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Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode nonclassical
macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for
many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1)
interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency
spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV
in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special
case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its
output depend on the phase, dispersion, and the parametric gain in a nontrivial way, thereby providing additional
insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs
as the parametric gain increases.

DOI: 10.1103/PhysRevA.97.053827

I. INTRODUCTION

Bright squeezed vacuum (BSV) is a macroscopic nonclas-
sical state of light that exhibits strong correlations between
the signal and idler beams (twin-beam squeezing) [1–4],
quadrature squeezing [5,6], polarization entanglement [7], and
so on, making it attractive for applications in quantum imaging
[8–10] and quantum metrology [11,12]. The BSV produced
in a traveling-wave parametric amplifier is characterized by
a highly multimode structure [9,13,14]. Depending on the
choice of modes, one can observe quadrature squeezing or
twin-beam squeezing; two different nonclassical effects [15].
Due to the strong multiphoton correlations and complicated
mode structure, the theoretical description of BSV is difficult.

Earlier works on the theoretical description of BSV [16–20]
used a numerical approach based on solving a set of coupled
integrodifferential equations. In Refs. [16–18], the Heisenberg
picture was used in the Fourier space, and the analytical
solution was only found for a very narrow band pump. In
Refs. [19,20], broadband (Schmidt) modes were introduced
and the effect of time ordering was considered, followed by
a numerical treatment. However, recent experiments where
the spectral properties of BSV are modified, in particular, by
using it in a nonlinear interferometer [21–24], are still lacking
a detailed theoretical description.

Here we present a consistent analytical approach to the
description of BSV in the frequency domain. Our approach is
based on the collective Schmidt operators and allows us to take
into account multiphoton correlations and nonclassical fea-
tures of BSV radiation and to analyze different characteristics

of BSV for various experimental configurations. In particular,
we analyze a nonlinear SU(1,1) interferometer [21,22,25–28]
containing a dispersive medium [23,24], which allows one to
engineer the spectral properties of BSV. High-gain effects,
such as the dramatic narrowing of the BSV spectrum and the
generation of tunable two-color BSV, as well as the transition
from low to high parametric gain, are described in terms of the
Schmidt modes. The basic idea of the developed theoretical
approach appears to be rather general and can be used to
describe the spatial properties of BSV as well [29].

II. FORMALISM OF THE FREQUENCY SCHMIDT MODES

Parametric down-conversion (PDC) in a crystal with a
quadratic susceptibility χ (2)(r) is described by the following
Hamiltonian [28] in terms of electromagnetic field operators:

H ∼
∫

d3rχ (2)(r)E(+)
p (r,t)E(−)

s (r,t)E(−)
i (r,t) + H.c., (1)

where s,i,p indices correspond to the signal, idler, and pump
radiation, respectively. In this work, in contrast to Ref. [29], we
consider a pulsed pump, for which the envelope of E(+)

p (r,t)
depends on time.

We assume a classical pump with a Gaussian envelope,

E(+)
p (r,t) = E0e

− t2

2τ2 ei(kpr−ωpt), with the full width at half

maximum (FWHM) of the intensity pulse being 2
√

ln 2τ .
First, we will consider the case of a single crystal where
PDC is produced. Further, this model will be generalized to
other experimental configurations. By using the expansion
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of the quantum fields over plane-wave modes, E
(−)
s,i (r,t) =∫

dks,iCks,i
e−i(ks,ir−ωs,i t)a

†
ks,i

, with the summation replaced for
convenience by integration, the Hamiltonian becomes

H ∼ i

∫∫
dksdkid

3rχ (2)(r)E0Cks
Cki

e
− t2

2τ2

×ei(kp−ks−ki )rei(ωs+ωi−ωp)t a
†
ks

a
†
ki

+ H.c. (2)

In the Hamiltonian (2) the integration runs over all wave
vectors of the signal and idler photons and over the three
spatial variables. However, in what follows, we will restrict
our consideration to the collinear propagation of the photons
only, and neglect the transverse wave-vector components.
Then, the integration over the three-dimensional wave-vector
domain is equivalent to the integration over frequencies. From
the experimental viewpoint it means, in particular, that we
consider a sufficiently broad spatial pump beam. In this case,
the Hamiltonian can be written as

