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We show that it is possible to realize simultaneous Raman lasing at two different frequencies using a double-�
system pumped by a bifrequency field. The bifrequency Raman lasers are phase-locked to one another and the
beat-frequency matches the energy difference between the two metastable ground states. Akin to a conventional
Raman laser, the bifrequency Raman lasers are expected to be subluminal. As such, these are expected to be highly
stable against perturbations in cavity length and have quantum noise limited linewidths that are far below that of a
conventional laser. Because of these properties, the bifrequency Raman lasers may find important applications in
precision metrology, including atomic interferometry and magnetometry. The phase-locked Raman laser pair also
represent a manifestation of lasing without inversion, albeit in a configuration that produces a pair of nondegenerate
lasers simultaneously. This feature may enable lasing without inversion in frequency regimes not accessible
using previous techniques of lasing without inversion. To elucidate the behavior of this laser pair, we develop
an analytical model that describes the stimulated Raman interaction in a double-� system using an effective
two-level transition. The approximation is valid as long as the excited states adiabatically follow the ground states,
as verified by numerical simulations. The effective model is used to identify the optimal operating conditions for
the bifrequency Raman lasing process. This model may also prove useful in other potential applications of the
double-� system, including generation of squeezed light and spatial solitons.
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I. INTRODUCTION

When exciting a multilevel atom with more than one
coherent field, new phenomena can arise. In such a system,
interference between different pathways can lead to suppres-
sion of excitations, leading to a trapped state. In recent years,
quantum coherence in multilevel atoms and solid-state emitters
has been substantially used for realizing optical bistability
[1–5], electromagnetic induced transparency (EIT) [6–10],
and subluminal or superluminal light propagation and lasers
[11,12]. Moreover, various quantum coherence phenomena in
� and V systems have been employed to modify the linear
and nonlinear optical characteristics of the medium and control
the temporal and spatial profiles of pulses within that medium
[13–15].

Broadly speaking, multilevel transitions can be classified
into two groups: open loop and closed loop. In an open-loop
configuration, the transition from any level to another is excited
through a single path. In contrast, in a closed-loop system,
the transition from one level to another is excited through
more than one path. In an open-loop system, the dynamics
is insensitive to the phase of the fields and is controlled
by the amplitudes thereof only. On the other hand, in a
closed-loop system the phases of the fields play a critical
role [16], thus enriching the range of possible applications.
Among different closed-loop schemes, the double-� systems
have drawn a lot of attention recently. These systems consist
of a pair of � configurations with common ground states. The
double-� scheme has been widely used to produce important

phenomena, such as coherent population trapping (CPT)
[17,18], spin squeezing [19], entanglement [20], four-wave
mixing [21–23], and entangled images [24,25]. Unlike conven-
tional � systems, however, many of these important coherent
features, like EIT, can only be satisfied for certain relative
phases between the laser fields in a double-� system. This
closed-loop phase constraint has substantial effects on the
dynamics of the double-� system and has been utilized to
control the behavior of atoms phase sensitively [26,27].

Due to this unique feature, the double-� system is expected
to play an important role in atom-laser interaction. Therefore,
it is useful to develop an easy physical insight and yet accurate
description for such systems. In general, the dynamics of a
double-� configuration as a four-level system can be properly
described with 15 real variables, assuming that the total
number of atoms is conserved. The time evolution of the
level populations and their coherences are determined via the
Liouville equation, with Lindblad terms describing various
dephasing and decoherence phenomena. However, due to the
complexity of the problem and the large number of variables
involved in such a system, the role of various laser fields in
controlling the final atomic features are often obscured and
drawing a physical insight is hindered.

On the other hand, the two-level system has been the
canonical prototype for atom-laser interaction, and its physical
features have been transparently understood. Therefore, the
dynamics of a complicated multilevel system can be more
easily visualized if it could be reduced to an effective two-level
one. Extending the previous work on the � system [28], we
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FIG. 1. (a) Energy diagram of a double-� system and the excitation scheme studied in this work. (b) The energy levels and interaction
strength of the pump-� system encircled in panel (a) in the dark, bright, and three-level states. (c) Energy levels and transitions in the probe-�
system after replacing the pump-� system with its equivalent two-level model. (d) Level diagram and coherent interaction in the ultimate
two-level system equivalent to the original double-� configuration.

first propose a generalizable method that reduces a multi-�
system to an effective two-level atom. Although the numerical
results presented in this paper is only for double-� systems,
the method can be easily extended to multiple-� systems
as long as frequency differences of the laser fields in each
� subsystem are the same. Using the explicit terms of the
effective Hamiltonian the role of the relative phases of the laser
fields can be clearly seen. In particular, we study the effect of
this phase on controlling the dispersion of the medium and
derive the conditions for achieving optical gain for a pair of
laser fields in one of the � subsystems. We show the possibility
of simultaneous lasing for these two beams when the pumped
medium is inserted inside an optical cavity with a particular
length. This dual-beam laser would only be realized when both
the relative amplitudes as well as the phases of the optical
beams satisfy specific constraints.

