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Generation of single- and two-mode multiphoton states in waveguide QED
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Single- and two-mode multiphoton states are the cornerstone of many quantum technologies, e.g., metrology. In
the optical regime, these states are generally obtained combining heralded single photons with linear optics tools
and post-selection, leading to inherent low success probabilities. In a recent paper [A. González-Tudela et al.,
Phys. Rev. Lett. 118, 213601 (2017)], we design several protocols that harness the long-range atomic interactions
induced in waveguide QED to improve fidelities and protocols of single-mode multiphoton emission. Here, we
give full details of these protocols, revisit them to simplify some of their requirements, and also extend them to
generate two-mode multiphoton states, such as Yurke or NOON states.
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I. INTRODUCTION

Single-mode photonic states play a capital role in many
quantum technologies. For example, single photons are the
prime candidate for the high-fidelity exchange of quantum
information between distant parties, e.g., in a quantum network
[1], whereas states with large (and fixed) photon numbers [2–4]
can be used to overcome certain limitations of classical light,
e.g., the standard quantum limit of phase sensitivity. Experi-
mentally, the generation of single photons can be achieved with
high fidelities and efficiencies [5] due to impressive progress
in the integration of single quantum emitters with cavities or
waveguide systems [6–13]. However, extending these proto-
cols to the multiphoton regime is much more challenging and
their efficient generation is still an open question [14]. Most
advanced methods [15] rely on combining heralded single
photons with beam splitters and post-selection to achieve high-
photon numbers. Unfortunately, these protocols suffer from
inherent low probabilities which scale exponentially with the
photon number, limiting most of their applications. Therefore,
the search for alternative protocols is a very timely issue.

Atomic ensembles trapped near nanophotonic waveguides
[16–22] are well suited for the generation of photonic states: (i)
atoms have naturally several ground states which can be used
as quantum memories, together with several optically excited
states which can be used to trigger the emission to waveguide
photons; (ii) the confinement of guided photons increases the
decay rates into waveguide modes �1d, compared to free-
space ones �∗, which can be further boosted with structured
waveguides by designing regions of slow light [10,17,19,23];
(iii) the interaction with one-dimensional guided photons leads
to long-range interactions [24] that in the atomic mirror config-
uration [20,21,25] provides an enhancement of the decay rates
of certain atomic states, e.g., symmetric Dicke states, |φe

m〉 ∝
sym{|e〉⊗m|g〉⊗N−m}, where g denotes an atomic ground state
and e and an optically excited state. When excited, these Dicke
states decay into their ground state, emitting m waveguide
photons, which in the low excitation limit (m � N ), travel
as a single mode in the waveguide [26,27]. The difficulty of

generating multiphoton states in this scenario thus translates
to generating Dicke states with a given excitation number m.

In a recent proposal [28], we exploited the atom-waveguide
characteristics (i)–(iii) to obtain Dicke states with large (and
fixed) photon number with high fidelities and probabilities.
The common step of the protocols is the probabilistic loading
of a single collective excitation into an atomic ensemble by
using an auxiliary atom to transfer one excitation through
the waveguide, which can be done with probability p when
performing a measurement to herald the successful transfer.
Then, to achieve high-photon numbers, one can either apply
the loading protocol m times to add the excitations into the
same level, that results in an overall probability pm. The other
alternative consists in loading the collective atomic excitations
into several hyperfine levels and combining them a posteriori
to circumvent the exponential decrease of probabilities [29].

In this paper, we will revisit these protocols with a threefold
intention: (i) first, we will give full details on the protocols of
Ref. [28] and numerically certify that the approximations made
in Ref. [28] capture accurately the scalings by solving exactly
the corresponding master equation governing the evolution; (ii)
we develop a protocol that simplifies part of the requirements
of the previous ones, e.g., the use of a transition with strongly
suppressed decay rate; (iii) finally, we show how to adapt
these protocols to generate directly two-mode multiphoton
states, focusing on examples with metrological interest such
as NOON [4] or Yurke states [30].

The paper is organized as follows: In Sec. II we introduce the
atom-waveguide setups, explaining the different ingredients
that we use to develop our protocols and their theoretical
description. In Sec. III, we introduce a general framework on
how we analyze the figures of merit of the protocols, namely,
the errors (or infidelities) and success probabilities. Then,
in Sec. IV, we revisit the protocols of Ref. [28], providing
a detailed description and the numerical certification of the
results. We also include here a description of a protocol
in Sec. IV C, which simplifies some of the requirements of
previous ones. Finally, in Sec. V we show how to extend
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our protocols to generate two-mode states with metrological
interest, and conclude in Sec. VI.

II. ATOM-WAVEGUIDE QED

The setups that we consider are atomic ensembles close to
waveguides in which one (or several) atomic optical transitions
are interacting with the guided modes of these structures, or
emitting to free-space photons. We also use additional laser or
microwave fields to control the state of the atomic ensemble.
These three ingredients can be described in a common frame-
work in which the system dynamics ρ is governed in general
by the following master equation [31] (with h̄ ≡ 1 throughout
the paper):

ρ̇ = −i[HL,ρ] + Lcoll[ρ] + Lind[ρ], (1)

corresponding to the coherent dynamics induced by either
lasers or microwave fields HL, the collective dissipation in-
duced by the waveguide modes Lcoll[ρ], and the free-space
spontaneous emission Lind[ρ]. We assume the spontaneous
emission into free space to be individual for all atoms in the
ensemble, i.e., for an optical transition g − e, to read as

Lind[ρ] = �∗

2

∑
n

(
2σn

geρσn
eg − σn

egσ
n
geρ − ρσn

egσ
n
ge

)
. (2)

This assumption may break in the case of subwavelength
spacing between the emitters [32], where strongly subradiant
states with highly suppressed spontaneous emission emerge.
The combination of these states with our protocol represents
an exciting perspective to improve our protocols that we leave
for further studies.

Our protocols are designed for the atomic mirror configu-
ration [20,21,25], in which the atomic positions are commen-
surate with the wavelength mediating the interactions, such
that the collective Lindblad term Lind[ρ] for a given optical
transition g − e reads as

Lcoll[ρ] = �1d

2
(2SgeρSeg − SegSgeρ − ρSegSge), (3)

where we have introduced the collective operator Sαβ =∑
n σ n

αβ , where σn
αβ = |α〉n〈β| and where the sum runs over

all emitters. One figure of merit to characterize these systems
is the so-called Purcell factor P1d = �1d

�∗ , which is of the order
of P1d ∼ 1–100 in engineered dielectrics [10,19,23,33,34].
The other important parameter is the number of atoms N ,
which is of the order of 1000 (∼3) in unstructured (structured)
waveguides. Along this paper we will work in the limits of
N 
 m and P1d 
 1, unless stated otherwise.

The last ingredient, that is, the lasers or microwave fields
acting collectively on a given ensemble can be written in full
generality as

HL = 1
2�αβ(Sαβ + Sβα), (4)

where �αβ is the amplitude of the coupling between the states
α and β of the ensemble.

Equation (1) can be generally rewritten as the sum of a
non-Hermitian evolution and jump operators, i.e.,

ρ̇ = −i[Heff ,ρ] + Jcoll[ρ] + Jind[ρ] , (5)

where Heff contains the effective (non-Hermitian) Hamiltonian
with the unitary evolution of HL and the nonunitary evolution
from the Lindblad terms. For example, for the collective and
individual dissipation considered in Eqs. (2) and (3) it is given
by

Heff = HL − i
�1d

2
SegSge − i

�∗

2

∑
n

σ n
ee . (6)

The terms Jind,coll[ρ] describe the quantum jump evolution
and are written as

Jcoll[ρ] = �1dSgeρSeg, (7)

Jind[ρ] = �∗ ∑
n

σ n
geρσn

eg. (8)

Using this separation, a formal solution of Eq. (1) can
be split into the evolution driven by Heff , i.e., S(t,t0)ρ =
e−iHeff t ρeiH

†
eff t , and the one resulting from quantum jumps

evolution which reads as

ρ(t) = S(t,t0)ρ(t0) +
∞∑

n=1

∫ t

t0

dtn· · ·
∫ t2

t0

dt1

× S(t,tn)J . . . JS(t1,t0)ρ(t0), (9)

where J [ρ] = Jind[ρ] + Jcoll[ρ]. The nth order of the sum
corresponds to the evolution where n quantum jumps have
occurred. As we explain below, in all the cases we consider
here, there is at most a single excitation in the system such that
the terms with n > 1 will be identically zero.

Finally, let us note that all quantum emitter dynamics
described using Eqs. (1)–(9) is obtained under the Born-
Markov approximation. This approximation neglects retar-
dation effects appearing due to finite propagation time of
waveguide photons. For an ensemble with N emitters separated
by a distance d, and a waveguide with group velocity vg , the
propagation time is upper bounded by ∼Nd/vg . To be able to
neglect it, this timescale must be shorter than any of the induced
atomic timescales, which are lower bounded by ∼(mN�1d)−1,
for a state with m atomic excitations. Thus, the condition to be
satisfied to neglect retardation reads as Nd/vg � (mN�1d)−1.