H ∼ i

∫∫
dωsdωi

∫ 0

−L

dze
− t2

2τ2 ei(kp−ks−ki )z

× ei(ωs+ωi−ωp)t a†
ωs

a†
ωi

+ H.c., (3)

where we assume that coefficients Cks,i
are frequency inde-

pendent, and that χ (2) is constant over the length of the crystal
L (χ (2)

0 ) and zero elsewhere.
Let us represent the Gaussian temporal envelope of the

pump as a Fourier transform: exp {− t2

2τ 2 } exp {−iωpt} =∫
dω exp {− (ω−ωp)2

2�2 } exp{−iωt}, where � = 1/τ . Then, we
assume that each photon of the pump spectrum gives rise
to the signal and idler photons with the energy mismatch
being exactly zero, ω = ωs + ωi . This approximation is well
satisfied for an SU(1,1) interferometer because of the effective
narrowing of the spectrum due to the nonlinear interference
[28]. This leads to a δ-function δ(ω − ωs − ωi) removing the
integration over ω, and the Hamiltonian takes the form

H = ih̄�

∫∫
dωsdωi exp

{
− (ωs + ωi − ωp)2

2�2

}

×
∫ 0

−L

dzei(kp−ks−ki )za†
ωs

a†
ωi

, (4)

where a†
ωs,i

are the photon creation operators for the monochro-

matic signal (idler) frequency modes, and � ∼ χ
(2)
0 E0 is the

effective coupling strength.
The approximation of zero energy mismatch restricts the

generality of our model, which, for instance, fails to describe
the broadening of the spectrum with increasing parametric gain
[30]. On the other hand, we take into account the whole spectral
width of the pump, signal or idler pulses, and the wave-vector
mismatch, which allows us to obtain the analytical solution
to the problem and to describe many features of BSV. After
integrating in z, the PDC Hamiltonian can be represented in
the simple form

H = ih̄�

∫
dωsdωiF (ωs,ωi)a

†
ωs

a†
ωi

+ H.c., (5)

with the two-photon amplitude (TPA) F (ωs,ωi) depending
only on the signal and idler frequencies

F (ωs,ωi) = C exp

{
− (ωs + ωi − ωp)2

2�2

}
sinc

(
�kL

2

)

× exp

{
−i

�kL

2

}
, (6)

where C is the normalization constant and �k = kp(ωs +
ωi) − ks(ωs) − ki(ωi) is the wave-vector mismatch inside
the crystal. The signal and idler wave vectors ks,i =
ns,i(ωs,i)ωs,i/c depend on the refractive indices ns,i(ωs,i)
which can be calculated by using dispersion (Sellmeier) formu-
las [31]. The interaction Hamiltonian (5) indicates correlations
between the signal and idler monochromatic-wave photons. It
is more convenient to introduce new spectral modes that will be
independent of each other. Such a procedure is similar to using
normal coordinates for the description of interacting harmonic
oscillators. In our case we can use the Schmidt decomposition
[32] and present a bipartite TPA as

F (ωs,ωi) =
∑

n

√
λnun(ωs)vn(ωi), (7)

whereλn are the eigenvalues andun(ωs),vn(ωi) are the Schmidt
modes [33,34].

After the Schmidt decomposition, new photon operators
can be introduced that are responsible for the creation or
annihilation of a photon not with a certain frequency but with
the spectral distribution determined by a certain Schmidt mode
function

A†
n =

∫
dωsun(ωs)a

†
ωs

,

B†
n =

∫
dωivn(ωi)a

†
ωi

. (8)

The Schmidt-mode operators (8) are similar to the broadband
operators used in Ref. [19]. In terms of these operators, the
PDC Hamiltonian is diagonalized [15]

H = ih̄�
∑

n

√
λn(A†

nB
†
n − AnBn). (9)

The new modes are independent and the operators (8) satisfy
the usual commutation relations

[An,A
†
m] = δmn, [An,B

†
m] = 0. (10)

Using the commutation relations one can obtain the Heisenberg
equations for the Schmidt modes

dAn

dt
= �

√
λnB

†
n,

dB
†
n

dt
= �

√
λnAn. (11)

The solutions to these equations are given by the Bogolyubov
transformations and provide the output operators, after an
interaction time T with the crystal, in terms of the initial
(vacuum) operators

Aout
n = Ain

n cosh[G
√

λn] + [
B in

n

]†
sinh[G

√
λn],

Bout
n = B in

n cosh[G
√

λn] + [
Ain

n

]†
sinh[G

√
λn],

053827-2



BRIGHT SQUEEZED VACUUM IN A NONLINEAR … PHYSICAL REVIEW A 97, 053827 (2018)