This paper is organized as follows. The general theoretical
model and comparison between the numerical results of the
double-� system and its effective two-level model are pre-
sented in the second section. The effect of the relative phase
and amplitude of the laser fields on the medium dispersion have
been investigated in this section as well. In the third section
we investigate the bilaser problem by searching the parameter
space to obtain simultaneous optical gain for both transitions of
one of the � subsystems. We derive the required and sufficient
conditions for dual-beam lasing. For a particular case that
could be realized using 87Rb, for example, we calculate some
of the typical values of the cavity length, laser frequencies,
and required optical gain for a moderate quality factor cavity.
Finally, Sec. IV summarizes the paper and presents the outlook
and perspectives for future works.

II. THEORETICAL MODEL

Figure 1(a) shows the energy diagram of a typical four-level,
double-� system investigated in this study. The system is

composed of two three-level subsystems with optical excita-
tions to states |3〉 and |4〉, and shared metastable ground states
|1〉 and |2〉. The corresponding coherent interactions and decay
rates are shown on the figure as well. A plane-wave laser field
with frequency ωmn, wave vector kmn, and a constant phase of
φ0

mn driving a coherent interaction between the states |m〉 and
|n〉 has the following form:

�Emn(�r,t) =
�Emn

2
exp

[
i
(−ωmnt + �kmn · �r + φ0

mn

)] + c.c.

(1)

All the couplings are electric-dipole transitions with the

Rabi frequency of �mn = �Mmn· �Emn

h̄
, where �Mmn = 〈 �m|p̂|�n〉 is

the transition dipole moment between |m〉 and |n〉. In this
model, it is assumed that there is no electric dipole transition
between states |3〉 and |4〉 and between states |1〉 and |2〉. Fur-
thermore, we assume that each optical field interacts with only
one transition, and its couplings to the remaining transitions are
either too far detuned or prohibited by polarization selection
rules.

For each transition, the frequency detuning is defined as
δmn = ωmn − (Em − En)/h̄. In each � system one can define
the common detuning δ3(4) and difference detuning �3(4) as

δ3(4) = δ13(14) + δ23(24)

2
, (2a)

�3(4) = δ13(14) − δ23(24). (2b)

Throughout this paper we use the rotating wave approxima-
tion and work in the transformed basis which is related to the
atomic basis via the following equations:

|1̃〉 = |1〉 exp
[
i
(
ω13t − �k13 · �r − φ0

13

)]
, (3a)

|2̃〉 = |2〉 exp
[
i
(
ω23t − �k23 · �r − φ0

23

)]
, (3b)
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|3̃〉 = |3〉 , (3c)

|4̃〉 = |4〉 exp
[ − i

(
(ω14 − ω13)t − (�k14 − �k13) · �r

− (
φ0

14 − φ0
13

))]
. (3d)

The dynamics of the system can be completely described
via the Liouville equation for the density matrix. As will be
shown later, a steady-state solution without pulsations in the
populations of the atomic states only exists if two-photon
detunings of both � subsystems are the same, i.e., �3 = �4.
In what follows we further assume that this difference detuning
is zero, i.e., �3(4) = 0, as illustrated in Fig. 1(a).

Among various excitation schemes, we are interested in
the cases where the transitions to |3〉 are stronger than the
transitions to |4〉, i.e., �13(23) � �14(24). For brevity, we refer
to the stronger (weaker) beams as pumps (probes). This
assumption allows one to treat the evolution of the probe-�
system as a perturbation.

The Raman excitation for the pump-� system is better
described in the dark and bright states: |D〉 and |B〉 [28].
The dark state |D〉 is the superposition of the two meta-stable
ground states with zero transition dipole moment to |3〉. The
bright state |B〉, on the other hand, is orthogonal to |D〉 with
maximized transition dipole moment to |3〉. In terms of the ro-
tated states of |1̃〉 , |2̃〉, the dark and bright states are defined as

|D〉 ≡ �23 |1̃〉 − �13 |2̃〉
�3

, (4a)

|B〉 ≡ �13 |1̃〉 + �23 |2̃〉
�3

, (4b)

where �3 ≡
√

�2
13 + �2

23. Figure 1(b) shows the energy levels
of this transformed basis and its corresponding transitions.
As depicted for zero difference detuning (i.e., �3 = 0), the
dark and bright states are degenerate and there is a coherent
interaction between the bright and the excited state |3〉 with
Rabi frequency of �3.

