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Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system
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We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via
a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic
system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via
optical transitions in different branches. In the suitable input-field conditions, strong interference effects between
the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation
of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled
by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential
applications in quantum nonlinear optics.
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I. INTRODUCTION

Generation and manipulation of optical signals induced by
coherent evolution of atom-field interaction at the quantum
level have always been subjects of intense research in cavity
quantum electrodynamics [1] and play a fundamentally impor-
tant role in the practical applications of quantum information
and computation [2]. A variety of useful techniques for signal
generation, amplification, and control have been proposed and
carried out in experiments. For example, a known approach
to realizing light amplification is lasing [3–5] developed
by quantum theory. As an intriguing and counterintuitive
quantum optical phenomenon, lasing has already obtained
fruitful progress in the past few decades. At the same time
the research systems range from previous natural atoms to
various new types of quantum media, such as quantum dots [6],
nitrogen-vacancy color centers [7], optomechanical systems
[8], and superconducting quantum circuits [9].

Another feasible tool to emit and modulate light waves
is nonlinear multiwave mixing [10–14]. As a typical high-
order nonlinear effect, four-wave mixing (FWM) in multilevel
atomic systems has attracted a great deal of attention recently.
For instance, an experimental observation of efficient FWM in
the pulsed regime at low-light levels was reported in an N-type
atomic system [15]. Frequency characteristics of FWM for
far-detuned two-photon excitation was examined in a diamond-
type system [16]. A resonant FWM conversion scheme with
two spatially-varied control fields was proposed in a �-shaped
configuration structure [17]. Besides, enhancement and sup-
pression of FWM in a four-level system [18] and even six-wave
mixing (SWM) in a five-level system [19] was investigated by
using the dressing effect. Furthermore, interplays including
competition, energy exchange, and interference between these
two wave-mixing processes were demonstrated experimentally
in an inverted Y-type atomic system [20]. Except for FWM
and SWM processes, eight-wave mixing was observed in two
different five-level atomic systems [21,22].

However, all these works focus on 2n-wave mixing it-
self and intermixing only between nonlinear wave-mixing
processes. To our knowledge, the relevant topic of exploring
controllable modulation of input signal resulting from inter-
action of the generated FWM field with the incident field and
its possible applications in nonlinear optics has received little
attention in atomic systems.

In this paper we propose an accessible scheme for realizing
controllable nonlinear optical modulation via a FWM approach
in a four-level atomic system. In our model with engineered
atom-field interaction, two coexisting FWM processes with
three-order nonlinearity can occur. Under suitable input-field
conditions, strong constructive and destructive interferences
between the input signals and the generated FWM signals are
induced and play a crucial role in amplifying and attenuating
corresponding output fields. Furthermore, by tuning the rela-
tive phase of the incident beams, the output signal transition
from enhancement to suppression can be achieved in a large
range. Understanding the mechanism for efficient interplays
of the input signals with the generated signals will help us to
deepen and extend research issues in the field of multiwave
mixing, and such a controllable light manipulation can have
important applications in designing novel nonlinear optical
devices.

II. THEORETICAL MODEL

Let us consider a four-level ladder-type atomic system
driven by four laser beams, as shown in Fig. 1. Two weak inci-
dent lights, the probe field Ep (ωp, kp, and Rabi frequency �p)
and the signal field Es (ωs , ks , and Rabi frequency �s), connect
a common ground state, |0〉, to two upper states, |1〉 and |3〉.
Meanwhile, another weak driving field, Ed (ωd , kd , and Rabi
frequency �d ), and a strong control field, Ec (ωc, kc, and Rabi
frequency �c), couple the transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉,
respectively. It is obvious from Fig. 1 that the composite atom-
field system forms a cyclic four-level configuration which
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FIG. 1. Schematic of a four-level atomic system interacting with
four incident fields (solid lines). In this model with engineered atom-
field interaction, two coexisting FWM processes involving the sum-
frequency field Efs and the difference-frequency field Efd (dashed
lines) are generated synchronously.

indicates the possible transition |0〉 → |1〉 → |2〉 → |3〉 →
|0〉 and its reverse pathway. As a result, there are two coexistent
FWM processes with three-order nonlinearity via different
optical transitions. Specifically, a FWM sum-frequency field
Efs with the phase-matching condition kfs = kp + kd + kc is
generated via the perturbation chain ρ

(0)
00 → ρ

(1)
10 → ρ

(2)
20 →

ρ
(3)
30 and another FWM difference-frequency field Efd with the

phase-matching condition kfd = ks − kc − kd is generated via
the perturbation chain ρ

(0)
00 → ρ

(1)
30 → ρ

(2)
20 → ρ

(3)
10 .