III. GUIDELINES TO ANALYZE THE PROTOCOLS

The common configuration of all the protocols analyzed in
this paper is to have three different sets of atoms as depicted in
Fig. 1, where each set can be independently addressed. The goal
of the protocols is the generation of m collective excitations in
an atomic ensemble with N atoms, called the target ensemble.
We denote such state as |φm〉. To do it, we will herald the
transfer of single collective excitations from the source atom
one by one, by measuring a given state |ψher〉 in an auxiliary
atomic ensemble with Nd atoms that we call detector ensemble.

The first step to analyze the protocols consists in calcu-
lating the probability of success and fidelities of heralding
the addition of single collective excitation to the target en-
semble, assuming it already contains m excitations stored
in some hyperfine level. This means we initialize in a state
|
0〉 = |e〉s|φm〉t|ψ0〉d, where |ψ0〉d is the initial state of the
detector ensemble. After letting the system evolve for a time
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FIG. 1. (a) General setup of atoms coupled to a one-dimensional
photonic waveguide. We depict the splitting into source, target, and
detector ensembles with 1, N , and Nd emitters, respectively, which
can be controlled by external fields independently. (b) Internal level
structure of emitters in which the transitions g − e1 and s − e2 are
coupled to a waveguide mode. The Rabi coupling between atomic
states α and β, denoted by �αβ , can be obtained through laser or
microwave fields. (c) The suppression of the decay rate corresponding
to one transition can be implemented by using a far-off-resonance
two-photon transition via a metastable state.

T under the interaction induced by the waveguide, lasers,
etc., the atomic state is described by the density matrix
ρ(T ) = S(T ,0)ρm(0) with ρm(0) = |
0〉〈
0|. We calculate the
probability of succeeding in the heralding,

pm→m+1 = Tr[〈ψher|dS(T ,0)ρm(0)|ψher〉d], (10)

and note that due to the heralding measurement, we only need
to consider the non-Hermitian evolution and can assume that
no jump has occurred.

However, the heralded state is in general not perfect and we
might have created states in the target ensemble other than the
desired one, i.e., |φm+1〉t . This is quantified by the fidelity after
heralding, which reads as

Fm→m+1 = 〈g|s〈φm+1|t〈ψher|dSρm(0)|g〉s|φm+1〉t|ψher〉d

p
,

(11)

whereas the error or infidelity is defined as Im→m+1 = 1 −
Fm→m+1 for adding a single excitation. Once we have analyzed
this general step, we consider the complete process to arrive
from |φ0〉 → |φ1〉 → · · · → |φm〉 and calculate the average
number of repetitions Rm to arrive to |φm〉 and the average
infidelity of the process that we denote as Im. Both Rm and Im

will depend on the way we merge the excitations and changes
with the different protocols, as explained in the next sections.
Since the error in atom-photon mapping of the Dicke states in
the linear regime, m � N , scales as εph ∼ m

NP1d
[26], our goal

is to design protocols which follow at least the same scaling,
while keeping a high overall probability, or small number of
repetitions Rm. We note that the upper bound of the error for
the atom-photon mapping calculated in Ref. [27] overestimates
the error in the linear regime a factor m.

IV. GENERATING SINGLE-MODE
MULTIPHOTON STATES

In this section we include the discussion of three different
protocols to generate m symmetric collective excitations in
the ground state, e.g., s, of the target ensemble, i.e., |φs

m〉t ∝
Sm

sg|g⊗N 〉t . In Secs. IV A and IV B we discus two protocols
that were already introduced in Ref. [28]. Here, we will
provide more details on how to characterize them, and make
exact numerical simulations to confirm the analytical scalings
provided in the original reference. In Sec. IV C we discuss
a protocol that simplifies some of the requirements of the
previous ones by using two guided modes.

A. Protocol 1: Excitations added directly
with a single guided mode

This protocol consists in loading m symmetric collective
excitations into the same hyperfine level of the target ensemble,
heralding the transfer after each excitation by detecting a
change in the detector ensemble. The loading of a single
excitation consists itself of two steps: (i) first, we transfer an
excitation between the source atom into the target ensemble,
and (ii) moving the excitation collectively between metastable
states of the target ensemble while inducing a change in the
detector ensemble, on which we can perform a heralding
measurement. In this section we explain the atom-waveguide
resources required, give an overview of the protocol, and then
analyze the scaling of the different parts.

Atom-waveguide resources. We require an atomic level
structure as depicted in Fig. 1(b): two optical transitions g − e1

and s − e2 are coupled to the same waveguide mode, with rate
�1d. The excited states e1,e2 can be also coupled to c with a
Raman laser �ce1/2 respectively. Finally, an extra metastable s1

state is required which can be coupled to s through a microwave
field �ss1 .

The excited states e1,e2 can decay to the ground states
s,c,g with a rate �∗. However, it will be important for the
protocol that the spontaneous decay rate of the c − e1 transition
is suppressed by a factor α [26,35,36], which can be obtained,
e.g., by using an off-resonant two-photon transition through an
intermediate state as schematically depicted in Fig. 1(c).

Overview of the protocol. To minimize errors and, at the
same time, obtain a large success probability of the loading of
single collective excitations, we need to add a few preparatory
and intermediate steps beyond the two steps that we described
above. Assuming that we start with |c〉s|φs

m〉t|s〉⊗Nd , the full
protocol reads as follows:

(a) First, we collectively transfer the excitations of the
target and detector ensemble in s to s1 with �ss1 . This is
needed to effectively decouple the detector ensemble from
the dynamics when the excitation is first transferred from the
source to the target ensemble. This results in

|c〉s

∣∣φs
m

〉
t|s〉⊗Nd

d → |c〉s

∣∣φs1
m

〉
t|s1〉⊗Nd

d . (12)

(b) Next, the source atom is excited by a fast π pulse, such
that

|c〉s

∣∣φs1
m

〉
t|s1〉⊗Nd

d → |e1〉s

∣∣φs1
m

〉
t|s1〉⊗Nd

d . (13)
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(c) Just after that, the laser �(t)
ce1

in the target ensemble is
switched on under the quantum Zeno conditions which we
explain below. As we show below, by choosing the appropriate
timing, the excitation can be completely transferred to the
target ensemble as

|e1〉s

∣∣φs1
m

〉
t|s1〉⊗Nd

d → |g〉sS
(t)
cg

∣∣φs1
m

〉
t|s1〉⊗Nd

d , (14)

where the superindex (t) denotes the ensemble on which the
operator acts.

(d) To be able to herald the successful transfer, we need to
induce a change in the detector ensemble on which a heralding
measurement can be performed. For this purpose, we use the
second optical transition e2 − s. In order to make the target
and detector ensemble interact, we move back the excitations in
both the target and detector ensemble from s1 → s by applying
a π pulse with �ss1 . Furthermore we decouple the source atom
by moving g → c. The resulting state is

|g〉sS
(t)
cg

∣∣φs1
m

〉
t|s1〉⊗Nd

d → |c〉sS
(t)
cg

∣∣φs
m

〉
t|s〉⊗Nd

d . (15)

(e) Next, the target ensemble is excited by a fast π pulse
on the transition c − e2 and the excitation is transferred to the
detector ensemble again under the quantum Zeno dynamics
with an external driving �(d)

ce2
on the c − e2 transition of the

detector ensemble. This joins the additional excitation to the
collective state of the target ensemble, i.e.,

|c〉sS
(t)
e2g

∣∣φs
m

〉
t|s〉⊗Nd

d → |c〉s

∣∣φs
m+1

〉
tS

(d)
cs |s〉⊗Nd

d . (16)

(f) The final step consists of a measurement on the state c

of the detector ensemble. There can only be an excitation in
c if the excitation was transferred in the previous two steps
collectively and thus we are guaranteed to have successfully
added a symmetric excitation.

Only the steps (c) and (e) require nonlocal interactions
mediated by the waveguide. The rest of the steps just require
π pulses with either individual and collective drivings. For
simplicity in the discussion, we assume that they can be done
without introducing additional errors. In practical terms, this
requires that the modulus and phase of the Rabi coupling can
be controlled on the level of (NP1d)−1 to achieve the desired
scaling. Then, the probability of successfully heralding the
excitations pm→m+1 is the product of the probability in the
steps (c) and (e), and the overall error Im→m+1 is approximately
the sum of the errors in each step.