After the adiabatic elimination of the excited state |3〉 in the
damped amplitude equation [29], the pump-� system can be
replaced with an equivalent two-level model governed by the
following Hamiltonian:

ˆ̃H 123
2-level = h̄

2
L3(2δ3 − i�3) |B ′〉 〈B ′| , (5)

where |B ′〉 is the light-shifted version of |B〉 and L3 = �2
3

�2
3+4δ2

3

is a factor determined solely by the parameters of the pump-�
system.

This is a non-Hermitian Hamiltonian [29] that accounts for
the decay of state |B ′〉 into state |D〉 and the decay of the
coherence between states |D〉 and |B ′〉. For conservation of
the number of atoms, one still has to add a source term to the
population of |D〉, in formulating the density-matrix equation
for this effective two-level system. It should be noted that |D〉
and |B ′〉 are no longer degenerate in energy, due to the light
shift of |B ′〉.

We now consider the addition of the excitation applied to
the probe-� subsystem, as a perturbation. This is illustrated
schematically in Fig. 1(c). As derived in Appendix A, the com-
plex Hamiltonian describing the resulting system, consisting

of states |D〉 , |B ′〉, and |4̃〉, can be expressed as

ˆ̃H = h̄

2

[
L3(2δ3 − i�3) |B ′〉 〈B ′| − (2δ4 + i�4) |4̃〉 〈4̃|

− 1

�3
(�23�14 − �13�24e

−i	0 ) |D〉 〈4̃| + H.c.

− 1

�3
(�13�14 + �23�24e

−i	0 ) |B ′〉 〈4̃| + H.c.

]
, (6)

where 	0 = (φ24 − φ23) − (φ14 − φ13) is the closed-loop
phase.

Just as before, state |4̃〉 can be adiabatically eliminated, us-
ing the damped amplitude equations, as shown in Appendix A.
The resulting Hamiltonian can be expressed as

ˆ̃H 1234
2-level = h̄

2

[ |hD4|2
2δ4

|D′〉 〈D′|

+
{ |hB ′4|2

2δ4
+ L3(2δ3 − i�3)

}
|B ′′〉 〈B ′′|

+ hD4h
∗
B ′4

2δ4
|D′〉 〈B ′′| + H.c.

]
, (7)

where |D′〉 is the light-shifted version of |D〉 and |B ′′〉 is the
light-shifted version of |B ′〉. The parameters hD4 and hB ′4 are
defined in Appendix A and depend on all Rabi frequencies and
the closed-loop phase 	0. In the limiting case where 	0 = 0
and �23/�13 = �24/�14, hD4 = 0. In that case |D′〉 = |D〉
and there is no coupling between |D′〉 and |B ′′〉, since the dark
state for the pump-� and probe-� systems are the same.

The energy diagram for this final two-level system is shown
in Fig. 1(d). As can be inferred, the interference of the pump
and probe beams in the double-� scheme builds up a coherent
interaction between the dark and bright states, whose strength
depends on Rabi frequencies of all transitions as well as the
closed-loop phase 	0. The dependency on 	0 is periodic with
period 2π . Unlike the conventional � system, this is a unique
feature of such a double-� configuration, embodying the sub-
stantial effect of the laser field phases on the system behavior.

The Hamiltonian in Eq. (7) accounts for the decay of state
|B ′′〉 as well as the dephasing of the coherence between |D′〉
and |B ′′〉. However, in order to conserve the total number
of atoms in the system, one must add a source term to the
population of state |D′〉 in order to establish the density-matrix
equations of motion (i.e., the Liouville equations) for this
two-level system. The Liouville equations can be solved in
steady state to find the values of ρD′D′ , ρB ′′B ′′ , and ρB ′′D′ =
ρ∗

D′B ′′ . The approximate dynamics of the population of state
|4̃〉 as well as coherence between this state and the metastable
ground states can be determined using the relations between the
relevant amplitudes established during the process of adiabatic
elimination. As shown in Appendix B, using this procedure we
can write

ρ̃14 = �4

2δ4 − i�4
{(− cos θ3 sin θ4 + sin θ3 cos θ4e

−i	0 )

× (cos θ3ρDD + sin θ3ρBD)

− (sin θ3 sin θ4 + cos θ3 cos θ4e
−i	0 )

× (cos θ3ρDB + sin θ3ρBB)}, (8)

where cos θ3(4) ≡ �23(24)/�3(4).
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FIG. 2. Comparison between the exact (solid lines) and approximate solutions using the effective two-level system (dots) of the
double-� system for coherent transitions to the fourth level as a function of detuning δ4, when �23 = 10�3, �23 = 7�3, �14 = �3/5, �24 =
�3/2, and δ3 = �3. Panels (a),(b) show the results for ρ14 at two different closed-loop phases of 	0 = 0 and 	0 = π/4, respectively. Panels
(c),(d) show the results for ρ24 with the same 	0 as for (a) and (b). In each panel the real parts are shown in blue (dark gray), while the imaginary
parts are denoted in red (light gray).

