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Dynamics of temporally localized states in passively mode-locked semiconductor lasers
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We study the emergence and the stability of temporally localized structures in the output of a semiconductor
laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values
of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the
pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show
that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the
various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical
bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking
that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate,
partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess
up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of
group velocity dispersion, which is only possible in the framework of the partial differential equation model, and
we show that it may have a profound impact on the dynamics of the localized states.
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I. INTRODUCTION

Passive mode locking (PML) is a well known method for
achieving short optical pulses [1]. It is achieved by combining
two elements inside an optical cavity, a laser amplifier pro-
viding gain and a nonlinear loss element, usually a saturable
absorber (SA). The latter favors energetically pulsed emission
over continuous wave emission and, for proper parameters,
this combination leads to the emission of temporal pulses.
These impulsions are much shorter than all the other relevant
timescales, the cavity round trip τ , and the absorber and the
gain recovery times τa and τg , respectively. Despite having
being discovered in 1965 in ruby lasers [2], PML is still a
subject of intense research, not only due to its important techno-
logical applications [3,4] in high-power sources, especially in
vertical-cavity surface emitting lasers [5,6], see [7] for a review,
but also because it involves the complex self-organization of a
large number of laser modes. The PML dynamics was linked
to out-of-equilibrium phase transitions [8,9] and it can occur
without the need of a saturable absorber [10,11]. The rich
PML dynamics can be controlled with time-delayed feedback
[12] or coherent optical injection [13]. In addition, the carrier
dynamics in multilevel active materials such as quantum dots
[14,15] leads to even richer behaviors.

Semiconductors offer unique properties as compared to
other materials and recently, a regime of temporally local-
ization was predicted and experimentally demonstrated in
a semiconductor passively mode-locked laser [16]. It was
shown that, if operated in the long-cavity regime, the PML
pulses become individually addressable temporally localized
structures (LSs) coexisting with the off solution. This regime
may pave a path towards an optical arbitrary pattern generator
of picosecond light pulses. Such a functionality would have

a large number of potential applications in different domains,
e.g., time-resolved spectroscopy, pump-probe sensing of ma-
terial properties, generation of frequency combs, optical code
division multiple access communication networks [17], and
lidar [18,19]. In this regime, the temporally interval that
corresponds to the cavity round trip τ can be seen as a
blackboard on which LSs can be written and erased at will. Yet,
while PML pulses have a duration τp ∼ 1 ps, they leave in the
gain medium a material “trail” that follows their emission. As
the gain recovery τg ∼ 1 ns is the slowest variable, it defines
the “effective” duration of the LS, so that the long-cavity
regime is only obtained when τ � τg , which resulted in a
cavity of several meters [20]. It is indeed the fast recovery of
the gain of the semiconductor that allowed for the observation
of the localization regime. Such a study would be for instance
impractical in fiber or Ti:sapphire lasers [21], for which the
gain recovery is several orders of magnitude longer.

Because of the vast scale separation between the cavity
length and the active gain chip, in our case a vertical-cavity
surface emitting laser (VCSEL) and a resonant saturable ab-
sorber mirror (RSAM), the natural framework for our analysis
is that of time-delayed systems (TDSs) and delay differential
equations (DDEs). Interestingly, temporally LSs were also dis-
closed in a variety of optical and optoelectronic time-delayed
systems [22–25]. Delayed systems have been analyzed from
the perspective of their equivalence with spatially extended
systems [26], and they have been shown to exhibit fronts
and chimera states [22,27,28]; see [29] for a review. It is
therefore not entirely surprising that TDSs may host LSs,
which was a result already suggested in [30]. However, while
tempting and intuitive, the “equivalence” between delayed
and spatially extended systems sought in the long-delay limit
is far from trivial and could so far be formally justified
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only close to an Andronov-Hopf bifurcation [26]. In general,
the noninstantaneous and causal response of the medium
implies a lack of parity in their spatiotemporal representation
making the analysis more involved. While all time-delayed
systems are causal and exhibit some amount of broken parity
along the temporal axis, experimental and theoretical analysis
demonstrated that the LSs observed in PML [16] are a most
prominent case of parity breaking. These LSs are particularly
stiff multiple timescale objects in which the optical component
and the material “trail” differ in extension by three orders of
magnitude, which makes their motion in induced force fields,
induced by, e.g., a modulation of the bias current, radically
different [31,32] from those found in parity-preserving systems
[33,34]. To add to the strong technological relevance in applied
photonics of the temporally localization regime found in PML,
the latter was found to be compatible with spatial confinement,
which leads to the theoretical prediction of a regime of stable
three-dimensional light bullets [35] for realistic semiconductor
cavity parameters.