Finally, to achieve m excitations, one needs m successful
heraldings and in case of a failed detection, one must start over
in |φ0〉t . This implies that the overall probability scales expo-
nentially with m as pm = ∏m−1

k=0 pk→k+1, whereas the error is
approximately the sum in each step Im ≈ ∑m−1

k=0 Ik→k+1.
Now, we proceed to analyze the probabilities and errors

in steps (c) and (e), obtaining analytical approximations and
numerically checking them with exact master-equation simu-
lations.

Success probabilities in steps (c)–(e). The two steps (c)
and (e) are based on quantum Zeno dynamics [37] and can be
described as particular cases of a more general situation that
we consider in Appendix A, to which we refer the interested
reader for full details of the calculation. To provide an intuitive
picture on how the calculation works, we illustrate the main
points studying step (c).

In step (c), the initial state of the source and target atoms,
which are the only ones participating in this step, is |e1〉s|φs1

m 〉t .
Then, we switch on the laser �(t)

ce1
in the target ensemble and let

the system evolve under the evolution of the laser plus waveg-
uide dynamics. The effective non-Hermitian Hamiltonian is
given in this case by

Heff = 1

2
�(t)

ce1

(
S(t)

ce1
+ S(t)

e1c

) − i
�1d

2

(
σ (s)

e1g
+ S(t)

e1g

)(
σ (s)

ge1
+ S(t)

ge1

)
− i

�∗

2

∑
n

σ n
e1e1

. (17)

It can be easily shown that Heff only connects the ini-
tial state with |g〉sS

(t)
e1g

|φs1
m 〉t and |g〉sS

(t)
cg |φs1

m 〉t , such that
its evolution can be easily obtained for all parameter
regimes. Furthermore, when �(t)

ce1
� Nm�1d (with Nm = N −

m), the dynamics is constrained by the strong dissipation
to move within the so-called decoherence-free subspace,

which in this case is given by the states {
√

Nm

Nm+1 |e1〉s|φs1
m 〉t −√

1
Nm+1 |g〉sS

(t)
e1g

|φs1
m 〉t,|g〉sS

(t)
cg |φs1

m 〉t}. Using this restricted evo-

lution, one can obtain analytical expressions for the pop-
ulations of the different states as a function of time (see
Appendix A), which can be compared to the exact numerical
solution. The decay of the probabilities is attributed to two
mechanisms: on the one hand, the emission of free-space
photons, occurring at a rate �∗, and on the other hand, there
is always a small population in the superradiant state, which

decays at a rate proportional to �sp = Nm�
(t)2
ce1

(Nm+1)2�1d
. It can be

shown that the optimal �(t)
ce1

to minimize errors is the one for
which �sp = �∗, that is, �(t)

ce1
≈ √

Nm�1d�∗. With this choice,
the population of the desired state |g〉sS

(t)
cg |φs1

m 〉 is maximized at
time T c

opt = π√
�1d�∗ . This gives us the probability of succeeding

in this step for a given P1d and Nm, which reads as

pc

(
T c

opt

) = Nm

Nm + 1
e
− π√

P1d . (18)

In Fig. 2 we compare the populations and optimal probabil-
ities obtained by solving the complete (effective) Hamiltonian
evolution of Eq. (17) and by solving the approximated evo-
lution obtained under quantum Zeno dynamics. We observe
that the agreement between the two approaches in the regime
of parameters we are considering is excellent. Moreover, we
observe that pc ≈ 1 when P1d 
 1.

The mechanism behind step (e) is the same as in step (c),
just interchanging the role of the source and target atoms
by the target and detector ensemble, which results only in
small differences in the prefactors. Thus, to avoid unnecessary
repetitions, we write the optimal probability in this case
without giving more details here, which reads as

pe

(
T e

opt

) = Nd

Nd + m + 1
e−π/

√
(m+1)P1d . (19)

The interested reader can go to Appendix A where these
steps were considered in full generality. Summing up, the
overall success probability to go from m to m + 1 scales as

pm→m+1 = pcpe � Nd

Nd + m + 1

Nm

Nm + 1
e
− 2π√

P1d . (20)
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FIG. 2. (a) Exact population dynamics of step (c) of protocol 1
of the states {|e1〉s|φs1

m 〉t,|g〉sS
(t)
e1g|φs1

m 〉t,|g〉sS
(t)
cg |φs1

m 〉t} in black squares,
blue circles, and red triangles, respectively, for Nm = P1d = 100. In
black and red solid lines we compare with the approximated results
from the restricted evolution obtained under quantum Zeno dynamics.
(b) Optimal probability of step (c) of protocol 1 as a function of P1d for
Nm = 100. The markers correspond to the exact numerical evolution,
whereas the solid line is the analytical expression of Eq. (18) obtained
under quantum Zeno dynamics.

Errors in steps (c)–(e). As we explained in the overview, in
case of unsuccessful detection one needs to pump back all the
excitations in the target ensemble and restart the protocol from
the beginning. Thus, it is easy to check that the only possible
errors which cannot be corrected through post-selection in this
protocol are individual quantum jumps in the e1 − c transition
of the target ensemble, which we assume to be suppressed by a
factor α. These errors would appear in step (c) when the target
ensemble is excited. The individual or collective quantum
jumps in any one of the other transitions is incompatible with
the detection of population in level c of the detector ensemble
at the final step and, as such, they will not contribute to the
infidelity. Using Eq. (9), one can calculate the probability of
emitting a leaky photon from e1 to c in step (c) to be

pc,∗ ≈ α�∗
∫ T c

opt

0
dt |ce,target(t)|2, (21)

where the main contribution comes from spontaneous emission
while the laser �(t)

ce1
is switched on. The population in the

excited state of target ensemble |g〉sS
(t)
e1g

|φs1
m 〉t , which we denote

by |ce,target(t)|2, can be calculated either with the exact numer-
ical evolution or using the analytical approximation obtained
within the quantum Zeno formalism. Further contributions to
pc,∗ arise from spurious excitations remaining in e1 after the
laser is switched off, but can be neglected as we show in the
Appendix A. Note that we have already taken into account the
reduction factor α of the spontaneous emission in this optical

FIG. 3. (a) Exact (markers) and estimated upper bound (solid
lines) of the errors from spontaneous emission, pc,∗, as a function of
the Purcell factor P1d for different Nm = N − m and fixed α = 1. The
exact calculation is obtained from integrating populations in Eq. (21),
whereas for the analytical upper bound we use Eq. (22).

transition. We finally obtain

pc,∗ ≈ α
π

2Nm

√
P1d

. (22)

In Fig. 3 we plot the probability pc,∗ obtained from an
exact numerical calculation using Eq. (21) and compare it
with the asymptotic expression of Eq. (22) obtained within
the quantum Zeno dynamics, showing that the agreement
is excellent when P1d,Nm 
 1. The error introduced when
loading a single collective excitation into the target ensemble
is then Im→m+1 ≈ pc,∗.

This can reach the desired scaling when the spontaneous
emission of this c − e1 transition can be strongly suppressed
by a factor of α ∼ 1/

√
P1d. Because there are several proposals

on how to implement this suppression [26,36], we only shortly
discuss how a two-photon transition [as sketched in Fig. 1(c)]
can be used. In this case, the state c is connected to the excited
state e1 through a two-photon transition via the intermediate
state a. The level c is chosen, e.g., such that the direct transition
c ↔ e1 is dipole forbidden. Then, denoting as �1 (�2) the Rabi
frequency connecting |c〉 ↔ |a〉 (|a〉 ↔ |e1〉), and choosing
a detuning 
a 
 �1,�2, the microwave and Raman laser
induce a two-photon transition between c ↔ e1 with effective
driving �a = �1�2

4
a
and a reduced emission rate �c = α�∗,

where the suppression α = |�1|2
4
2

a
� 1 can be very small.

Summary of the figures of merit of protocol 1. Summarizing,
for Nd,N,P1d 
 1 the success probability and error to load a
single symmetric excitation in the target ensemble is given by

pm→m+1 ≈ e−2π/
√

P1d and Im→m+1 = pc,∗. (23)

The total success probability pm = ∏m−1
j=1 pj→j+1 and infi-

delity Im ≈ ∑m−1
j=1 Im→m+1 are then given by

pm ≈ e−2πm/
√

P1d and Im ≈ mpc,∗. (24)

As we explained initially, the goal is to obtain, at least, the
same error scaling in the generation of the atomic excitations
as in the subsequent atom-photon mapping, that is, εph ∼ m

NP1d
.

Thus, it is enough that the cancellation of spontaneous emission
in the c − e1 transition is reduced by a factor α ∼ 1/

√
P1d.
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B. Protocol 2: Excitations added using quantum memories

Even though the overall probability pm of protocol 1
can be large for systems with P1d,N 
 1, it is still scaling
exponentially with the photon number m. In protocol 2, we
take advantage of the existence of several hyperfine levels, that
can work as quantum memories, to design a protocol which
circumvents the exponential scaling [28,29].