The Hamiltonian describing the atom-field interaction for
the system is given by (h̄ = 1)

H =
3∑

j=0

ωj |j 〉〈j | − 1

2
(�pe−iωpt |1〉〈0| + �fde

−iωfd t |1〉〈0|

+ �de
−iωd t |2〉〈1| + �ce

−iωct |3〉〈2| + �se
−iωs t |3〉〈0|

+ �fse
−iωfst |3〉〈0| + H.c.), (1)

where �fs (�fd) is the Rabi frequency of the generated FWM
sum-frequency (difference-frequency) field, and ωfs = ωp +
ωd + ωc (ωfd = ωs − ωc − ωd ) is the corresponding traveling
frequency. Switching to the interaction picture, the transformed
Hamiltonian can be written as

HI = �p|1〉〈1| + (�p + �d )|2〉〈2| + (�p + �d + �c)|3〉〈3|

− 1

2
(�p|1〉〈0| + �fd|1〉〈0| + �d |2〉〈1| + �c|3〉〈2|

+ �s |3〉〈0| + �fs|3〉〈0| + H.c.), (2)

where �p = ω10 − ωp, �d = ω21 − ωd , and �c = ω32 − ωc

are the detunings of the probe, driving, and control fields. Here
we emphasize that the following frequency relation among four
incoming beams should be satisfied in the above calculation,
i.e., ωs = ωp + ωd + ωc. Combining it with the frequency
expressions of the two generated FWM fields, we show that the
difference-frequency Efd (sum-frequency Efs) generation has
the same frequency with the probe Ep (signal Es) field, which
is a crucial condition for the realization of light amplification
and attenuation as seen later in this paper.

The evolution of dynamics for the atomic system can be
governed by the master equation

dρ

dt
= −i[HI ,ρ] + (relaxation terms), (3)

where the first term indicates the coherent interaction and
the second term denotes the environment-induced dissipation
processes. It is well known that linear and nonlinear polariza-
tions for a multilevel atomic system can be described by first-
order and high-order off-diagonal density matrix elements.
According to Eqs. (2) and (3), the equations of motion for
the off-diagonal matrix elements are expressed as

ρ̇10 = −(γ10 + i�p)ρ10 + i

2
(�p + �fd)(ρ00 − ρ11)

+ i

2
�∗

dρ20 − i

2
(�s + �fs)ρ13, (4a)

ρ̇21 = −(γ21 + i�d )ρ21 + i

2
�d (ρ11 − ρ22) + i

2
�∗

cρ31

− i

2
(�∗

p + �∗
fd)ρ20, (4b)

ρ̇20 = −[γ20 + i(�p + �d )]ρ20 + i

2
�dρ10 + i

2
�∗

cρ30

− i

2
(�p + �fd)ρ21 − i

2
(�s + �fs)ρ23, (4c)

ρ̇32 = −(γ32 + i�c)ρ32 + i

2
�c(ρ22 − ρ33) − i

2
�∗

dρ31

+ i

2
(�s + �fs)ρ02, (4d)

ρ̇31 = −[γ31 + i(�d + �c)]ρ31 + i

2
�cρ21 − i

2
�dρ32

+ i

2
(�s + �fs)ρ01 − i

2
(�∗

p + �∗
fd)ρ30, (4e)

ρ̇30 = −[γ30 + i(�p + �d + �c)]ρ30 + i

2
�cρ20

+ i

2
(�s + �fs)(ρ00 − ρ33) − i

2
(�p + �fd)ρ31,

(4f)

where the damping rate γij (i > j ) is inserted phenomenolog-
ically. Assuming that the atomic system is initially populated
in the ground state |0〉, the steady-state solutions of the
off-diagonal matrix elements responsible for the first-order
and third-order optical processes are obtained by a formal
perturbation expansion:

ρ
(1)
10 = i(�p + �fd)

2�10
, (5a)

ρ
(1)
30 = i�20(�s + �fs)

2ξ
, (5b)

ρ
(3)
10 = i3�s�

∗
c�

∗
d

8�10ξ
+ i3�fs�

∗
c�

∗
d

8�10ξ
, (5c)

ρ
(3)
30 = i3�p�d�c

8�10ξ
+ i3�fd�d�c

8�10ξ
, (5d)

where �10 = γ10 + i�p, �20 = γ20 + i(�p + �d ), �30 =
γ30 + i(�p + �d + �c), and ξ = �20�30 + |�c|2/4. Equa-
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tions (5a) and (5b) are usually used to quantify the linear
susceptibilities, which govern the dispersion and absorption
properties of the probe, signal, and two FWM fields. The first
terms in Eqs. (5c) and (5d) demonstrate the FWM difference-
and sum-frequency conversions with third-order nonlinearity,
and the second terms display the backward nonlinear processes
of the generated FWM fields. In light of the slowly varying
amplitude approximation [23], two sets of coupled equations
mastering the energy transfers for the fields Ep and Efs and the
fields Es and Efd during their propagation are expressed as

∂�p

∂z
= iκ01

[
i�p

2�10
+ i3�fs�

∗
c�

∗
d

8�10ξ

]
, (6a)

∂�fs

∂z
= iκ03

[
i�20�fs

2ξ
+ i3�p�d�c

8�10ξ

]
, (6b)

∂�s

∂z
= iκ03

[
i�20�s

2ξ
+ i3�fd�d�c

8�10ξ

]
, (7a)

∂�fd

∂z
= iκ01

[
i�fd

2�10
+ i3�s�

∗
c�

∗
d

8�10ξ

]
. (7b)

III. RESULTS AND DISCUSSION

We now intend to present the controllable nonlinear optical
amplification and attenuation based on the synergetic mecha-
nism of FWM conversion and optical interference. It should
be pointed out again that all the equations from Eq. (2) are
calculated in the frame of ωs = ωp + ωd + ωc. When another
condition, ks = kp + kd + kc, among four incident beams is
satisfied simultaneously, using previous two phase-matching
conditions we show that the signal and FWM sum-frequency
(probe and FWM difference-frequency) fields propagate along
the same direction ks (kp). As a result, each pair of optical fields
is indistinguishable [12,18] and the total output amplitude Etot

s

(Etot
p ) can be deemed as a coherent superposition of these

two signals, i.e., Etot
s = Es + Efs (Etot

p = Ep + Efd). In this
case, two sets of optical interferences are induced and play a
fundamentally essential role in the output light amplification
and attenuation. Solving Eqs. (6) and (7), we have

Etot
s /Es0 = κb − a + λ

2λ
exp [(a + κb − λ)Z/2]

− κb − a − λ

2λ
exp [(a + κb + λ)Z/2]

+ c|�p0|
λ|�s0| e

−iφ{exp [(a + κb + λ)Z/2]

− exp [(a + κb − λ)Z/2]}, (8)

Etot
p /Ep0 = a − κb + λ

2λ
exp [(a + κb − λ)Z/2]

− a − κb − λ

2λ
exp [(a + κb + λ)Z/2]

+ κc|�s0|
λ|�p0| eiφ{exp [(a + κb + λ)Z/2]

− exp [(a + κb − λ)Z/2]}, (9)

where λ =
√

(κb − a)2 + 4κc2, κ = κ01/κ03, a = −�20/(2ξ ),
b = −1/(2�10), c = |�d ||�c|/(8�10ξ ), and Z = κ03z is the
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FIG. 2. Output signal intensity |Etot
s /Es0|2 (blue dashed line), the

sum of |Efs/Es0|2 + |Es/Es0|2 (red solid line) and the interference
term |Etot

s /Es0|2 − |Efs/Es0|2 − |Es/Es0|2 (black dash-dotted line)
as a function of the relative phase φ. The parameters are γ20 =
0.05γ10, γ30 = γ10, Z = 10γ10, κ = 0.1, �d = 0.15γ10, �c = 1.8γ10,
|�p0|/|�s0| = 2.5, and �p = �d = �c = 0.

