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Finite-size scaling analysis in the two-photon Dicke model
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We perform a Schrieffer-Wolff transformation to the two-photon Dicke model by keeping the leading-order
correction with a quartic term of the field, which is crucial for finite-size scaling analysis. Besides a spectral
collapse as a consequence of two-photon interaction, the super-radiant phase transition is indicated by the
vanishing of the excitation energy and the uniform atomic polarization. The scaling functions for the ground-state
energy and the atomic pseudospin are derived analytically. The scaling exponents of the observables are the same
as those in the standard Dicke model, indicating they are in the same universality class.
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I. INTRODUCTION

The Dicke model [1] describes a collection of N two-
level atoms interacting with a single radiation mode via
an atom-field coupling. Due to the spontaneous coherent
radiation of the atomic ensemble, a super-radiant quantum
phase transition (QPT) occurs [2,3] in the ultrastrong-coupling
(USC) regime, where the atom-field coupling strength is
comparable to the field frequency [4–7]. There is ongoing
interest in the realization of the super-radiant phase in cir-
cuit quantum electrodynamics (QED) systems [8–11], where
two-level qubits are strongly coupled to microwave cavities.
Such experimental achievement has prompted a number of
theoretical efforts for generalizations of the Dicke model, such
as including anisotropic couplings [12–14] and two-photon
interaction [15–17].

In particular, two-photon interaction usually describes a
second-order process in different physical setups, such as
Rydberg atoms in microwave superconducting cavities [18,19]
and quantum dots [20,21]. For an atom coupling to the field
via two-photon interaction, the interesting finding is a spectral
collapse, for which all discrete system spectra collapse into
a continuous band [22–25]. In a collective of atoms systems
described by the two-photon Dicke model, the important
finding besides a spectral collapse is a super-radiant phase
transition [17], which is induced by coherent radiations of the
atoms. However, the universal scaling and critical exponents
of the super-radiant QPT in the two-photon Dicke model
remain elusive. The finite-size correction in a many-body
system has been shown to be crucial in the understanding of
the universality class in the QPT [26–30]. Numerically, it is
very challenging to give a convincing exact treatment of the
finite-size two-photon Dicke model. So it is highly desirable to
explore finite-size scaling exponents in the atomic ensemble,
which are significant for distinguishing the universality class.

The main motivation of this paper is to investigate the
universal critical exponents by the analytical scaling func-
tions. We employ a Holstein-Primakoff expansion [2] and
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Schrieffer-Wolff (SW) transformation [31–34] to diagonalize
the Hamiltonian beyond the mean-field approximation. In
contrast to the mean-field analysis and second-order quantum
fluctuations [17], a lower excitation energy is obtained in
the super-radiant phase by our method. Moreover, as an
improvement, a quartic potential for the field is added to the
leading-order corrections to the effective Hamiltonian, which
is crucial to study the quantum criticality. Critical exponents
of the ground-state energy and the atomic pseudospin are
extracted analytically from the universal finite-size scaling
functions. We show that the super-radiant QPT in the two-
photon Dicke model belongs to the same universality class as
the standard Dicke model [26,27].

The paper is outlined as follows. In Sec. II, the Hamiltonian
is diagonalized by a Holstein-Primakoff expansion and SW
transformations in the normal and super-radiant phases, respec-
tively. In Sec. III, analytical expressions for some observables
are evaluated to show the super-radiant phase transition. In
Sec. IV, we discuss the universal finite-size scaling in the crit-
ical regime, and the critical exponents are given analytically.
Finally, a brief summary is given in Sec. V.

II. THERMODYNAMIC LIMIT

The Hamiltonian of the two-photon Dicke model, where N

identical two-level atoms interact with a single bosonic mode
via two-photon interaction, is

H = �Jz + ωa†a + 2g

N
(a†2 + a2)Jx, (1)

where a† (a) is the creation (annihilation) operator of the
single-mode cavity with frequency ω. The collective angular
momentum operators Jz = ∑N

i=1 σ (i)
z /2 and Jx = ∑N

i=1 σ (i)
x /2

describe the ensemble of N two-level atoms with a pseudospin
j = N/2. Here, � is the atomic transition frequency and g is
the collective coupling strength of the two-photon interaction.