The main difference is that instead of loading the collective
excitations into the same hyperfine level s1, we store them
in different ones {sn}, and then combine them a posteriori
using post-selection in a treelike structure (see below). The
key to avoid exponential scaling is that in case of unsuccessful
heralding, the coherence of the excitations is not heavily
affected such that one can try to load it again without starting
from the very beginning.

Atom-waveguide resources. The atomic level structure that
we require for this protocol is similar to the one used in protocol
1 (see Fig. 1), with the extra requirement of a set of hyperfine
levels {sn}n, in which one can store collective excitations. It
is important to emphasize here that these levels can also be
different vibrational states of the atoms, which enlarges the set
of available states to store excitations. Another advantage with
respect to the previous protocol is that a single detector atom,
instead of an ensemble, suffices.

Overview of the protocol. Here, we present a general
overview of the protocol, which has several differences with
respect to protocol 1 to be able to reach the desired scaling of
infidelities. The first one is that to analyze the loading of single
collective excitations we assume to start in a state |φ{sn}

m 〉t of
the target ensemble, where m excitations are stored in several
metastable states, denoted as {sn}. Starting with this state, the
protocol works as follows:

(a) The first step is the same as in the previous protocol, but
the transfer of population in the target ensemble is not needed
as the excitations are already stored in different states. Thus,
we only change the state of the detector atom to decouple it
from the waveguide dynamics in this step, i.e.,

|c〉s

∣∣φ{sn}
m

〉
t|s〉d → |c〉s

∣∣φ{sn}
m

〉
t|s1〉d. (25)

(b) Next, the source atom is excited with a fast π pulse

|c〉s

∣∣φ{sn}
m

〉
t|s1〉d → |e1〉s

∣∣φ{sn}
m

〉
t|s1〉d. (26)

(c) Immediately after that, the laser �(t)
ce1

in the target
ensemble is switched on to trigger the transfer of excitation
under quantum Zeno dynamics, i.e.,

|e1〉s

∣∣φ{sn}
m

〉
t|s1〉d → |g〉sS

(t)
cg

∣∣φ{sn}
m

〉
t|s1〉d. (27)

This is actually the same step as in protocol 1.
(d) Now, we change again the state of the detector atom,

such that it can interact with the waveguide photons and
decouple the source atom as

|g〉sS
(t)
cg

∣∣φ{sn}
m

〉
t|s1〉d → |c〉sS

(t)
cg

∣∣φ{sn}
m

〉
t|s〉d. (28)

(e) To trigger the change of the detector atom, one needs
to modify the previous protocol as otherwise the errors from
spontaneous emission events are too large as we explain below.
After exciting the target ensemble from c to e2, we use fast π

pulses between the c − e2 transitions of both the target and
detector ensemble instead of relying on the slow quantum

Zeno dynamics. This switches the interaction through the
collective dissipation effectively on and off. The consequence
is a reduction in the success probability, but also in the errors.
We obtain

|c〉sS
(t)
cg

∣∣φ{sn}
m

〉
t|s〉d → |c〉s

∣∣φ{s ′
n}

m+1

〉
t|c〉d, (29)

where the {s ′
n} are the same as the {sn} with one additional

collective excitation in level s.
(f) The measurement step is the same as in the previous pro-

tocol and we denote the probability for successfully heralding
as qm→m+1.

(g) This protocol has an extra step in case of unsuccessful
heralding: one has to apply a repumping scheme before starting
again with the first step. This has to be done carefully to avoid
introducing extra errors that will spoil the fidelities.

(h) Finally, to avoid the exponential scaling the excitations
stored in {sn} have to be combined in a treelike structure that
circumvents the exponential scaling as we show below.

As in the previous protocol, we assume that all the local
operations can be performed perfectly, and only consider the
errors and success probabilities of the nonlocal operations
induced by the waveguide.

Success probabilities of step (e). As mentioned, step (c)
is the same as in protocol 1, which we already analyzed in
detail there. Thus, we only analyze here the step (e). In this
step, we first apply a π pulse on the target ensemble with
�(t)

ce2
, which excites the target ensemble as S(t)

cg |φ{sn}
m 〉t|s〉d →

S(t)
e2g

|φ{sn}
m 〉t|s〉d. As the source atom is decoupled, we do not

write it for simplicity. Then, we leave the system to evolve
under the interaction induced by the waveguide, which is given
by the following effective Hamiltonian:

Heff = − i�1d

2

(
S(t)

e2s
+ σ (d)

e2s

)(
S(t)

se2
+ σ (d)

se2

) − i�∗

2

∑
n

σ n
e2e2

.

(30)

It can be easily shown that this Hamiltonian only couples

|ψ1〉 ∝ S(t)
e2g

|φ{sn}
m 〉t|s〉d and |ψ2〉 = |φ{s ′

n}
m+1〉t|e2〉d, such that its

evolution can be analytically obtained as

|ψ1(t)|2 = 1
4e−�∗t [1 + e−�1d t ]2, (31)

|ψ2(t)|2 = 1
4e−�∗t [1 − e−�1d t ]2. (32)

To stop the evolution, we apply a fast π pulse on the c − e2

transition of both the target and detector ensembles, which
transfers any population in e2 to c. As the interaction time
we choose a time which leads to the correct error scaling. It
turns out that this is achieved for Tf = �−1

1d at which point the
probability of success of this step is given by

|φ2(Tf )|2 = (e − 1)2

4e2

(
1 − 1

P1d

)
≈ 0.1

(
1 − 1

P1d

)
. (33)

Thus, the success probability in heralding a single excitation
in this protocol is given by the combination of steps (c) and
(e), that is,

qm→m+1 ≈ 0.1

(
1 − 1

P1d

)
Nm

Nm + 1
e
− π√

P1d . (34)
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Errors. In case of successful heralding, the only possible
error is the one that we already considered in protocol 1, that
is, incoherent emission in the e1 − c transition, which leads
to an error pc,∗ = α

N
√

P1d
. However, in case of unsuccessful

heralding, as we want to still use the remaining excitations
stored in {sn}, one must keep track of all the possible errors
that can accumulate in the failed attempts before succeeding.

There are three possible sources of errors that accumulate
in each attempt. The first one is the incoherent emission in
step (c), which we already showed in the previous protocol
scales as pc,∗ ∝ 1

N
√

P1d
. The second one is the probability of

spontaneous emission in the target ensemble in step (e), which
can be calculated analytically using

pe,∗ = �∗
∫ Tf

0
dt |φ1(t)|2 ≈ 0.67P −1

1d . (35)

Note that we have chosen Tf in such a way that pe,∗ ∝ 1/P1d

which is important to obtain the desired scaling of errors,
ε ≈ m

NP1d
. This is the reason for modifying step (e) with respect

to protocol 1, as when using quantum Zeno dynamics the
probability of spontaneous emission in this step would scale
as 1/

√
P1d.

Using the effective non-Hermitian evolution of Eq. (30),
one can also show that the largest quantum jump probability
in step (e) is given by the collective quantum jumps in the
target ensemble, which is pcoll ≈ 0.71. Thus, if we are able to
pump these atoms coherently back to s, one can still keep high
fidelities in spite of the failed attempt. To do this, one must
apply a repumping procedure in the target atoms (depicted in
Fig. 4) to take advantage of the collective interactions induced
by the waveguide:

(1) We apply a π pulse on the c ↔ e1 transition and let the
excitation decay superradiantly to g.

(2) Once we have made sure that no excitation remains in
c, we move any excitation in s to c.

(3) Finally, the first step is repeated and all excitations
should have ended up in g.

The leading-order probability of a spontaneous emission
event during this repumping process is

p∗,pump ∝ 1

NmP1d
. (36)

Thus, the overall reduction in the fidelity of the collective
excitations of the target ensemble due to spontaneous emission

events in each failed attempt is then

ε∗ ≈ (pc,∗ + pe,∗ + p∗,pump)
m

N
, (37)

where the m/N factor appears because of the overlap of the
initial state with the one obtained after a spontaneous emission
event. Typically, pe,∗ is the largest contribution leading to an
infidelity scaling with ∝m/(NP1d) as we were aiming for.
Thus, the final infidelity taking into account the successful
detection and the fact that we need to try an average of
1/qm→m+1 times is

Im→m+1 = pc,∗ + ε∗
qm→m+1

. (38)

Combining excitations through post-selection. The second
part of this protocol is to design ways to combine the m

excitations distributed over the metastable states {sn} of the
target ensemble to achieve high-photon numbers in a single
hyperfine level while avoiding the exponential scaling. At this
stage, it is convenient to use the fact that we are interested in
the low excitation limit m � N , where the Holstein-Primakoff
limit [38] is valid. This means that we can approximate
collective atomic operators by bosonic operators, i.e., S(t)

αg ≈√
Na†

α . We focus on accumulating m excitations in a single
state, i.e., a state (a†

s )m|vac〉.
The tools we are going to use are collective microwave or

laser drivings that can generate either displacement operators
of a single mode or lead to beam-splitter-like transformations.
The former are obtained by a weak external driving between
the state of interest and the ground state g, the latter by directly
applying, e.g., two photon Raman processes between the states
(modes) of interest. Furthermore, we can read out the atomic
state very efficiently by pumping to an excited state that emits a
collective photon through the waveguide in a cyclic transition.
With this, one can verify that a mode (i.e., metastable state) is
empty, effectively acting as a projection operator P0i

on mode
i. Thus, these tools provide a similar set of tools as the ones
used in linear optics protocols with the advantage of having
the excitations stored in the metastable states si .