effective propagation distance. Note that the Rabi frequencies
�p, �d , �c, and �s are treated as complex parameters:
�p = |�p|e−iφp , �d = |�d |e−iφd , �c = |�c|e−iφc , and �s =
|�s |e−iφs , where φp, φd , φc and φs are the phases of the
probe, driving, control and signal fields, respectively. The first
two terms on the right side of Eqs. (8) and (9) dominate
the evolutional processes of the probe and signal beams while
the third terms are responsible for the propagation dynamics of
the generated FWM beams. It is seen from these equations that
two output signals, Etot

s and Etot
p , are sensitive to the relative

phase φ = φp + φd + φc − φs and then can be controlled
effectively by tuning φ.

According to Eq. (8), it is obvious that when |Etot
s /Es0|2

is larger than 1, the signal field Es will be amplified after
passing through the four-level atomic system. On the contrary,
if it is smaller than 1, the signal field will be attenuated.
Figure 2 plots the evolutional curves of the renormalized output
intensity |Etot

s /Es0|2, the sum of |Efs/Es0|2 + |Es/Es0|2 and
the interference term |Etot

s /Es0|2 − |Efs/Es0|2 − |Es/Es0|2 as
a function of the relative phase φ. From this picture, we see
that the output intensity and the interference term present an
interesting periodic oscillating behavior as the relative phase
φ increases. In addition, the peak value of the interference
profile is roughly equal to the sum |Efs/Es0|2 + |Es/Es0|2,
which can bring about significant interference-induced light
enhancement and suppression. To be specific,the maximum
output intensity is obtained at φ = 0, accompanied by the
strongest constructive interference between the incoming light
Es and the generated light Efs. The minimum intensity reduces
to zero at φ = π where the complete destructive interference
occurs. And the signal-field output recovers its maximal value
at φ = 2π . Thus we demonstrate that the output signal Etot

s can
vary from large amplification to deep attenuation by tuning the
relative phase, which indicates the atom-field system is able to
serve as a phase-dependent amplitude modulator.
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FIG. 3. Output signal intensity |Etot
p /Ep0|2 versus the relative

phase φ. The parameters are γ20 = 0.05γ10, γ30 = γ10, Z = 10γ10,
κ = 0.1, �d = 0.15γ10, �c = 1.2γ10, |�s0|/|�p0| = 25, and �p =
�d = �c = 0.

By simply analyzing Eqs. (8) and (9), we evaluate that
the intensity of the output field Etot

p should possess characters
analogous to those of Etot

s in the nonlinear regime, as verified
in Fig. 3 where we diagram the evolution of |Etot

p /Ep0|2,
versus the relative phase φ. Consequently, we also achieve the
phase-dependent amplification and attenuation in a large range
for the output field Etot

p and show that the driven system is
capable of acting as a controllable amplitude modulator for
the probe field.

Note that in the above discussion we do not take into account
Doppler broadening because it is negligible in cold atoms. In
recent years, many FWM experiments with cold atoms have
been carried out [10,15,24,25], which shows our scheme is
feasible in the current technology. A potential candidate for the
proposed system is cold 85Rb atoms confined in a magneto-
optical trap, and the quantum states are chosen as follows:
5S1/2,F = 2 (|0〉), 5P1/2 (|1〉), 5D3/2 (|2〉), nP3/2 (|3〉), with
n > 10. The respective transitions are |0〉 → |1〉 at 795 nm,
|1〉 → |2〉 at 762 nm, and |2〉 → |3〉 at 1.3–1.5 μm.

IV. CONCLUSIONS

In conclusion, we have presented an efficient nonlinear
scheme to achieve the controllable optical modulation in
a cyclically driven four-level atomic system. Based on the
synergetic mechanism of FWM conversion and optical inter-
ference, we have demonstrated large enhancement and deep
suppression of two output beams. Furthermore, we have shown
the output signal transition from amplification to attenuation by
tuning the relative phase, indicating the driven system could act
as a switchable optical modulator with widespread applications
in optical devices, for example, an all-optical switch. Our study
opens up an intriguing physical perspective in manipulating
optical signals and may be used to extend potential subjects in
the area of optical modulation and multiwave mixing.
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