FIG. 1. For BSV generated under degenerate collinear phase matching in a single 3-mm BBO crystal pumped by 1-ps pulses at the
wavelength λp = 400 nm: (a) the Schmidt modes u0 (black), u1 (red), and u2 (blue); (b) the normalized intensity distribution for parametric
gain G=1.

where Ain
n ,B in

n are the initial (vacuum) photon annihilation
operators in the corresponding Schmidt mode (8) and G =
�×T corresponds to the parametric gain. Also, using the com-
mutation relations one can obtain the Heisenberg equations for
the monochromatic-wave operators

daωs

dt
= �

∑
n

√
λnun(ωs)

[
Bout

n

]†
. (12)

The solutions to these equations yield the output
monochromatic-wave operators in terms of the initial vacuum
operators for each frequency from the spectrum. For example,
for the signal radiation

aout
ωs

= ain
ωs

+
∑

n

un(ωs)
{[

B in
n

]†
sinh(

√
λnG)

+Ain
n [cosh(

√
λnG) − 1]

}
. (13)

In the degenerate case, the signal and idler photons have the
same Schmidt modes, An = Bn.

This simple analytical expression allows one to calculate
various characteristics of BSV, such as the mean photon
number, the variance of the photon number difference in the
signal and idler beams, the correlation functions and so on, for
different experimental configurations.

According to our approach the spectral distribution of the
signal beam is given by the incoherent sum of independent

Schmidt modes with the weights 
n,

〈Ns(ωs)〉 =
∑

n

|un(ωs)|2
n. (14)

In the simplest case of a single crystal the Schmidt modes are
very close to the Hermite functions [33]. Typical spectral dis-
tributions for three lowest-order Schmidt modes are presented
in Fig. 1(a). The modes contribute independently to the total
signal and in the case of a large number of modes give rise to
a rather broad spectral distribution [Fig. 1(b)].

The weight of each Schmidt mode depends on the paramet-
ric gain so that the new Schmidt coefficients 
n determining
the contributions of different modes into the spectral distribu-
tion are redistributed. In the high-gain regime they sufficiently
differ from the initial ones λn:


n = (sinh[G
√

λn])2∑
n(sinh[G

√
λn])2

. (15)

It means that with increasing the parametric gain the distribu-
tion of the Schmidt coefficients becomes sharper [Fig. 2(a)];
in other words, the effective number of modes contributing to
the total signal decreases [Fig. 2(b)] [35].

The effective number of modes is defined by the Schmidt
number K = 1∑

n 
2
n

[35–37] and is reduced with the increase
of the parametric gain [Fig. 2(b)]. It means that in the high-gain
limit only the first Schmidt mode will contribute to the total

FIG. 2. Weights of the Schmidt modes for BSV generated under degenerate collinear phase matching in a single BBO crystal of length
3-mm pumped by 1-ps pulses at 400 nm: (a) the Schmidt eigenvalues for different values of the parametric gain G = 1 (black) and G = 9 (red);
(b) the Schmidt number vs parametric gain.
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FIG. 3. An SU(1,1) interferometer with GVD. BSV is generated
in the first nonlinear crystal. The dichroic mirror DM1 separates the
pump from the BSV. The BSV propagates through the GVD material
while the pump propagates through the air and its time delay can
be adjusted. After the dichroic mirror DM2 the pump and the BSV
radiation overlap in the second nonlinear crystal. Finally, the BSV is
filtered from the pump.

signal and all features of the PDC radiation will be defined by
the properties of this Schmidt mode.

Because the profiles of the Schmidt modes are assumed to
not depend on the parametric gain, the model predicts the nar-
rowing of the total spectral width of BSV with the gain increase.
While this is not the case for a single crystal, where small
spectral broadening can be observed with the gain increase
[30], the narrowing of the spectrum is indeed observed for a
nonlinear interferometer [24], considered in the next section.