One possible way to combine excitations is to use a treelike
structure as depicted in Fig. 4(b). The idea is to double the
number of excitations in each step such that one can reach m

excitations in log2 m steps and one does not need to start from
the beginning if combining excitations fails, but only in the
corresponding branch of the tree. The first building block is to
study the process that adds up two states with k excitations,

FIG. 4. (a) The repumping scheme contains three steps for pumping any excitation in the metastable states c or s back to the ground state
g. (b) Schemes to build up m excitations in a metastable state by beam-splitter operations and post-selection on zero detection in one of the
modes. By doubling the number of excitations at each step, one can achieve a subexponential scaling.
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i.e., |k,k〉 → |2k,0〉, for which the success probability (using
a 50:50 beam splitter) is upper bounded by

qk � (2k)!

22k(k!)2
. (39)

Under Stirling’s approximation, we can see that qk ≈
1/

√
πk → 0 for large excitation numbers. The mean number

of operations to arrive to a state with m excitations can
be calculated recursively as Rm = q−1

m/2(1 + 2Rm/2). One can
lower and upper bound this number and show that the scaling
is

Rm ∼ √
m

log2 m
, (40)

where we used that qm < qm/2, q1 = 1
2 , and that one needs

log2 m steps to arrive to m excitations. The combination of a
logarithmic number of steps with the polynomial decrease of
probability leads to the superpolynomial, but subexponential,
scaling of Rm. It can be shown [29] that by combining
the doubling steps with single-mode coherent displacement
operations, one can also prepare arbitrary superpositions of
single-mode states.

Finally, we present a way of overcoming the superpoly-
nomial scaling by requiring number-resolved detection. The
idea is that in each doubling step of the tree, to go from
k to 2k, instead of throwing away all the states in which
one does not detect zero excitations in the other mode, we
keep the states in which the excitation is less than a given
fraction of the original excitations, i.e., βk. Like this, we
are certain we have at least (2 − β)k excitations in the other
mode. The price to pay is that the number of steps in three
scales in a less favorable way, as we require log2−β m steps
to reach m excitations. However, the probability of detecting
β excitations, given by sβ = ∫ βm

0 dk 1
π

√
k(m−k)

, can be made

independent of m (e.g., by choosing β = 1
2 , this probability

is s1/2 ≈ 1
3 ). Combining these features, the average number of

steps

Rm ∼ mlog2−β (2/sβ ) (41)

is minimized for β ≈ 0.238, leading to a scaling as Rm ∼
m3.86. Thus, by using number-resolved detection one can
obtain a polynomial scaling in the mean number of operations
(see also [39]), which is a big improvement, especially if
one wants to scale the protocol to very large excitation
numbers.

Summary of the figures of merit of the protocol. To
summarize this protocol, we have shown how for systems
with N,P1d 
 1, the successful loading of single collective
excitations can be done with probability and infidelity scaling
(on average) as

qm→m+1 ≈ 0.1e−π/
√

P1d , (42)

Im→m+1 � 10me−π/
√

P1d

NP1d
. (43)

The total success probability to achieve m excitations,
qm ∼ R−1

m , depends in this case on the way one merges the
atomic excitations. One is able to obtain either a polynomial
or superpolynomial scaling depending on whether number-

FIG. 5. (a) Level structure required for protocol 3: � system for
which two different waveguide modes are coupled to the transitions
s − e, g − e, with rates �

s,g

1d , respectively.

resolved excitations is used or not, which also determines the
total infidelity that will be proportional to Im ∝ Rm/(NP1d).

C. Protocol 3: Excitations added directly with two guided modes

We conclude this section presenting a protocol which avoids
the requirement of a transition with strong suppression of
spontaneous emission in a specific transition, at the expense
of using an extra waveguide mode. The key point consists
of transferring the excitation from the source to the target
ensemble, while inducing a change in the detector atom in
a single step. This single-step transfer can be used either
to add excitations directly to the same hyperfine level or to
store them in several quantum memories to afterwards join
them as described in protocols 1 and 2. To avoid unnecessary
repetitions, we will focus on the latter case; that is, we start
in |�{sn}

m 〉t and only discuss the heralded loading of a single
excitation.

Atom-waveguide resources. The atom-waveguide config-
uration required for this protocol is depicted in Fig. 5: a �

system, in which two different waveguide modes are coupled
to the s − e, g − e, with rates �

s/g

1d , respectively. We also need
auxiliary levels {sn} to store the excitations. Moreover, we
require that the s state of the source and the g state of the
detector can be shifted out of resonance so that unwanted
transitions are avoided.

Overview of the protocol. The use of a single-step transfer
reduces substantially the complexity of the protocol, which
now consists only of the following steps:

(a) The initial state is |g〉s|φ{sn}
m 〉t|s〉d. First, we excite the

source atom by a fast π pulse with �(s)
ge , i.e.,

|g〉s

∣∣φ{sn}
m

〉
t|s〉d → |e〉s

∣∣φ{sn}
m

〉
t|s〉d. (44)

(b) Just after that, we switch on �(d)
ge under the quantum

Zeno conditions. By choosing an appropriate time, the exci-
tation is collectively transferred to the target ensemble, while
inducing a change in the detector atom as

|e〉s

∣∣φ{sn}
m

〉
t|s〉d → |g〉sS

(t)
sg

∣∣φ{sn}
m

〉
t|g〉d. (45)

(c) Then, we perform a measurement on the detector atom.
If we measure an excitation in g, we know we have succeeded.
If not, we pump back the target atoms and try again until we
succeed.

Success probabilities. The main part of this protocol is
step (b). In this step, the effective non-Hermitian Hamiltonian
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governing the evolution is given by

Heff = �(d)
ge

2

(
σ (d)

ge + σ (d)
eg

) − i
�

g
1d

2

(
σ (s)

eg + S(t)
eg

)(
σ (s)

ge + S(t)
ge

)
− i

�s
1d

2

(
S(t)

es + σ (d)
es

)(
S(t)

se + σ (d)
se

) − i
�∗

2

∑
n

σ n
ee.

(46)

It can easily be shown (see Appendix B for details) that Heff

only couples the initial state to three other states, including
the one we aim for, |ψgoal〉 ∝ |g〉sS

(t)
sg |φ{sn}

m 〉t|g〉d. Therefore,
the dynamics can be obtained easily numerically. Moreover,
if we work within the quantum Zeno regime, that is, �d �
Nm�

g
1d, we can show that the dynamics is restricted to the

so-called decoherence-free subspace formed by |ψgoal〉 and a
dark excited state appearing between the three ensembles, that
is,

|ψd〉 ∝ (√
N − mσ (s)

eg − S(t)
eg + σ (d)

eg

)|g〉s

∣∣φ{s}
m

〉
t|s〉d. (47)

Remarkably, this dark state is independent of the ratio of
�

g,s

1d , unlike the two orthogonal superradiant states that appear,
which depend on that ratio. Moreover, the overlap of |ψd〉
with the initial state is large, so that large probabilities can
be obtained. Using this restricted two-dimensional Hilbert
space formed by |ψd〉 and |ψgoal〉, it is possible to obtain
analytical expressions of the populations and probabilities.
There, one can extract that the optimal ratio between the decay
rates is �s

1d/�
g

1d = N−m+1
2 and the optimal driving strength is

�(d)
ge =

√
Nm�

g

1d�
∗/3, which correspond to the situation where

the decay coming from leaky photons �∗ and the one induced
by populating the superradiant states is the same. With those
parameters, the population of the decoherence-free states is
finally given by

|cd(t)|2 ≈ Nm

Nm + 2
e−�∗t cos2

⎛
⎝

√
�

g

1d�
∗t

2
√

3

⎞
⎠, (48a)

|cgoal(t)|2 ≈ Nm

Nm + 2
e−�∗t sin2

⎛
⎝

√
�

g

1d�
∗t

2
√

3

⎞
⎠. (48b)

Therefore, by choosing a time T b
opt = π

√
3√

�
g

1d�
∗ , one maxi-

mizes the probability of the heralded transfer

pm→m+1 ≈ Nm

Nm + 2
e−√

3π/
√

P1d , (49)

where P1d = �
g

1d/�∗. In Figs. 6(a) and 6(b), we compare
both the population dynamics and optimal probability using
an exact numerical calculation (marker) and the analytical
approximations of Eqs. (48) and (49) showing an excellent
agreement.