The Hamiltonian commutes with a generalized Z4 parity
operator �, which is defined by � = (−1)N ⊗N

n=1 σ (n)
z eiπa†a/2.

� has four eigenvalues, ±1 and ±i, and is different from the
Z2 parity in the standard Dicke model [2,3]. The Z4 parity

2469-9926/2018/97(5)/053821(7) 053821-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.053821&domain=pdf&date_stamp=2018-05-16
https://doi.org/10.1103/PhysRevA.97.053821


XIANG-YOU CHEN AND YU-YU ZHANG PHYSICAL REVIEW A 97, 053821 (2018)

symmetry in the ground state is expected to be spontaneously
broken in the super-radiant phase transition.

It is convenient to describe two-photon interaction by
introducing new operators K0 = 1

2 (a†a + 1
2 ),K+ = 1

2a†2, and
K− = 1

2a2, which form the SU(1,1) Lie algebra and obey com-
mutation relations [K0,K±] = ±K± and [K+,K−] = −2K0.
Then, we use the Holstein-Primakoff transformation of the
collective angular momentum operators defined as J+ =
b†

√
N − b†b, J− = √

N − b†bb, and Jz = b†b − N/2 with
[b,b†] = 1. After that, the Hamiltonian takes the form

H = �(b†b − N/2) + ω

(
2K0 − 1

2

)

+ 2g√
N

(K+ + K−)

⎛
⎝b†

√
1 − b†b

N
+

√
1 − b†b

N
b

⎞
⎠. (2)

We consider the two-photon Dicke model in the thermody-
namic limit for infinite atoms, N → ∞. By means of the
boson expansion approach,we expand the Hamiltonian with
respected to the bosonic operator b†(b) as a power series in
1/N .

A. Normal phase

We derive the Hamiltonian of the normal phase by simply
neglecting terms of the order of O(1/N3/2) in Eq. (2) as

Hnp = ω1

N
b†b + 2ωK0 + λ(b† + b)(K+ + K−) − ω + ω1

2
,

(3)

where the parameters ω1 = N� and λ = 2g/
√

N .
Inspired by the SW transformation [31–34], we present a

treatment of Hnp based on the unitary transformation U =
eR with the generator R = λR1 + λ3R3. The aim of the
SW transformation is to eliminate the block-off-diagonal
interacting terms, such as (b† + b)(K+ + K−), and to keep
the block-diagonal coupling terms such as (b + b†)2K0 (see
Appendix A). Consequently, we keep the terms up to the order
of 1/N2 and the higher-order terms can be neglected. It results
in the transformed Hamiltonian H ′

np = H ′
1 + H ′

2, consisting of

H ′
1 = ω1

N
b†b − 4g2

Nω
(b + b†)2K0 + 2ωK0 − ω + ω1

2
(4)

and

H ′
2 = − 4g4

N2ω3
(b + b†)4K0 − ω1g

2

N2ω2
(K+ − K−)2. (5)

The Hamiltonian is free of coupling terms between b + b† and
K+ − K−, and can be simply diagonalized in the subspace
of K0 with 〈K0〉 = 1/4. In particular, the terms H ′

2 involve a
quartic potential for the field, which plays a crucial role in the
finite-size scaling ansatz. Equation (4) can be diagonalized
to be Hnp = ε1(g)b†b + E(1)

g by a squeezing operator S =
eζ (b2−b+2)/2 with ζ = −ln(1 − 4g2

Nω�
)/4. And the excitation

energy is obtained as ε1(g) = ω1

√
1 − g2/g2

c /N , which is real
only when g ≤ √

ωω1/2 = gc. With the inclusion of the term

H ′
2, the ground-state energy in the normal phase is

E(1)
g = −ω1

2
+ ω1

2N

(√
1 − g2

g2
c

− 1

)

− g2

N2

[
ω1

2ω2
+ g2g2

c

ω3
(
g2

c − g2
)
]
. (6)

By comparing with the mean-field results [17], the ground-state
energy is obtained by keeping terms of the order of 1/N2.
Meanwhile, the ground state for the normal phase is |ϕnp〉 =
U †S†|0〉b|0〉K0 , where |0〉b is the vacuum state of the atom
ensemble and |0〉K0 is the ground state of K0. One can easily
obtain the expectation value of the bosonic operator 〈b̂〉, which
is equal to zero in the normal phase.