III. NONLINEAR INTERFEROMETER
WITH GROUP-VELOCITY DISPERSION

The above-described theoretical approach can be applied to
different experimental configurations as long as we can obtain
the TPA. An interesting experimental configuration that allows
one to engineer the BSV spectrum and mode content includes
two nonlinear crystals separated by a medium with large group
velocity dispersion (GVD), a nonlinear SU (1,1) interferometer
[21–24,38] (Fig. 3). In such a configuration, the radiation is
down-converted in one nonlinear crystal and can be amplified
or deamplified in the other one, depending on the coherent
phase conditions. In the presence of the dispersive medium,
BSV generated in the first crystal is spread in time and in
addition, acquires a chirp. Its different spectral components
propagate inside the GVD medium with their own group
velocities. If, in addition, the pump pulse is delayed, only a
certain spectral band of the down-converted radiation spectrum
will overlap with it in time in the second crystal (Fig. 3) and
get amplified there. This way, by changing the time delay of
the pump with respect to the PDC radiation one can vary the
mode structure of the BSV.

For the two-crystal configuration with the GVD medium
(Fig. 3), the TPA (6) is modified; in addition to the envelope,
the modulation term appears [14,39]:

F (ωs,ωi) = C exp

{
− (ωs + ωi − ωp)2

2�2

}
sinc

(
�kL

2

)
exp

{
−i

�kL

2

}

× cos

{
�kL + �kada + (

ka
pd0 − k

g
s d − k

g

i d
)

2

}
exp

{
−i

�kL + �kada + (
ka
pd0 − k

g
s d − k

g

i d
)

2

}
, (16)

where k
g
s ,k

g

i are the wave vectors of signal and idler photons
in the GVD medium, d is the length of the GVD medium,
d0 is the additional pump path length, which can be varied
in the experiment, �ka = ka

p − ka
s − ka

i is the wave-vector
mismatch in the air, with ka

p,s,i being the corresponding wave
vectors for the pump, signal, and idler radiation, and da is the
length of the air gap where all three beams propagate together.
All wave-vector mismatches can be calculated directly from
the dispersive (Sellmeier) formulas. Let us denote the part
of the argument of the cosine function that is due to the
dispersive medium and the air gap as φ(ωs,ωi) = [�kada +
(ka

pd0 − k
g
s d − k

g

i d)]/2.
Depending on this phase and its derivative, the BSV struc-

ture can be substantially changed. The derivative of the phase
depends on the relation between the group velocities of the
pump and the BSV radiation. Due to varying the additional
pump path d0 one can change the phase derivative and satisfy
the extremum condition

dφ

dωi

= 0,
dφ

dωs

= 0 (17)

for different frequencies. Such a condition can be considered
as a requirement of the group velocity matching between the
pump and the chosen BSV frequency. In other words, this
condition will be fulfilled for the frequency band in the signal

radiation that overlaps in time with the pump pulse in the
second crystal.

Figure 4(a) shows the phase shape φ versus the signal and
idler frequencies in the case where condition (17) is fulfilled
for the degenerate frequency ωs = ωi = ωp/2. It means that
the pump and the PDC radiation at the degenerate frequency
(shown by the orange arrow) perfectly overlap in time in the
second nonlinear crystal.

If the pump pulse overlaps in time in the second crystal with
the PDC radiation for a certain nondegenerate frequency, the

FIG. 4. The profile of the phase φ in the cases where the pump
pulse overlaps in the second crystal with the PDC radiation at (a) the
degenerate frequancy and (b) a nondegenerate frequency. The orange
arrow shows the overlapping frequency. The calculation was done for
the case of SF6 Schott glass of length d = 36 cm used as the GVD
medium. The other parameters are as mentioned above.
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FIG. 5. Normalized intensity distribution for an SU (1,1) inter-
ferometer with 36 cm of SF6 glass. The pump pulse overlaps in
the second crystal with the frequency-degenerate part of the PDC
radiation. Black dotted line: parametric gain G = 1, red solid line:
parametric gain G = 13.

extremum condition (17) will be fulfilled for this frequency.
Figure 4(b) shows the phase profile in such a case, the orange
arrow shows the chosen frequency.

Another factor affecting the BSV features is the total
value of the phase φ. Depending on φ, the radiation from
the first crystal is amplified or deamplified in the second
one. For a fixed frequency, this can be changed by slightly
varying the pump path between the GVD medium and the
second crystal. Indeed, this almost does not affect the group
delay but changes sufficiently the total phase. Thereby by
changing the experimental parameters we can obtain different
shapes of the TPA. And as long as we know the TPA for the
chosen experimental configuration, we can provide its Schmidt
decomposition and apply the theoretical approach described
above.