Errors. As in the previous protocols, the problematic quan-
tum jumps leading to errors are the ones that appear from
spontaneously emitted photons from excited states of the target
ensemble, that is, the population of the state |g〉sS

(t)
eg |φ{sn}

m 〉t|g〉d.
The biggest contribution to the decay of this state is given by its
overlap with |ψd〉, which can be shown to scale with 1/

√
Nm.

Thus, using Eqs. (48) the final probability of spontaneously
emitting a photon reads as (see Appendix for details)

p∗ ≈ π
√

3

2Nm

√
P1d

, if P1d 
 1 (50)

which is confirmed numerically in Fig. 6(c).
If we want to recycle the excitations stored in {sn}, we have

to apply a repumping procedure, which does not introduce
further errors. In this case, it can be done also in a single
step by pumping collectively the atoms from s → g, which
moves Ssg|φm〉 → Seg|φm〉 → |φm〉. Because this process is
done through a collective photon, the probability of emitting a
free-space photon is given by ppump,∗ ∼ 1

NP1d
. Thus, the final

fidelity of the heralded transfer of a single collective excitation
is given by

Im→m+1 ≈ 1

pm→m+1
(p∗ + ppump,∗)

m

N
≈ m

N2
√

P1d
(51)

for systems with P1d,Nm 
 1.

V. EXTENSION TO TWO-MODE PHOTONIC STATES

Up to now, we have developed different methods to prepare
an atomic state in one specific metastable state that can
be triggered to emit the desired photonic state in a single
mode. An exciting prospect is to extend these protocols to
generate entangled states of several atomic excitations that can
afterwards be triggered to emit, e.g., into orthogonal waveguide
modes with different polarization and/or frequencies. This will
enlarge the set of photonic states that can be prepared using
different guided modes.

We emphasize that the mapping from symmetric Dicke
states to photonic states of the waveguide in the low excitation
regime can be straightforwardly generalized to the mapping
of two-mode Dicke states |φs↑/↓

m,n 〉 ∝ Sm
s↑gS

n
s↓g|g⊗N 〉 to a product

of photonic states in the two modes. This originates in the fact
that the decay operators commute when applied to a symmetric
Dicke state, i.e., [Ss↑g,Ss↓g]|φs↑/↓

m,n 〉 = 0 when m,n � N (see
also Ref. [26]).

The goal of this section is to extend our protocols for adding
a single excitation |ψ〉 → a†|ψ〉 to adding a single excitation
over two modes in a heralded way, i.e.,

|ψ〉 → (c↑a
†
↑ + c↓a

†
↓)|ψ〉 (52)

with |c↑|2 + |c↓|2 = 1. For simplicity of notation, we assume
that we work in the low excitation regime, in which the
Holstein-Primakoff approximation [38] can be applied, and
we approximate the collective spin operators by bosonic oper-
ators, i.e., Ssig ≈ √

Na
†
i . First, we explain the atom-waveguide

resources required. Then, we will show how to adapt the
heralded generation to the case of adding a superposition
and, finally, we discuss how to apply these tools to generate
certain photonic states with potential for metrology beyond the
standard quantum limit.

A. Atom-waveguide resources

The generalization of these protocols requires a more
elaborate level structure as depicted in Fig. 7. It consists
of mirroring the level structure required for single-mode
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FIG. 6. (a) Populations for Nm = 100 = P1d calculated with exact non-Hermitian Hamiltonian (markers) of Eq. (46), together with the
analytical approximations (solid lines) within quantum Zeno dynamics using the optimal �(d)

ge = √
Nm�1d�∗/3. (b) Exact (markers) and

approximated (solid line) optimal probability pm→m+1 obtained at time T b
opt ≈ π

√
3/

√
�∗�1d. (c) Exact (markers) and asymptotic bound (solid

lines) of p∗ as a function of the Purcell factor P1d. The exact calculation is obtained from integrating populations of Eq. (48), whereas for the
analytical upper bound we use Eq. (50).

multiphoton emission required in protocols 1 and 2, in which
one side couples to a different guided mode. For simplicity, we
assume the same decay rate �1d on both sides, though this is
not an important point for the proposal.

B. Generalization of protocols

For the generalization of the protocols, we focus on directly
adding an excitation to the two relevant modes through the
waveguide photons. We have shown in Sec. IV that one can
perform the following operation: transfer a single excitation
from the source atom collectively to the s± state in the target
ensemble while inducing a change in the detector atoms, from
s± to |c↑/↓〉. We denote this operation as

Ĉ↑/↓ : |c↑/↓〉s|ψ〉t|s↑/↓〉d

→ |g〉sa
†
↑/↓|ψ〉t|c↑/↓〉d + · · · |s↑/↓〉d, (53)

where we are not writing explicitly the state of the source
and target ensembles if some error occurs, as we will be
able to post-select them with the measurement. For notational
simplicity, we write the state of the detector ensemble as if
it only contained one emitter, whereas it actually contains Nd

emitters. All other possible initial states during the protocol
will not change under C↑/↓. It is important to emphasize that
the measurement is not performed after each C↑/↓ but just
after both operations have been performed as otherwise the
superposition would be destroyed.

The protocol starts by preparing a superposition state in the
source atom, i.e., (α↑|c↑〉 + α↓|c↓〉). The states in the target
ensemble are assumed to be in a given state |ψ〉t , which may
already contain excitations in other hyperfine levels, while the

FIG. 7. The level structure for the generation of two-mode states
is obtained by mirroring the level structure of Fig. 1 around the ground
state g.

rest are in g. The steps of the protocol can be summarized as
follows:

(a) We start transferring one of the states, e.g., c↑. For that,
we prepare the detector atoms in c↑ as well, and apply Ĉ↑ such
that

(α↑|c↑〉s + α↓|c↓〉s)|ψ〉t|s↑〉d

Ĉ↑→ α↑|g〉sa
†
↑|ψ〉t|c↑〉d + α↓|c↓〉s|ψ〉t|s↑〉d + · · · |s↑〉d.

(b) For the orthogonal mode, we need to transfer the
excitation in s↑ to s↓ in the detector ensemble to be able
to herald the excitation in c↓ at the end. We note that the
population in c↑ of the detector ensemble will not be affected
by later transitions. The new state is

Ô1→ α↑|g〉sa
†
↑|ψ〉t|c↑〉d + α↓|c↓〉s|ψ〉t|s↓〉d + · · · |s↓〉d,

where we used Ô1 to denote this operation.
(c) Now, one can apply Ĉ↓ which results in

Ĉ↓→ α↑|g〉sa
†
↑|ψ〉t|c↑〉d + α↓|g〉sa

†
↓|ψ〉t|c↓〉d + · · · |s↓〉d.

(d) Now, the excitations have been added but each of them
are associated to two different metastable states in the detector
atoms. In order to be able to post-select them at the same time,
one needs to apply a 50:50 beam splitter between the c↑ and
c↓ states of the detector such that

Ô2→ |g〉s
1√
2

(α↑a
†
↑ + α↓a

†
↓)|ψ〉t|c↑〉d + . . . |c↓/s↓〉d

which we denoted as Ô2. After this operation, one can herald
the transfer of excitation by measuring the state g of the
detector atoms as we desired.

We emphasize here again that the measurement has to be
performed after all the operations to avoid destroying the
superpositions between the ensembles. Furthermore, we would
like to point out that in case no excitation has been detected in
c↑, one can still measure the state c↓ of the detector atoms,
and if this heralding is successful one would generate the
state 1√

2
(α↑a

†
↑ − α↓a

†
↓)|ψ〉t . Depending on the goal state, this

state could still be useful and one would avoid a reduction
in the probability by a factor of 2. The success probability
scales in the same way as for the single-mode preparation,
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as the operation is only applied twice compared to once for
single-mode states with a factor of 2 for some states.

C. Examples with metrological interest

One of the main motivations to obtain two-mode multi-
photon states of light is the possibility of measuring phases
φ beyond the limits of classical light [40]. It is well known
that classical sources can only achieve the so-called standard
quantum limit, i.e., 
φ ∝ 1√

n
with n being the number of

photons. However, certain two-mode states of light can show
a higher precision, and even reach the Heisenberg scaling, that
is, 
φ ∝ 1

n
. In this section, we see how one can obtain some

of these states of metrological interests using our protocols.
The simplest states to obtain are the so-called Holland-

Burnett states [3,41,42], which are obtained by applying a
beam-splitter transformation on a dual Fock state |ψHB〉 ∝
B|m,m〉, i.e., n = 2m, which can be shown to achieve a
precision given by 
φ = 1√

n(1+n/2)
. As dual Fock states are

separable states we can obtain them using our protocols 1–3 to
achieve single-mode multiphoton states in the two metastable
states s↑/↓ separately.