B. Super-radiant phase

In the super-radiant phase, there occurs a uniform atomic
polarization and the pseudospin Jz is polarized along the z axis.
In the Holstein-Primakoff representation, the atomic operator
b is expected to be shifted as

d = D†[−β
√

N ]bD[−β
√

N ] = β
√

N + b, (7)

with a unitary transformation D[−β
√

N ] = e−β
√

N(b̂−b̂†). As
previously reported, the displacement β is obtained by the
mean-field value [17]. We proceed to determine the variable β

beyond the mean-field approximation.
Due to the shifted displacement of b, it is obvious that

the expectation value of b in the super-radiant state is β
√

N ,
whereas the displacement of the field operator a equals zero
due to the absence of linear interactions between atoms and
cavity. As a consequence, the Hamiltonian of Eq. (2) becomes

Hsp = ω

N
d†d+ ω1√

N
β(d† + d)+2gβ1β2√

N
(d†+d)(K+ + K−)

− gβ

Nβ1
[d†2 + d2 + 4d†d](K+ + K−)

+Hf + β0 + O(N−3/2), (8)

where the field part in the Hamiltonian is Hf =
2ωK0 + λβ(K+ + K−), and the parameters are given by β1 =√

1 − β2, β2 = 1 − β2/(1 − β2), β0 = ω1β
2 − (ω1 + ω)/2,

and λβ = 4gββ1.
First, we apply a squeezing operator S[r] = e−r(a†2−a2)/2 to

diagonalize the field part of the above Hamiltonian Hf . The
transformed Hamiltonian is derived as H

(0)
2 + V1 + V2 + V3 +

Vlinear in Appendix B. We now choose the displacement β to
eliminate the term Vlinear in Eq. (B4) that is linear in the bosonic
operators. It gives

ω1β − gβ1β2
λβ√

ω2 − λ2
β

= 0. (9)

The β = 0 solution recovers the normal-phase Hamiltonian.
The nontrivial solution gives

β = 1√
2

⎡
⎣1 −

√
1 − 4g2/ω2

16g4/(ωω1)2 − 4g2/ω2

⎤
⎦

1/2

, (10)
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which remains real, provided that 1 − 4g2/ω2 ≥ 0 and 1 −√
1−4g2/ω2

16g4/(ωω1)2−4g2/ω2 ≥ 0. It leads to the collapse point and the
critical value of coupling strength, respectively,

gcollapse = ω/2 (11)

and

gc =
√

ωω1

2
. (12)

Our solutions shows that the super-radiant QPT occurs at
the critical point gc, which is characterized by nonvanishing
of the expectation value of b. Interestingly, the spectrum
collapses at gcollapse, so that the Hamiltonian is not bounded
from below and the model is not well defined. We focus on the
parameter regime where the phase transition can be accessed
in the validity coupling region g < gcollapse. Moreover, since
the super-radiant phase transition occurs before the spectral
collapse, one has the condition ω1 = N� < ω, requiring that
the order of magnitude of � is ω/N . Hence, the scaled atom
frequency ω1 = N� is introduced and is comparable to the
field frequency ω.

Then, by eliminating the block-off-diagonal coupling terms
V1 in Eq. (B5) and V2 in Eq. (B6), the Hamiltonian in the
super-radiant phase Hsp can be diagonalized as

Hsp = ε2(g)

(
d†d + 1

2

)
+ E(2)

g , (13)

where the excitation energy is

ε2(g) = 2ω1 − λ3

2N

√√√√
1 −

2λ2
1/(2

√
ω2 − λ2

β + λ3/N) + λ3

(ω1 − λ3/2)
,

(14)

and the ground-state energy is

E(2)
g = 1

2
ε2(g) − ω1 − λ3

2N
+

√
ω2 − λ2

β

2
+ β0, (15)

with the parameters λ1 and λ3, as in Appendix B. Thus, we
obtain the diagonal Hamiltonian Hsp for the super-radiant
phase. If we choose the signs of the displacement as −β in
Eq. (7), we obtain an identical effective Hamiltonian. It is clear
that the spectrum is doubly degenerate in the super-radiant
phase.