The ultimate equivalent two-level system presented in
Eq. (7) reduces the number of unknowns from 15 real variables
to 3, hence making the calculations very fast and efficient.
Moreover, the equivalent system provides an insight into
the mutual interaction between the pumps, probes, and their
interference. It is worth mentioning that the reduction scheme
described here can be easily extended to multiple-� systems
as long as the difference detuning of all � subsystems (i.e.,
�i) are the same.

To investigate the validity and accuracy of this approxima-
tion, in Fig. 2 we compare the behavior of ρ̃14 and ρ̃24 as a func-
tion of δ4 for different closed-loop phases. The calculations are
done for an ideal four-level system, with �13 = 10�3, �23 =
7�3, δ3 = �3, �14 = �3/5, and �24 = �3/2. Here, we have
used �4 = 1.05�3 reflecting the ratio of decay rates of the
52P3/2 and 52P1/2 manifolds in 87Rb [30], which is a possible
atom for realizing such a double-� system.

In all cases the real and imaginary parts are denoted in blue
and red, respectively. Moreover, in each panel the solid lines
show the exact values calculated via the complete (4 × 4)-
density matrix, while the dots show the approximated results
obtained from Eqs. (7) and (8). A very good agreement between

the exact and the approximated results can be observed for both
coherent terms at various 	0.

We now consider, analytically, using the reduced two-level
model, certain special cases. Consider first the case where the
relative intensities of the two legs are the same for both pump-
and probe-� systems. Specifically, we assume �14�23 =
�13�24 = �2. Using this condition, the coherent interaction
between the dark and fourth level in Eq. (6) would be further
simplified to �2

�3
(e−i	0 − 1). When 	0 = 0 the interaction

vanishes and |D〉 becomes decoupled from |4̃〉. In other words,
when this condition is satisfied both � subsystems share the
same dark state. Moreover, according to Eq. (7) the coherent
interaction between dark and bright state vanishes as well;
hence a coherent population trapping (CPT) happens for the
dark state which is independent of individual values of Rabi
frequencies. On the other hand, when 	0 = π the interaction
between the dark state and the fourth level is maximized.

A complementary situation happens when �13�14 =
�23�24 = �2. In that case, as Eq. (6) implies, the coherent
interaction strength between the bright state and the fourth
level is −�2

�3
(1 + e−i	0 ). In contrast to the previous case, here

for 	0 = 0, the interaction is maximized and for 	0 = π the

053829-4



PHASE-LOCKED BIFREQUENCY RAMAN LASING IN A … PHYSICAL REVIEW A 97, 053829 (2018)

|B ′〉 and |4̃〉 states get decoupled. Also, as can be seen in Eq. (7),
this decoupled condition leads to a zero coherent interaction
between the dark and bright states. Therefore, similar to the
previous case, the bright state gets completely decoupled from
the dark state.

These two special conditions can be simultaneously satis-
fied if both of the pump beams and both of the probe beams have
the same strength. In terms of the effective Rabi frequencies
we have �13 = �23 = �3/

√
2 and �14 = �24 = �4/

√
2 and

the effective Hamiltonian of Eq. (7) would be simplified as

ˆ̃H 1234
2-level = h̄

2

[
�2

4

2δ4
cos 	0 + L3(2δ3 − i�3) |B ′′〉 〈B ′′|

+ i
�2

4

4δ4
sin 	0 |D′〉 〈B ′′| + H.c.

]
. (9)

This Hamiltonian describes the dynamics of a two-level
system with ω1 = 0, ω2 = (�2

4 cos 	0/4δ4 + L3δ3), and the
effective Rabi frequency of �eq = �2

4/4δ4 sin 	0. Moreover,
the bright state decays to the dark state with an effective
population decay rate of �eq = L3�3.

The terms in the Hamiltonian of Eq. (9) explicitly show the
effect of the closed-loop phase in modulating the strength of
the coherent interaction and the energy gap between the dark
and bright states. Both the coupling strength and the energy gap
are periodic in 	0 with a π/2 phase shift. While the decay rate
and the energy offset of the bright state are solely determined
with the pump beams, the probes determine the strength of the
coherent interaction between the dark and bright states and the
energy gap modulation.