Another class of nonclassical states with improved preci-
sion are Yurke states, i.e., |ψYurke〉 ∝ |m,m − 1〉 + |m − 1,m〉,
where n = 2m. These states do not reach the Heisenberg limit,
but scale in the same way, i.e., 
φ = 2

n
[30] (at least when

φ ≈ 0). We note that the Yurke state can be written as

|ψYurke〉 ∝ (a†
↑ + a

†
↓)a†n−1

↑ a
†n−1
↓ |0,0〉. (54)

We note here that the factor of 2 we mentioned for the general
protocol can be avoided here because the state |m,m − 1〉 −
|m − 1,m〉 can be transformed to the Yurke state by a phase
shift operator exp(−iπa

†
↑a↑) (e.g., through driving an optical

transition off resonantly).
As the dual Fock states can be generated efficiently with

our protocols (see discussion on Holland-Burnett states), one
only needs to add one single excitation over the two metastable
states at the end. Other proposals for the generation of Yurke
states using linear optical setups, e.g., by photon subtrac-
tion [43], are also possible by using the transitions between
metastable states.

Finally, NOON states, i.e., |ψNOON〉 = |n :: 0〉 ∝ |n,0〉 +
|0,n〉, are the only ones that reach the Heisenberg limit, i.e.,

φ = 1

n
. Using the fundamental theorem of algebra, they can

be written as follows:

|n :: 0〉 ∝ (a†n
↑ + a

†n
↓ )|0,0〉 =

n∏
j=1

(a†
↑ + eiφj a

†
↓)|0,0〉. (55)

Thus, by adding excitations one by one over two modes with
the appropriate phase, one can generate these states using the
extension of our protocol in an exponential number of steps. In
[44], it is shown, that one can “double” a NOON state, that is
joining two states of the form |m :: 0〉 to obtain |2m − 2 :: 0〉,
heralding on a twofold detector coincidence measurement. By
using this method together with the metastable states acting
as quantum memories, one can obtain NOON states in a
superpolynomial, but subexponential, mean number of steps.
This is very similar to the single-mode scheme: the probability
of joining the two states is 2

16×4n−1 ( 2n−2
n−1 ) ≈ 1

8
√

π(n−1)
. As the

phases when adding or doubling states to obtain NOON states
are very important, the single-mode scheme for a polynomial
scaling of the mean number of steps cannot easily be extended
to two modes.

VI. CONCLUSIONS AND OUTLOOK

Summing up, in this work we have revisited the methods
discussed in Ref. [28] to obtain single-mode multiphoton states
with large photon numbers using atom-waveguide resources.
In particular, we have expanded the discussion of the protocols
by providing full details of all the subtleties: error sources,
repumping procedure, etc. Importantly, we have also provided
numerical evidence that the formulas given in [28] actually
capture the right scaling using exact simulation of the dynam-
ics. Moreover, we have presented a protocol which simplifies
some of the requirements of the previous protocol, i.e., a strong
suppression of spontaneous emission into a specific state,
at the expense of requiring another strongly coupled guided
mode. Finally, we have shown how to extend our protocols
to directly generate superpositions of atomic excitations that
can afterwards be triggered to two-mode entangled states in
the waveguide. Although we have focused on the protocols
harnessing long-range collective dissipation, one can also
export these ideas to other waveguide setups in which one
exploits the long-range coherent interactions [45]. An exciting
prospect of this work is to combine these protocols with the
existence of free-space subradiant states [26,32] in which
spontaneous emission is highly suppressed to boost even more
the fidelities and probabilities of the protocols.
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APPENDIX A: GENERAL QUANTUM ZENO STEP
FOR PROTOCOLS 1 AND 2

In protocols 1 and 2, we apply a quantum Zeno step for the
transitions

|e1〉s

∣∣φs1
m

〉
t|s1〉⊗Nd

d → |g〉sS
(t)
cg

∣∣φs1
m

〉
t|s1〉⊗Nd

d , (A1)

|c〉sS
(t)
e2g

∣∣φs
m

〉
t|s〉⊗Nd

d → |c〉s

∣∣φs
m+1

〉
tS

(d)
cs |s〉⊗Nd

d . (A2)
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FIG. 8. For the generalized Zeno Step we consider two ensembles
with three-level atoms with one transition coupled to a waveguide
mode.

In this Appendix we discuss a generalized quantum Zeno step
and derive the probability of a successful transfer and errors
due to spontaneous emission events. We only need to treat two
ensembles as either the detector ensemble or the source atom
is decoupled from the dynamics.

1. System

Let us assume we have two ensembles (a and b) with three-
level atoms (with metastable states |0〉, |1〉 and excited state
|2〉) that contain Na and Nb atoms each. The dynamics are
governed by the collective decay on the 1 ↔ 2 transition and an
external field with Rabi coupling �

(b)
02 on the second ensemble

is applied (see Fig. 8). Therefore, the effective non-Hermitian
Hamiltonian that drives the no-jump evolution is given by

Heff = 1

2
�

(b)
02

(
S

(b)
20 + S

(b)
02

) − i
�∗

2

∑
n

σ n
ee

− i
�1d

2

(
S

(a)
21 + S

(b)
21

)(
S

(a)
12 + S

(b)
12

) − i
�∗

2

∑
n

σ n
ee.

We denote the collective symmetric excitations as
|#0,#1,#2〉a/b ∝ S#1

10S#2
20 |0〉Na/b

a/b . The initial state |ψ1〉 is an ex-
cited state of ensemble a and the state we want to reach, |ψ3〉,
contains one excitation more in the metastable state 1. They are
coupled via the state |ψ2〉, which is also excited, but where the
excitation is already in ensemble b. The states can be written
in general as

|ψ1〉 =|Na − k − 1,k,1〉a ⊗ |0,Nb,0〉, (A3)

|ψ2〉 =|Na − k − 1,k + 1,0〉a ⊗ |0,Nb − 1,1〉, (A4)

|ψ3〉 =|Na − k − 1,k + 1,0〉a ⊗ |1,Nb − 1,0〉. (A5)

In this basis, one can write the non-Hermitian Hamiltonian as

Heff = 1

2
�

(b)
02 (|ψ2〉〈ψ3| + |ψ3〉〈ψ2|) − i

�∗

2

∑
j=s,d

|ψj 〉〈ψj |

− i
�1d

2
(Nb + k + 1)|ψs〉〈ψs|, (A6)

where the decay terms have been expressed in terms of the
superradiant and dark state of the combined a and b ensembles,

that are

|ψs〉 =
√

k + 1

Nb + k + 1
|ψ1〉 +

√
Nb

Nb + k + 1
|ψ2〉, (A7)

|ψd〉 =
√

Nb

Nb + k + 1
|ψ1〉 −

√
k + 1

Nb + k + 1
|ψ2〉. (A8)

2. Non-Hermitian evolution: Probabilities

When the coherent driving is weak compared to the col-
lective dissipation �

(b)
02 � Nb�1d, the superradiant state can

be adiabatically eliminated, which leads to an effective decay
rate into the waveguide of the otherwise dark state |φ3〉 with

rate Nb|�(b)
02 |2

(Nb+k+1)2�1d
. To minimize the total errors, one chooses

�
(b)
02 = √

(Nb + k + 1)�1d�∗ such that both dark states have

the same decay rate, i.e., Nb|�(b)
02 |2

(Nb+k+1)2�1d
= �∗.

The population in |φ3〉 then follows:

|ψ3(t)|2 ≈ Nb

Nb + k + 1
e−�∗t sin2

(
t
�∗√(k + 1)P1d

2

)
,

(A9)

where the prefactor originates in the overlap between the initial
state and the dark state. Therefore, the success probability p =
|ψ3(T )|2 is maximized forT = π (�∗√(k + 1)P1d)

−1
, yielding

p = Nb

Nb + k + 1
e−π/

√
(k+1)P1d , (A10)

which can then be particularized to the evolution in the
corresponding steps of the protocols.