III. PHASE TRANSITION

After deriving the two effective Hamiltonians in the N →
∞ limit, we now explore the properties of two phases. The
excitation energies are given by ε1(g) in the normal phase and
ε2(g) in the super-radiant phase. Figure 1 displays the behavior
of the excitation energies as a function of coupling strength
g/ω, which is lower than the mean-field result [17] in the super-
radiant phase. As the coupling approaches the critical value
g → gc, the excitation energy can be shown to vanish as

ε(λ → λc) ∼ ω1

N

√
2

gc

(gc − g)1/2. (16)

FIG. 1. Excitation energy ε(g)/� obtained by our method (red
solid line) as a function of coupling g/ω for ω1 = 0.1ω. For com-
parison, results obtained by mean-field analysis in Ref. [17] (black
dashed line) are calculated.

The vanishing of the excitation energies at gc reveals that a
second-order phase transition occurs.

Figure 2(a) shows the scaled ground-state energy for the
normal and super-radiant phases according to the analytical
expression in Eqs. (6) and (15), which are consistent with the
numerical ones for N = 100 atoms. In the thermodynamic
limit N → ∞, the scaled ground-state energy Eg/ω1 at the
critical point gc equals −1/2, as shown in Table I.

We calculate the expectation value of the scaled pseudospin,

〈Jz〉/N = β2 − 1/2. (17)

It makes the physical meaning of the displacement parameter
β in Eq. (7) clear, which illustrates the uniform atomic
polarization along the z axis. In Fig. 2(b), 〈Jz〉/N becomes

FIG. 2. (a) The scaled ground-state energy Eg/(ω1) and (b) the
expected value of the scaled pseudospin Jz/N obtained by our method
as a function of coupling g/ω for N = 100 and ω1/ω = 0.5. Solid
lines denote our analytical results, whereas dashed lines correspond
to exact-diagonalization ones.
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TABLE I. Finite-size scaling exponents for the ground-state
energy Eg/ω1, and the scaled atomic angular momenta 〈Jz〉/N
and 〈J 2

y 〉/N 2 for the two-photon Dicke model. We find that the
corresponding scaling exponents are the same as those in the standard
Dicke model [26,27].

QN limN→∞ QN Two-photon Dicke

Eg/ω1 −1/2 −4/3
〈Jz〉/N −1/2 −2/3
〈J 2

y 〉/N 2 0 −4/3

larger than −1/2 when the coupling strength exceeds the
critical point gc = √

2ω/4 for ω1/ω = 0.5.
As demonstrated above, the behavior of the excitation

energies ε(g), the scaled ground-state energy Eg/ω1, and the
pseudospin 〈Jz〉/N are similar to those in the standard Dicke
model in the thermodynamic limit [2,3]. It becomes interesting
to explore the critical exponents and universality class of the
two-photon Dicke model.

IV. FINITE-SIZE SCALING

It is well known that different systems can exhibit similar
behavior in the critical regime, giving rise to the universality.
Finite-size scaling is a topic of major interest in the QPT system
and has solid foundations since the formulation of a general
theory [35,36]. As shown in previous studies [26,37,38],
the 1/N corrections to physical observables such as order
parameters display some singularities at the critical point. We
now proceed to derive finite-size scaling functions analytically
for some observables in the two-photon Dicke model.