For 	0 = 0,π the coupling between |D′〉 and |B ′′〉 vanishes
and these two states become totally decoupled. In other words,
|D′〉 is a trapped state in this configuration and EIT occurs for
both excited states, namely |3〉 and |4〉.

On the other hand, if 	0 = π/2,3π/2 the coupling between
the dark and bright states is maximized. Therefore, a coherent
interaction is built up between these two states whose strength
is solely dependent on the probe-� system. Specifically, it
is proportional to the Rabi frequency of the original atomic
states (i.e., �4) and decreases as the detuning δ4 increases.
This interaction would lead to population exchange between
|D′〉 and |B ′′〉 and consequently populates the excited atomic
states |3〉 and |4〉, which leads to nonzero coherent terms for
ρ14(24) and induces a polarizability for these transitions.

Solving for the steady state of the system described by
Eq. (9), we get the following expressions for the effective
two-level density-matrix elements:

ρB ′′B ′′

= �4
4 sin2 	0

2�4
4(1 + cos2 	0) + 16L3�

2
3δ

2
4 + 32L3�

2
4δ3δ4 cos 	0

,

(10a)

ρD′B ′′

= − 4�2
4δ4 sin 	0L3(�3 + i2δ3) + i�4

4 sin 2	0

2�4
4(1+ cos2 	0)+16L3�

2
3δ

2
4+32L3�

2
4δ3δ4 cos 	0

.

(10b)

It is clear that the coherence between the dark and bright
states contains three types of terms: (1) terms that are only
related to �4 (self-terms), (2) those only related to �3 (cross
terms), and (3) terms related to both (mutual terms). This
is an important feature of this double-� system, showing
how the pumps and the probes can be selected properly to
maximize independently the nonlinearities, while suppressing
single-photon absorptions.

As the coherent interaction strength is completely tunbale
with 	0, this closed-loop phase can be utilized further to tune
the polarizablity of the medium. Combined with Maxwell’s
equations, the propagation of the pumps and probes can be
studied in such a double-� configuration. In the next section
we study the parameter space of achievable polarizabilities
in this system and investigate the possibility of simultaneous
phase-locked lasing at two different frequencies in a single
cavity.

III. BIFREQUENCY RAMAN LASING IN DOUBLE-�
CONFIGURATION

Assume that all the beams are plane waves and their profiles
do not change as they propagate through the medium. In other
words, we ignore the effect of the slowly varying envelopes
for the first-order analysis here. The current analysis can be
easily extended by considering the effect of time- and position-
dependent slowly varying envelopes in such a medium.

Depending on various parameters, the probe beams that
excite the coherence represented by ρ14(24) can experience
optical gain or loss. Upon satisfying proper criteria, both probe
beams can experience optical gain as they propagate through
the medium. Therefore, in an optical cavity having resonant
modes at both probe frequencies, a double-beam laser can
be realized if enough optical gain is available for both probe
beams. In this section we derive the proper conditions for
having a self-consistent solution for four beams inside the
polarizable medium and investigate the possibility of having a
bifrequency laser in a suitably designed ring cavity.

Since the pump beams are assumed to be much stronger than
the probes, the undepleted approximation can be employed for
both transitions to state |3〉, hence ignoring any modifications
to �13 and �23. From the results of the previous section, we
can describe the induced polarizability at the probe frequencies
in terms of the coherence terms of ρ14 and ρ24. By inserting
these terms back into the wave equation, we get the following
equations describing the propagation of the probes within the
medium:

[(ω14

c

)2
− k2

14

]
�14 = −2μ0ω

2
14

h̄
N |M14|2ρ̃14, (11a)

[(ω24

c

)2
− k2

24

]
�24 = −2μ0ω

2
24

h̄
N |M24|2ρ̃24e

+i	0(z), (11b)

where N is the atomic density and μ0 is the magnetic perme-
ability.

A self-consistent solution for all four beams could be ob-
tained if the wave vectors satisfy a phase-matching condition:
(k24 − k14) = (k23 − k13). Moreover, the wave vectors of the
probes get modified as they propagate through the pumped
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|3〉 is assumed to be δ3 = 10�3 and � = 0. The particle density is N = 1015 m−3.

medium as

k14,24 = ω14,24

c
(1 + ξ14,24). (12)

Combined with the frequency resonance condition, Eq. (12)
leads to ω14ξ14 = ω24ξ24. Plugging Eq. (12) in Eq. (11), we find
that ξ14,24 are related to the atomic parameters and the induced
coherence terms as follows:

ξ14 = μ0N |M14|2c2

h̄�14
ρ̃14, (13a)

ξ24 = μ0N |M24|2c2

h̄�24
ρ̃24e

+i[(φ0
24−φ0

23)−(φ0
23−φ0

13)]. (13b)