3. Quantum jump evolution: Errors

To properly analyze the errors of the protocols using
quantum Zeno dynamics, it is important to know the probability
of spontaneous jumps in both ensembles during the evolution.
Typically, the problematic processes are the ones associated
to leaky photons. The quantum jump analysis shows that the
probability for a spontaneous jump in the ensemble a or b is
given by

pa,∗ = pa1,∗ + pa2,∗ = �∗
∫ T

0
dt |ψ1(t)|2

+�∗
∫ ∞

0
dt |〈ψs|ψ1〉|2e−[(Nb+k+1)�1d+�∗]t , (A11)

pb,∗ = pb1,∗ + pb2,∗ = �∗
∫ T

0
dt |ψ2(t)|2

+�∗
∫ ∞

0
dt |〈ψs|ψ2〉|2e−[(Nb+k+1)�1d+�∗]t , (A12)

where the first parts pa/b1,∗ correspond to the interval of time
(0,T ) where �b

02 is switched on, and the second part pa/b2,∗
comes from population remaining in the excited state after
the external field has been switched off and which will decay
exponentially until all the population in the excited state, if
any, disappears. Here, we have already assumed that there
remains no population in the dark state, i.e., |ψd(T )| = 0, and
the decay only comes from the overlap with the superradiant
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state. By using the approximations for Heff , we can calculate
the different contributions and upper bound the probabilities
from these processes as

pa1,∗ � 1

2
(1 − e−π/

√
(k+1)P1d ) � π

2
√

P1d
, (A13)

pb1,∗ � k + 1

2Nb
(1 − e−π/

√
(k+1)P1d ) � π

√
k + 1

2Nb
√

P1d
, (A14)

which mainly comes from the contribution of the dark state
and where the last approximation is valid for P1d 
 1. This
also shows why step (e) of protocol 2 needs to be modified:
When the first ensemble is the target ensemble, the probability
of a spontaneous emission event has bad scaling.

Finally, we need to consider what happens with the con-
tribution pa2,∗ when P1d 
 1, and when we assume a per-
fect timing T = π/

√
(k + 1)�1d�∗ such that no population

remains in the dark state |φd (T )|2 = 0. The only contribution
remaining is the one of the superradiant state |φs(T )〉 =√

k+1
Nb+k+1e−[�∗+(Nb+k+1)�1d]T/2, which leads to

pa2,∗ � k + 1

(Nb + k + 1)2P1d
e−π(Nb+k+1)/

√
(k+1)P1d , (A15)

pb2,∗ � Nb

(Nb + k + 1)2P1d
e−π(Nb+k+1)/

√
(k+1)P1d , (A16)

which are negligible compared to pa,b1,∗ for sufficiently
large Nb.

APPENDIX B: QUANTUM ZENO DYNAMICS
IN PROTOCOL 3

The main difference with respect to the other protocols
is that it is done in a single step. We start with |ψ1〉 =
|e〉s|φ{sn}

m 〉t|s〉d and consider that only the classical field �d
ge ≡

�d �= 0, such that the dynamics are governed by the effective
Hamiltonian

Heff = �d

2

(
σ (d)

ge + σ (d)
eg

) − i
�

g
1d

2

(
σ (s)

eg + S(t)
eg

)(
σ (s)

ge + S(t)
ge

)
− i

�s
1d

2

(
S(t)

es + σ (d)
es

)(
S(t)

se + σ (d)
se

) − i
�∗

2

∑
n

σ n
ee,

(B1)

which couples the initial state |ψ1〉 to the state with the
population in the excited state in the target ensemble
|ψ2〉 ∝ |g〉sSeg|φ{sn}

m 〉t|s〉d, in the detector ensemble |ψ3〉 ∝
|g〉sSsg|φ{sn}

m 〉t|e〉d, and the goal state |ψ4〉 = |g〉s|φ{s ′
n}

m+1〉t|g〉d,
where {s ′

n} differs from {sn} only by an additional excitation

in s. In particular, |φ{s ′
n}

m+1〉 ∝ Ssg|φ{sn}
m 〉. In this basis. the

Hamiltonian can be written as

Heff = 1

2

⎛
⎜⎜⎜⎜⎝

−i
(
�

g
1d + �∗) −i

√
Nm�

g
1d 0 0

−i
√

Nm�
g
1d −i

(
Nm�

g
1d + �s

1d + �∗) −i�s
1d 0

0 −i�s
1d −i

(
�s

1d + �∗) �d

0 0 �d 0

⎞
⎟⎟⎟⎟⎠.

The goal is to find |ψ(t)〉 = e−iHeff t |ψ1〉 = ∑
j cj (t)|ψj 〉,

which can easily be done numerically as it acts on a four-
dimensional Hilbert space. However, in order to gain more
insight, it is useful to write the Hamiltonian in a basis of subra-
diant and superradiant states. Interestingly, the system always
contains a dark state |ψd〉 = 1√

Nm+2
(
√

Nm|ψ1〉 − |ψ2〉 + |ψ3〉),
which is dark for all values of �

g
1d and �s

1d. However, the two
orthogonal excited states depend on the ratio �s

1d/�
g
1d. After a

careful study, we found the optimal choice for the maximum
transfer to |ψ4〉 was to choose �s

1d/�
g
1d = Nm+1

2 . The reason
is that in that case the two decay channels to |g〉 and |s〉 show
the same “superradiant” decay (Nm + 1)�g

1d. From now on,
we use that ratio and �

g

1d = �1d. For this ratio, the adiabatic
elimination of the superradiant states gives rise to an effective
non-Hermitian Hamiltonian between the dark state and the goal
state, which reads as

Heff ≈
⎛
⎝− i�∗

2
�d

2
√

Nm

�d

2
√

Nm
−i

3�2
d

2Nm�1d

⎞
⎠, (B2)

where we have used Nm 
 1 to simplify the expressions. As
we know from the previous sections, one should choose an
�d such that the contribution of �∗ and the effective losses
induced by populating the superradiant states, i.e., 3(�d)2

2Nm�1d
, are

equal. Thus, by choosing �d = √
Nm�1d�∗/3, it is easy to find

that

|cd(t)|2 ≈ Nm

Nm + 2
e−�∗t cos2

(√
�1d�∗t

2
√

3

)
,

|c4(t)|2 ≈ Nm

Nm + 2
e−�∗t sin2

(√
�1d�∗t

2
√

3

)
. (B3)

Therefore, if P1d 
 1 and T b
opt = π

√
3√

�1d�∗ , then the probabil-
ity of heralding reads as

pm→m+1 = ∣∣c4
(
T b

opt

)∣∣2 ≈ Nm

Nm + 2
e−√

3π/
√

P1d . (B4)

The problematic quantum jump in this case is related to the
probability of having an excitation |e〉 in the target ensemble,
i.e., coming from the population of state |ψ2〉 that reads as

p∗ = p1,∗ + p2,∗ = �∗
∫ T b

opt

0
dt |c2(t)|2

+ �∗
∫ ∞

0
dt

∑
j=±

|〈ψs,j |ψ2〉|2e−[(Nm+1)�1d+�∗]t , (B5)

where the first part corresponds to the interval of time (0,T b
opt)

where �d is switched on, and the second part from populating
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the two superradiant states. The contributions of the super-
radiant and subradiant states to |ψ2〉 can be obtained in the
asymptotic limit Nm 
 1, where

|〈ψd|ψ2〉 ∼ 1√
Nm

, (B6)

|〈ψs,±|ψ2〉| ∼
√

2 ± √
2

2
∼ O(1). (B7)

Using that information, we can estimate the contribution of
the dark state within the time interval (0,T b

opt):

p1,∗ ≈ �∗

2(Nm + 2)

∫ T b
opt

0
dt e−�∗t � 1 − e−�∗T b

opt

2(Nm + 2)
(B8)

≈ π
√

3

2Nm

√
P1d

for P1d,Nm 
 1. (B9)

The contribution of p2,∗ can always be shown to be smaller
order when P1d 
 1. Therefore, the overall probability of
emitting a quantum jump in the target ensemble for this
protocol

p∗ ≈ π
√

3

2Nm

√
P1d

, if P1d 
 1. (B10)

The repumping process to correct the collective quantum
jump errors can be done as well in a single step by pumping

collectively the atoms from s → g, which moves Ssg|�m〉 →
Seg|�m〉 → |�m〉. Because this process is done through a
collective photon the probability of emitting a free-space
photon is given by ppump,∗ ∝ 1

NP1d
.

Fidelity of the protocol

The analysis of the fidelity is very similar to the one
performed for the protocols 1 and 2. In this case, if we detect
an excitation in g in the detector atom, no error can appear.
Therefore, the only contribution to the infidelity is the error
coming from free-space photons in each attempt after 1/p

repetitions, which finally scale:

Im→m+1 ≈ 1

p
(p∗ + ppump,∗)

m

Nm

∝ m

N2
m

√
P1d

(B11)

for systems with P1d,Nm 
 1. If we consider as a reference the
largest Purcell factor (the one associated to �s

1d ≈ Nm�1d/2),
then the scaling of probabilities and fidelities should read as
equivalently

pm→m+1 ≈ Nm

Nm + 2
e−√

3π
√

Nm/2/
√

P s
1d ,

Im→m+1 ≈ m
√

2

N
3/2
m

√
P s

1d

, (B12)

where we replaced P1d = �
g
1d

�∗ ≈ 2
Nm

�s
1d

�∗ = 2
Nm

P s
1d.
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