We start with the Hamiltonian H ′
np = H ′

1 + H ′
2 in Eqs. (4)

and (5) by including the quartic term for the field. By projecting
the Hamiltonian to the subspace |0〉K0 , we obtain

H ′
np = ω1

N
b†b − ω1g

′2

4N
(b + b†)2 − ω2

1g
′4

16N2ω
(b + b†)4 + c,

(18)

where g′ = g/gc and a constant term c = −ω1/2 −
ω1/(2N ) − ω1g

2/(2N2ω2). To understand the properties of
the phase transition, we rewrite H ′

np by the introduction of
coordinate and momentum operators for the bosonic mode,

x = 1/
√

2ω1/N (b† + b) and p = i
√

ω1
2N

(b† − b), as follows:

H ′
np = 1

2
p2 + ω2

1

2N2
(1 − g′2)x2 − ω4

1g
′4

4N4ω
x4 − ω1

2N
. (19)

It is helpful to rescale the coordinate by x = x̃Nα and the
corresponding momentum byp = −i∂/∂x = p̃N−α . Then the
Hamiltonian becomes

H ′
np = 1

2
p̃2N−2α + ω2

1

2
(1 − g′2)x̃2N2α−2 − ω4

1g
′4

4ω
x̃4N4α−4.

(20)

By setting α = 2/3, we obtain the scaling variable

η = ω2
1

2
(1 − g′2)N2/3 (21)

and x̃ = xN−2/3. The renormalized Hamiltonian is written as

H ′
np = N−4/3

[
− ∂2

2∂x̃2
+ ηx̃2 − ω4

1g
′4

4ω
x̃4

]
, (22)

which is crucial to reveal the universal properties of the second-
order QPT.

The ground-state wave function ϕ0(x̃,η) is described
straightforwardly by the following equation in terms of x̃

and η:[
− ∂2

2∂x̃2
+ ηx̃2 − ω4

1g
′4

4ω
x̃4

]
ϕ0(x̃,η) = E0(η)ϕ0(x̃,η), (23)

where E0(η) gives the ground-state energy as

Eg = −ω1

2
− ω1

2N
+ 1

N4/3
E0(η). (24)

From the leading-order correction for the ground-state energy
in the above equation, the finite-size scaling exponent of Eg

is found to be −4/3, which is the same as that for the Dicke
model [26,27], as shown in Table I.

Meanwhile, the scaling law of the atomic ensemble angular
momenta 〈Jz〉/N = 〈b†b − N/2〉/N and 〈J 2

y 〉/N2 can be
derived as

〈Jz〉/N = −1

2
+ ω1

2
N−2/3X(η) + 1

2ω1
N−4/3P (η) (25)

and 〈
J 2

y

〉
/N2 = 1

2ω1
N−4/3P (η), (26)

where the universal functions X(η) and P (η) are the expecta-
tion values of x̃2 and p̃2 over the ground state ϕ(x̃,η). One can
see that the leading-order corrections for 〈Jz〉/N and 〈J 2

y 〉/N2

scale as N−2/3 and N−4/3, respectively. The finite-size scaling
exponents are identical to those in the standard Dicke model
[26,27] in Table I, providing evidence of the same universality
class.

In general, the 1/N expansion of a physical quantity
QN (g) in the vicinity of the critical point of the QPT can be
decomposed in a regular and a singular function as follows
[38,39]:

QN (g) = Q
reg
N (g) + Q

sing
N (g), (27)

where Q
reg
N (g) and Q

sing
N (g) are regular and singular functions

at g = gc. With the scaling variable η in Eq. (21), the singular
function for an observable in the two-photon Dicke model is
given explicitly as

Q
sing
N (g) = FQ

[
ω2

1

(
1 − g2/g2

c

)
2

N2/3

]
, (28)

where FQ is a scaling function depending only on the scaling
variable ω2

1(1 − g2/g2
c )N2/3/2.

Figure 3 shows the finite-size scaling for the scaled ground-
state energy for different sizes N = 5, 10, 30, 50, and 100.
The singular parts of the ground-state energy Eg + ω1/2 +
ω1/(2N ) for different sizes all collapse into a single curve in the
critical regime. The numerical results confirm the validity of
the universal function E0(η) in Eq. (24), which is independent
of N . We also calculate the singular part of 〈Jz〉/N + 1/2 in
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-0.2 -0.1 0 0.1 0.2

ω
1
2/2(1-g/g

c
2)N2/3

-0.2

0

0.2

[E
g/ω

1+
1/

2+
1/

(2
N

)]
ω

1N
4/

3

N= 5
N=10
N=30
N=50
N=100

0.1 0.3g/ω

-0.54

-0.52

-0.5

E
g/ ω

1
N= 5
N=10
N=30
N=50
N=100

FIG. 3. Finite-size scaling for the scaled ground-state energy in
the two-photon Dicke model. Points corresponding to different N

collapse on the same curve. Inset: The ground-state energy Eg/ω1 as
a function of the coupling strength g/ω for different N .