To investigate the effect of the GVD medium on the BSV
structure we consider d = 36 cm of highly dispersive glass
(SF6, k′′ = 199.01 fs2/mm). First, we chose the additional
pump path and the air gap between the GVD medium and the
second crystal so that both conditions, for overlapping between
the pump and signal pulse in the second crystal (17) and
for the amplification (φ = 0), are satisfied for the degenerate

frequency. The intensity distribution calculated for the case of
low parametric gain is shown in Fig. 5 by a black curve. It has a
rather broad envelope with fast interference oscillations at the
center. The interference fringes as well as the broad spectrum
profile indicate the multimode structure of the down-converted
radiation. As the parametric gain increases, the number of
modes is reduced, and the spectrum gets narrower. At high gain
(Fig. 5, red curve), the intensity distribution shrinks drastically
compared to the low-gain regime and, as we will show further,
the radiation becomes nearly single-mode in this case. One
can see a similarity between the spectra shown in Fig. 5 for
lower and higher gain values and the results of Refs. [23,24],
respectively.

The effective number K of the Schmidt modes is given by
the second-order normalized intensity correlation function for
the integral spectrum, g(2) = 1 + 2/K for the degenerate case.
The calculated dependence of g(2) on the length of the SF6
glass is shown in Fig. 6(a). One can observe a fast modulation,
on the micrometer scale, caused by the variation of φ and the
resulting oscillations from amplification to deamplification.
Even a very small change in the GVD medium length makes the
total phase significantly different, which results in the strong
nonmonotonic dependence of g(2) on the medium length.
The oscillation period at the degenerate wavelength can be
calculated from the equation (kg

s | ωp

2
+ k

g

i | ωp

2
) d = π and is

0.224 μm. The sharp peaks in the correlation function are much
narrower than oscillations in a conventional interferometer
and indicate its phase supersensitive features [12]. The same
behavior had been observed in the case of an interferometer
with the air gap [14].

These fast oscillations can be eliminated by providing
constructive interference for a given wavelength through phase
locking the interferometer. Under such a condition, the corre-
lation function grows monotonically with the increase in the
GVD medium length [Fig. 6(b)], achieves its maximal value
and then decreases due to the contribution of higher-order
Schmidt modes.

From Fig. 6(b), it is also clear that with increasing
the parametric gain, the maximal value of g(2) goes up.
For the gain G = 13, it achieves g(2) = 3, which corresponds
to the case of a single temporal mode. Thus, by choosing
appropriate experimental parameters, namely, a sufficiently
long GVD medium and a sufficiently high pump power at the

FIG. 6. Normalized second-order intensity correlation function at the output of the SU(1,1) interferometer calculated versus the length of
the SF6 glass for the same configuration as in Fig. 5: (a) for the length of the GVD medium d = d̃ + �d , d̃ = 5 cm, �d is varied, the parametric
gain G = 13 and (b) under conditions (17) and φ = 0 for different parametric gain values: G=8.5 (black dashed line), G = 13 (red solid line).
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FIG. 7. Normalized intensity distribution for an SU (1,1) inter-
ferometer with 36 cm of SF6 glass. The pump pulse overlaps in the
second crystal with the PDC radiation at nondegenerate wavelength
827 nm. Black dotted line: parametric gain G = 1, red solid line:
parametric gain G = 13.

same time, one can achieve BSV with a single frequency mode
populated with a huge number of photons.

It is worth noting that in the case of a single crystal, the
number of modes is also reduced with increasing the parametric
gain but due to the initial huge number of modes, the single-
mode regime is not achievable for reasonable pump intensities.
Using the GVD medium is a much more efficient instrument
for reducing the number of modes.

If, by changing the pump path, one makes the pump pulse
overlap in the second crystal with the PDC radiation at a certain
nondegenerate frequency, the extremum condition will be
fulfilled for the conjugated frequency [Fig. 4(b)]. In this case,
the spectral intensity distribution at low gain is also broad, but
the interference fringes will be only observed in the conjugated
frequency range (Fig. 7). This is a manifestation of the induced

coherence effect [40]: to observe interference fringes in the
signal radiation from the first and the second crystals, the idler
radiation from both crystals should be indistinguishable (in our
case, overlap in time).

However, as the parametric gain increases, the situation
changes dramatically: instead of a single broad peak, two sep-
arated peaks appear, as for nondegenerate (“two-color”) BSV
generation [4]. One of these peaks is observed at the frequency
satisfying condition (17), the other one at the conjugated
frequency. The second peak has interference structure while
the first one is smooth. Thus with increasing the parametric
gain the frequency spectrum gets narrower. If in this case the
pump delay is changed this process becomes tunable.

