 0.4), which
focused the laser beam into a solution with 5-μm polystyrene
spheres on a substrate S. The diaphragm D blocked the zero
diffraction order. The micro-objective MO2 (16×, NA = 0.3)
was used for imaging the trapping plane into the matrix of the
complementary metal-oxide semiconductor (CMOS) camera.
The trapping plane was illuminated by light from the LED
bulb I. A semitransparent mirror M1 was used to input the
light. To attenuate the laser beam after the second micro-
objective, neutral density filters were used (not shown in the
figure).

Figure 3 shows the intensity distribution of the generated
third-order Bessel beam with left circular polarization, and
the stages of motion of particle pairs along the second and
third light rings. Obviously, the particles trapped in the outer
edge of the second light ring move clockwise, whereas the
particles trapped in the inner edge of the third light ring
move counterclockwise, i.e., opposite of the two particles in
the second ring. The measured velocity of the particles was
0.9±0.1μm/s along the second ring and 0.7±0.1μm/s along
the third ring. Such motion of microparticles agrees with the
case shown in Fig. 1(b). The laser beam power in the trapping
plane was about 80 mW.

( )a( )a ( )b( )b

FIG. 3. Rotation of 5-μm polystyrene spheres in a third-order Bessel beam with left circular polarization: (a) intensity distribution of the
laser beam in the plane of microspheres trapping, (b) stages of motion of the trapped particles (the time interval between the frames is 5 s).
Frame size is 60 × 60 μm. Circles with crosses show positions of all the microspheres in each frame, while the arrows show positions of the
microspheres moving in opposite directions.
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VI. CONCLUSION

The following results have been obtained in this work.
For an arbitrary elliptically polarized paraxial light field, an
explicit expression has been obtained for the linear momentum
density vector [Eq. (6)]. Earlier in Ref. [2], a partial case
was obtained for the linear momentum density vector of a
rotationally symmetrical light field.

As a partial case from the general expression, an expression
has been obtained for the density linear momentum vector of
an arbitrary optical vortex with elliptical polarization [Eq. (9)].
For linearly polarized paraxial light fields, the effect of the
“optical tractor” [8] cannot take place, since for any paraxial
field the axial projection of the linear momentum density vector
is always greater than zero, because it is proportional to the
intensity.

Using the expression for the linear momentum density of an
elliptically polarized optical vortex [Eq. (9)], it has been shown
that for circularly polarized paraxial optical vortices there is
an effect of the “angular tractor” [Eq. (13)], when at some
radius from the optical axis, the azimuthal projection of the
linear momentum density vector changes its sign. This effect
of the “angular tractor” means that the energy of a circularly
polarized optical vortex propagates either along the right or
along the left spiral at different distances from the optical axis.
Also, an explicit expression for the angular momentum density
vector [Eq. (15)] has been obtained for an arbitrary paraxial
light field with elliptical polarization. From this expression,
a simpler expression follows for the angular momentum of
an arbitrary elliptically polarized optical vortex [Eq. (17)].

Equation (17) also confirms that for circular polarization the
“angular tractor” effect takes place; that is, the axial projection
of the angular momentum density vector changes its sign at
certain distances from the optical axis. Moreover, the equation
for the radii, on which the azimuthal projection of the linear
momentum changes its sign [Eq. (13)], coincides with the
equation [Eq. (19)], which determines the change of the sign of
the axial projection of the angular momentum. In addition, an
interesting property of a circularly polarized paraxial optical
vortex follows from the obtained expressions: Local intensity
maxima and local maxima of the axial projection of the angular
momentum do not coincide and lie on different radii [Eq. (21)].
Using a spatial light modulator, a third-order Bessel beam with
left circular polarization was experimentally generated and it
was shown that particles trapped in the outer edge of the second
light ring move clockwise, whereas the particles trapped in the
inner edge of the third light ring move counterclockwise.
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