To have a sustainable oscillation from these two beams in
a ring cavity with length Lc, the cavity resonance condition
of (k14 − k24)Lc = 2πm needs to be satisfied. Taking into
account the condition that ω14ξ14 = ω24ξ24, and Eq. (12), it is
clear that the cavity length Lc depends primarily on the energy
difference between the meta-stable ground states according to
the following equation:

Lc = 2mπh̄c

E2 − E1
. (14)

The second condition for realizing a lasing mode mandates
that the optical gain at both probe frequencies be large enough
to overcome all the losses and decoherence phenomena inside
the cavity. As ground-state energies are often close together
(e.g., the hyperfine splitting in the ground state of 87Rb is
6.8 GHz, which is nearly six orders of magnitude smaller
than the optical transition frequencies), it is fair to assume that
the cavity quality factor is almost the same for both probes.
For a laser cavity with an output coupler mirror transmittivity
of T , the imaginary parts of ξ14,24 must satisfy the following
gain-loss balance condition:

ω14ξ
′′
14 = ω24ξ

′′
24 = T c

2Lc

= T (E2 − E1)

4mπh̄
. (15)

For each cavity length determined by m, there is a unique
amount of the optical gain to satisfy the lasing condition for

both probe beams in the cavity. Just as for the cavity length, this
optical gain is determined primarily by the energy gap between
the metastable ground states.

Figures 3(a) and 3(b) show the variation of the absorption
coefficient α14(24) = ξ ′′

14(24)ω14(24)/c as a function of probe-�
system detuning (δ4) and the closed-loop phase (	0), where
the atom density is N = 1015 m−3. As can be seen, these
parameters substantially vary in a wide range, making the
beams get attenuated (negative regions in blue color) or grow
(positive regions in yellow color) as they propagate through the
cavity. For lasing to occur, the parameters should be chosen in
such a way that both beams experience the same amount of gain
[i.e., α � 0 (yellow regions)]. Here both pumps are assumed
to have the same strength of �3 = 10�3 and the common
detuning of δ3 = 10�3. The probes are also assumed to have
the same rate of �4 = �3.

Figure 4 shows the variation of the absorption coefficients
α14 and α24 for both transitions to the fourth level at a fixed
detuning value of δ4 = 20�3 as a function of 	0. As can be
seen, the polarizability on both transitions varies substantially
as a function of this phase and the beams can experience differ-
ent amounts of gain or loss. In particular there are three points
(denoted with black stars) where both beams experience the
same effect. The region of our interest is the section where both
transitions experience gain as they propagate through the gas.
This corresponds to a region with both α being above the black
dashed line. The point where they both experience the same
gain is denoted as point 3. At this point with 	0 = 3π/2 the
gain experienced by both beams is ≈1.8 m−1. Note that a fixed
	0 satisfying the lasing condition implies that phases of the
two laser beams must follow a certain relationship, set by the
phases of the pump beams.

For a cavity with length of L = 4.38 cm [corresponding to
m = 1 in Eq. (14)] this would end up being a per-pass gain
of 0.08, which is large enough to overcome the losses of a
ring cavity with the transmittivity of T ≈ 16% for the output
coupler mirror. Once a concrete scheme is adopted for realizing
this process (e.g., 87Rb atoms in a vapor cell), the transition
matrix elements would be known, thereby making it possible
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FIG. 4. Variation of the absorption coefficients α14 (blue dashed
line) and α24 (red solid line) as a function of closed-loop phase. All
the parameters are the same as in Fig. 3 and the detuning for fourth-
level excitation is assumed to be δ4 = 20�3. The black dashed line
shows zero loss or gain condition. The black stars show the points
where both transitions experience the same amount of attenuation or
amplification. The lasing calculations have been done for P3 where
both transitions to |4〉 experience the same amount of gain.

to determine the values of the electric fields and hence the
intensities, for each laser, since the value of the Rabi frequency
is established from the preceding discussions.

IV. CONCLUSION AND OUTLOOK

In this paper we have proposed a bifrequency Raman laser in
a double-� configuration. Unlike conventional Raman lasers
the output beams of such a laser are two phase-locked beams
separated by a typical value of a few GHz, corresponding to
the frequency separation of the metastable ground states. Due
to the sensitivity of the gain value to the closed-loop phase,
the output modes of the laser are phase locked and are directly
determined via the optical pump phases.

Furthermore, we have described a systematic scheme that
produces an equivalent two-level model for the four-level
system. The equivalent model explicitly shows how each set
of pumps and probes and the closed-loop phase play roles
in controlling the final states of the quantum emitter. The
generalization of the procedure for multi-� systems is straight-
forward as long as all � subsystems have the same frequency
detuning. By analytically solving for the steady state of the
density matrix, we have identified explicitly the contribution
of the closed-loop phase, the probe detuning, and the pump
Rabi frequencies in controlling the linear susceptibilities for
the probes in the double-� system.