Fig. 4 and 〈J 2
y 〉/N2 in Fig. 5. Excellent collapses in the critical

regime are also achieved. The numerical scaling results agree
with the universal scaling functions X(η) in Eq. (25) and P (η)
in Eq. (26). The above results demonstrate that the finite-size
scaling functions by our treatment capture the universal laws
of different observables.

V. CONCLUSIONS

In this paper, by combining the Schrieffer-Wolff transfor-
mation with the Holstein-Primakoff expansion, we diagonal-
ize the Hamiltonian of the two-photon Dicke model in the
normal and super-radiant phases in the thermodynamic limit,

-0.2 -0.1 0 0.1 0.2

ω
1
2/2[1-(g/g

c
)2]N2/3

1

2

3

4

(<
J z>

/N
+

1/
2)

2 ω
1N

2/
3

N=100
N=120
N=160

0.3 0.35 0.4

g/ω

-0.5

-0.4

-0.3

<
J z>

/N N=100
N=120
N=160

FIG. 4. Finite-size scaling for the scaled pseudospin 〈Jz〉/N in
the two-photon Dicke model. Points corresponding to different N

collapse on the same curve. Inset: 〈Jz〉/N as a function of the coupling
strength g/ω for different N .

-0.2 -0.1 0 0.1 0.2

ω
1
2/2[1-(g/g

c
)2]N2/3

0.2

0.3

<
J y2 >

/N
2 2 ω

1N
4/

3

N=100
N=120
N=160

0 0.2 0.4

g/ω

1

2

<
J y2 >

/N
2

×10-3

N=100
N=120
N=160

FIG. 5. Finite-size scaling for the scaled pseudospin 〈J 2
y 〉/N 2

in the two-photon Dicke model. Points corresponding to different
N collapse on the same curve. Inset: 〈J 2

y 〉/N 2 as a function of the
coupling strength g/ω for different N .

respectively. In the super-radiant phase, the uniform atomic
polarization is characterized by the nonzero displacement of
the atomic operator, which is obtained beyond the mean-field
approximation. The vanishing of the excitation energy at the
critical coupling strength illustrates the second-order super-
radiant phase transition.

Since a convincing exact treatment of the finite-size two-
photon Dicke model is lacking, our approach provides an
efficient technique to derive the Hamiltonian by keeping the
leading-order correction with the quartic term for the field.
Consequently, the leading-order corrections and universal
scaling functions for the ground-state energy and the atomic
angular momenta are derived analytically, giving the finite-size
scaling exponents precisely. We find that the two-photon Dicke
model and standard Dicke model are in the same universality
class of QPT.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE NORMAL PHASE

The Hamiltonian in the normal phase is written as Hnp =
H0 + λV , consisting of

H0 = �b†b + 2ωK0 − ω + �N

2
, (A1)

V = (b† + b)(K+ + K−). (A2)

We consider a unitary transformation U = eR with the
generator R = λR1 + λ3R3. The transformed Hamiltonian
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H ′
np = e−RHnpe

R is written as

H ′
np = H0 + λV + λ[H0,R1] + λ2

2
[V,R1]

+ λ3

{
[H0,R3] + 1

3
[[V,R1],R1]

}

+ λ4

{
1

2
[V,R3] − 1

24
[[[V,R1],R1],R1]

}
. (A3)

According to the SW transformation, the off-diagonal coupling
terms such as V are required to be eliminated. One obtains

[H0,R1] = −V, (A4)

[H0,R3] = − 1
3 [[V,R1],R1]. (A5)

And the generators are determined as

R1 = − 1

2ω
(b + b†)(K+ − K−), (A6)

R3 = − 1

6ω3
(b + b†)3(K+ − K−). (A7)

Making use of the choice for the generators R1 and R3, the
transformed Hamiltonian becomes