The oscillations in the spectrum of the left-hand peak in
Fig. 7 are typical for two-pulse interference, observed, for
instance, in pump-probe experiments [41,42]. Indeed, they
originate from the two possibilities: PDC is generated in the
first crystal or in the second one. However, there are important
features distinguishing the “induced coherence” effect from
other types of interference. First, in our case the interference
structure appears in the left-hand peak only provided that
the pulse at the conjugated (right-hand) frequencies overlaps
with the pump in the second crystal. Second, in the high-gain
regime the contributions from the first crystal and the second
crystal will be unequal, in contrast to more common types of
interference.

IV. SCHMIDT MODES OF TWO-COLOR BSV

The first and second Schmidt modes in the case of two-color
PDC (Fig. 7) are shown in Figs. 8(a) and 8(b). One can see that
they have a double-peak structure. These modes u0,u1 have the
same eigenvalues in the Schmidt decomposition and the same
intensity profiles, but different symmetry: for the first Schmidt
mode, the envelope is symmetric with respect to the degenerate
frequency, for the second one it is antisymmetric. It means that

FIG. 8. The Schmidt modes u0,u1 for the case shown in Fig. 7, where, due to the high gain and a delay introduced in the interferometer, BSV
has only two modes and its spectrum has a double-peak structure: (a) mode u0 has a symmetric envelope, (b) mode u1 has an antisymmetric
envelope. The insets show the left peak of each mode with a better resolution.
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even at a sufficiently high gain, BSV will be characterized
by two-mode structure, each mode having a double peak
profile.

Because the exact phase matching is achieved for the
degenerate wavelength, the idler Schmidt modes have the same
shape as the signal ones, i.e., An = Bn and the diagonalized
Hamiltonian (9) can be rewritten in the form

H = ih̄�
∑

n

√
λn

(
A†2

n − A2
n

)
. (18)

For each mode un, as the ones shown in Fig. 8, one could
observe quadrature squeezing; however, such an experiment is
rather difficult because the local oscillator should be prepared
with the same complicated profile as shown in Figs. 8(a)
or 8(b).

On the other hand, instead of these “odd” and “even”
Schmidt modes un,un+1, with the photon creation operators
A

†
n,A

†
n+1, one can pass to their superpositions, correspond-

ing to the operators C
†
n,n+1 = 1

2 (A†
n + A

†
n+1) and D

†
n,n+1 =

1
2 (A†

n − A
†
n+1). While the first one will have the shape of

a single modulated peak [the left-hand peak in Fig. 8(a)],
the second mode will have the shape of a smooth peak [the
right-hand peak in Fig. 8(a)]. For these modes it is possible
to observe the twin-beam squeezing which can be measured
using a spectral filter for selecting Cn,n+1 and Dn,n+1 modes.
The quantitative characteristic of the twin-beam squeezing is
the noise reduction factor (NRF),

NRF = 〈(Ns − Ni)2〉 − 〈Ns − Ni〉2

〈Ns〉 + 〈Ni〉 , (19)

where 〈Ns〉 and 〈Ni〉 are the integrated numbers of photons in
the signal and idler beams.

The condition NRF < 1 is a signature of twin-beam squeez-
ing. For the double-peak structure of Fig. 7, the left peak
corresponding to the signal beam and the right peak to the

idler one, calculation yields NRF = 10−8 due to accuracy.
This demonstrates an almost perfect twin-beam squeezing, the
difference from zero caused by the oscillating structure of the
left peak.

V. CONCLUSION

We present a fully analytical approach to the description of
the frequency properties of BSV, based on the model of in-
dependent Schmidt modes. Within this approach, we describe
the operation of an SU(1,1) interferometer with a dispersive
material and its effect on the Schmidt-mode structure of the
generated BSV. We show that with the transition from low to
high parametric gain, the interference structure in the spectrum
is replaced by a single- or a double-peak structure, depending
on the path length difference in the interferometer. In the
second case, the Schmidt modes also have a double-peak
structure. By appropriately shaping the local oscillator, one can
observe quadrature squeezing for each of the “double-peak”
mode. This, however, is difficult due to the modulation of
one of the peaks caused by the “induced coherence” effect.
Alternatively, and in a simpler way, one can observe twin-beam
squeezing by selecting the two peaks in the spectrum separately
and registering their variance of the intensity difference.
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