For devices such as Raman atomic interferometers and CPT
clocks, it is necessary to realize a pair of laser frequencies that
are phase coherent with each other, while differing in frequency
by the ground-state hyperfine splitting of an alkali-metal atom,
such as 87Rb. The bifrequency laser obtained via the proposed
scheme uses a pair of such lasers as pumps and creates
another such pair. However, the bifrequency laser pair may
have properties that are better suited for these applications

than the original pump lasers. It is well known that, for
these applications, it is important to ensure that the absolute
frequency of each laser is as narrow as possible, in order to
suppress fluctuations in light shift. Recently, we have shown
[11,12,31] that a Raman laser acts as a subluminal laser,
with a quantum noise limited linewidth [Schwalow-Townes
linewidth (STL)] that is expected to be narrower than that of
a conventional laser by a factor equaling the square of the
group index. In Ref. [12] the observed group index was 663,
with an expected STL of 1.2 micro-Hz. Since the bifrequency
lasers described here are fundamentally Raman lasers, it is
expected that these lasers would also have group indices that
are substantially larger than unity, which in turn would imply
very small STLs. Of course, the actual group indices for the
bifrequency lasers would depend on the details of the actual
atomic transitions employed, the cavity parameters, and the
pump powers. Investigations are in progress to quantify this
feature of a bifrequency laser employing 87Rb atoms, taking
into account nonidealities due to the presence of additional
energy levels.

The bifrequency lasing described here is similar to lasers
without inversion (LWI), which had been investigated exten-
sively in the past [32–35]. However, unlike the conventional
LWIs, the bifrequency laser suggested in this work produces
two nondegenerate lasers simultaneously. These may prove to
be easier to implement experimentally and enable realization of
lasers at frequencies for which creation of population inversion
has not been shown to be possible with existing technologies.
In order to use the bifrequency lasing process for this goal, it
would be necessary to identify a suitable quantum system for
which the probe-� transition is at a frequency high enough so
that a conventional laser does not exist at that frequency, while
the pump-� transition is at a frequency for which high-power
lasers exist. The resulting bifrequency laser would transfer
energy from the low-frequency pump lasers. Of course, in the
model shown in this paper, we have not considered depletion
of the pumps, assuming that the power in the bifrequency
laser (probe-�) is very low compared to that of the pump.
However, if the mean frequency of the pump-� system is much
lower than that of the probe-� system, this approximation
is not a suitable one, and it is necessary to consider a more
comprehensive model where the pump depletion is taken into
account. Investigations are underway to identify four-level
systems that can be used in this manner to transfer energy
from a low-frequency laser to a very high-frequency bilaser,
taking into account pump depletion.

As a followup work, it would be important to extend the
study to investigate the phase-sensitive nonlinear susceptibility
of such a double-� system, in order to study spatial solitons
and their dispersive features. Moreover, it would be useful
to utilize the powerful, effective two-level model for further
quantum electrodynamical studies in the context of the Jaynes-
Cummings or the Travis-Cummings models.

APPENDIX A: HAMILTONIANS OF THE PROBE-�
SYSTEM

In this Appendix we present the detailed calculations of
the probe-� Hamiltonian starting from |D〉 , |B ′〉 , |4〉 states
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and derive the free and interaction Hamiltonians. Furthermore,
we present the required intermediate steps to derive the

final effective two-level Hamiltonian of Eq. (7) in the main
text.

The free Hamiltonian of the probe-� subsystem shown in Fig. 1(c) is given via the following equation:

ˆ̃Hf = h̄

2
[L3(2δ3 − i�3) |B ′〉 〈B ′| + 2(ω4 − ω3 − δ3) |4̃〉 〈4̃|].

(A1)

After expressing the dark and bright states in terms of the metastable ground states, one can determine the interaction
Hamiltonian as given in Eq. (A2):

ˆ̃Hint = h̄

2

[{
−�23�14

�3
e+i[(ω14−ω13)t−(φ14−φ13)] + �13�24

�3
e+i[(ω24−ω23)t−(φ24−φ23)]

}
|D〉 〈4| + H.c.

×
{
−�13�14

�3
e+i[(ω14−ω13)t−(φ14−φ13)] + �23�24

�3
e+i[(ω24−ω23)t−(φ24−φ23)]

}
|B ′〉 〈4| + H.c.

]
. (A2)

From this Hamiltonian it is clear that a unique rotated frame can only exist if the frequencies of the pump and probe beams
satisfy (ω13 − ω23) = (ω14 − ω14). This indeed is the frequency resonance condition as mentioned in the main text.