H ′
np = �b†b − 4g2

Nω
(b + b†)2K0

− �g2

Nω2
(K+ − K−)2 − 4g4

N2ω3
(b + b†)4K0

+ 2ωK0 − ω + N�

2
+ O

(
1

N
√

N

)
. (A8)

APPENDIX B: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE SUPER-RADIANT PHASE

Let us now consider the Hamiltonian Hsp in Eq. (8) in the
super-radiant phase. First, the field part of the Hamiltonian
Hf = λβ/2(a†2 + a2) + ω(a†a + 1/2) can be easily diago-
nalized by a squeezing transformation S[r] = e−r(a†2−a2)/2. It
leads to

S[r]Hf S†[r] = [ω cosh 2r + λβ sinh 2r]

(
a†a + 1

2

)

+ 1

2
[ω sinh 2r + λβ cosh 2r]

(
a†2 + a2

)
.

(B1)

The squeezing parameter r is determined by the vanishing of
the a†2 + a2 terms,

r = 1

4
ln

ω − λβ

ω + λβ

. (B2)

We perform the squeezing transformation to the Hamiltonian
Hsp in Eq. (8) as S[r]HspS

†[r] = H
(0)
2 + Vlinear + V1 + V2 +

V3. They are

H
(0)
2 = ω1 − λ3K0

N
d†d +

(
2
√

ω2 − λ2
β + λ3

N

)
K0 + β0,

(B3)

Vlinear = 1√
N

[ω1β + 4gβ1β2 sinh(2r)K0](d† + d), (B4)

V1 = λ1√
N

(d† + d)(K+ + K−), (B5)

V2 = −λ2

N
(4d†d + d†2 + d2)(K+ + K−), (B6)

V3 = −λ3

N
(d† + d)2K0, (B7)

where λ1 = 2gβ1β2 cosh(2r), λ2 = gβ cosh(2r)/β1, and λ3 =
2gβ sinh(2r)/β1. Here, we choose the value of β to make the
linear term Vlinear vanish. Then, we employ a transformation

U = e
1√
N

P+ 1
N

Q with the generators P and Q to eliminate the
block-off-diagonal terms V1 and V2. It leads to

1√
N

[
H

(0)
2 ,P

] = −V1, (B8)

1

N

[
H

(0)
2 ,Q

] = −V2, (B9)

which give the generators as

P = − λ1

2
√

ω2 − λ2
β + λ3/N

(d† + d)(K+ − K−), (B10)

Q = λ2

2
√

ω2 − λ2
β + λ3/N

(4d†d + d†2 + d2)(K+ − K−).

(B11)

After that, the transformed Hamiltonian becomes

H ′
sp = 1

N
(ω1 − 2λ3K0)d†d +

(
2
√

ω2 − λ2
β + λ3

N

)
K0

− 1

N

⎛
⎝ 2λ2

1

2
√

ω2 − λ2
β + λ3/N

+ λ3

⎞
⎠(d† + d)2K0 + β0.

(B12)

By applying a squeezing transformation S[r1] = exp[r2
1 (d†2 −

d2)/2], we have

H ′′
sp = S†[r1]H ′

spS[r1]

= 1

N

⎡
⎣(ω1 − 2λ3K0) cosh 2r1

− 2

⎛
⎝ 2λ2

1

2
√

ω2 − λ2
β + λ3/N

+ λ3

⎞
⎠e2r1K0

⎤
⎦

×
(

d†d + 1

2

)
− ω1 − 2λ3

2N
+

(
2
√

ω2 − λ2
β + λ3

N

)

×K0 + β0 + λ4(d†2 + d2), (B13)

with λ4 = 1
2N

[(ω1 − 2λ3K0) sinh 2r1 − 2( 2λ2
1

2
√

ω2−λ2
β+λ3/N

+
λ3)e2r1K0]. Making the (d†2 + d2) term vanish in the subspace
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|0〉K0 , we obtain the squeezing parameter

r1 = −1

4
ln

⎡
⎣1 −

2λ2
1/

(
2
√

ω2 − λ2
β + λ3/N

) + λ3

(ω1 − λ3/2)

⎤
⎦. (B14)
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