By rotating |4〉 to |4̃〉 as defined in Eq. (3), the Hamiltonian could be simplified to

ˆ̃HRW
total = h̄

2

[
L3(2δ3 − i�3) |B ′〉 〈B ′| − (2δ4 + i�4) |4̃〉 〈4̃| − 1

�3
{(�23�14 − �13�24e

−i	0 ) |D〉 〈4̃|

+ (�13�14 + �23�24e
−i	0 ) |B ′〉 〈4̃| + H.c.}

]
, (A3)

which is Eq. (6) in the main text.

This three-level system can be further reduced to an effec-
tive two-level system if the change rate of the fourth level is
slower compared to the ground states, so that its dynamics can
be adiabatically eliminated and expressed in terms of the lower
levels as

c̃4 = ADcD + A′
Bc′

B,

AD = 1

2δ4 + i�4

(
−�23�14

�3
+ �13�24

�3
e+i	0

)
= h∗

D4

2δ4 + i�4
,

A′
B = 1

2δ4 + i�4

(
−�13�14

�3
− �23�24

�3
e+i	0

)
= h∗

B ′4

2δ4 + i�4
.

(A4)

Substituting these expressions in the Hamiltonian of Eq. (6)
and assuming δ4 � �4 so that the effect of �4 can be ignored,
one would obtain the effective two-level Hamiltonian of
Eq. (7).

APPENDIX B: COHERENCE OF PROBE-� SYSTEM

By solving the final two-level Hamiltonian of Eq. (7), the
population of the dark and bright states (i.e., ρD′D′ ,ρB ′′B ′′)
and the coherence between these two states (i.e., ρD′B ′′ ) can
be determined uniquely. Ignoring the small modifications of
the dark and bright states due to the adiabatic eliminations
of the excited states |3̃〉 and |4̃〉, the states |D′〉 and |B ′′〉
can be replaced by |D〉 and |B〉, respectively. Therefore, the
populations and the coherence between ground states can be

determined using Eq. (4) as

ρ̃11 = 〈1̃| ρ̂ |1̃〉 = (�23 〈D| + �13 〈B|)ρ̂(�23 |D〉 + �13 |B〉)
�2

3

= cos2 θ3ρDD + sin 2θ3

2
(ρDB + ρBD) + sin2 θ3ρBB,

ρ̃12 = cos2 θ3ρDB + sin 2θ3

2
(ρBB − ρDD) − sin2 θ3ρBD,

(B1)

where cos θ3 ≡ �23/�3 as defined in the main text.
The coherence between the ground states and the dark and

bright states can be determined similarly. For example, for the
state |1̃〉 one has

ρ̃1D = 〈1̃| ρ̂ |D〉 = (�23 〈D| + �13 〈B|)ρ̂ |D〉
�3

= cos θ3ρDD + sin θ3ρBD,

ρ̃1B = 〈1̃| ρ̂ |B〉 = (�23 〈D| + �13 〈B|)ρ̂ |B〉
�3

= cos θ3ρDB + sin θ3ρBB. (B2)

To find the population of the excited states |3̃〉 and |4̃〉, and
their corresponding coherence with other states, one can use
the adiabatic elimination equations of amplitudes. Since here
we are only interested in the probe-� system we derive the
corresponding relations for this system’s transitions.

According to Eq. (A4) the approximate coherence between
state |4̃〉 and the ground states can be determined as

ρ̃14 ≈ c̃1c̃
∗
4 = A∗

Dc̃1c
∗
D + A′∗

B c̃1c
′∗
B ≈ A∗

Dρ̃1D + A′∗
B ρ̃1B,

ρ̃24 ≈ c̃2c̃
∗
4 = A∗

Dc̃2c
∗
D + A′∗

B c̃2c
′∗
B ≈ A∗

Dρ̃2D + A′∗
B ρ̃2B.

(B3)
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After some simplifications one gets the following equations, which is the relation given in Eq. (8) of the main text:

ρ̃14 = �4

2δ4 − i�4
{(− cos θ3 sin θ4 + sin θ3 cos θ4e

−i	0 )(cos θ3ρDD + sin θ3ρBD)

− (sin θ3 sin θ4 + cos θ3 cos θ4e
−i	0 )(cos θ3ρDB + sin θ3ρBB)},

ρ̃24 = �4

2δ4 − i�4
{(− cos θ3 sin θ4 + sin θ3 cos θ4e

−i	0 )(cos θ3ρBD − sin θ3ρDD)

− (sin θ3 sin θ4 + cos θ3 cos θ4e
−i	0 )(cos θ3ρBB − sin θ3ρDB)}. (B4)
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