Coarse analytical results regarding the pulse energy only,
and preliminary continuation based on direct numerical in-
tegration, allowed finding some basic estimates of the range
of stability for a generic parameter set. However, a full
bifurcation study of the system described in [16] is lacking.
A multiparameter bifurcation study considering the various
design parameters of PML is of high relevance, as it would
inform on the possible mechanisms of instability for these
temporally LSs. The goals of this paper are to perform such a
bifurcation analysis and to study the instabilities occurring to
the temporally LSs found in the long-delay limit.

In addition, the multiscale nature of these temporally LSs
renders both their theoretical and numerical analysis difficult.
It was shown for example in [32] that an “equivalent” master
Haus equation can be used. In this pulse iterative framework,
the long tail of the LS that consists solely in the exponential
gain recovery can be truncated, giving rise to a much more
effective numerical approach. While both models predict very
similar wave forms, one can wonder how far their bifurcation
diagrams are consistent one with another. It is also our goal
to compare the partial differential equation (PDE) model
described in [32] with the DDE model of [36]. As such, we
will compare the bifurcation results obtained in the context
of the time-delayed model, where the LSs were initially
discovered, with those obtained within the framework of an
approximately equivalent spatially extended system, a pulse
iterative equation that accounts for large gain and absorption.
While comparisons between traveling-wave models and DDE
models were performed in [37,38], to our knowledge, no
comparison between the DDE model of [36] and the Haus
equation exists.

The paper is organized as follows: In Sec. II, we recall
the basic ingredients of the DDE model [36]. Section III is
devoted to the bifurcation and the stability analysis of the
periodic solutions found in the long-delay limit. For that
purpose, we use the continuation package ddebiftool [39].
Section IV presents the analysis of the Haus PDE. In this case,
the bifurcation analysis is performed using the continuation
package pde2path [40] and a comparison is drawn between
the two approaches. Finally, our results are summarized in the
conclusion.

II. MODEL

The existence and the dynamical properties of temporally
localized structures in passively mode-locked vertical-cavity
surface emitting lasers (VCSELs) have been theoretically de-
scribed [16,41] using the following delay differential equation
(DDE) model [36] that considers unidirectional propagation in
a ring laser. The equations for the field amplitude A, the gain
G, and the absorption Q read

Ȧ

γ
= √

κR(t − τ )A(t − τ ) − A, (1)

Ġ = �(G0 − G) − e−Q(eG − 1)|A|2, (2)

Q̇ = Q0 − Q − s(1 − e−Q)|A|2, (3)

with R(t) = exp [(1 − iα)G(t)/2 − (1 − iβ)Q(t)/2], G0 the
pumping strength,� = τ−1

g the gain recovery rate,Q0 the value
of the unsaturated losses which determines the modulation
depth of the saturable absorber (SA), and s the ratio of the
saturation energy of the gain and of the SA sections. We
define κ as the intensity transmission of the output mirror,
i.e., the fraction of the power remaining in the cavity after
each round trip. In Eqs. (1)–(3) time has been normalized
to the SA recovery time that we assume to be τsa = 20 ps.
The linewidth enhancement factor of the gain and absorber
sections are denoted α and β, respectively. In addition, γ

is the bandwidth of the spectral filter whose central optical
frequency has been taken as the carrier frequency for the
field. This spectral filter may (coarsely) represent, e.g., the
resonance of a VCSEL [20]. In this paper, we will address
the bifurcations and the dynamics occurring as a function of
the linewidth enhancement factors α and β and of the gain
normalized to threshold g = G0/Gth, which we define as our
main bifurcation parameters. If not otherwise stated s = 30
and Q0 = 0.3, which corresponds to modulation of the losses
of ∼26%. Also, setting γ = 10 and � = 0.04 corresponds to a
full width at half maximum (FWHM) of 160 GHz for the gain
bandwidth and a carrier recovery time τg = 500 ps.

The spatial boundary condition due to the closing of a cavity
onto itself after a propagation length L appears as a time
delay τ = L/c in Eq. (1). The latter governs the fundamental
repetition rate of the passively mode-locked (PML) laser. The
lasing threshold Gth is determined by the value of G0 where
the off solution (A,G,Q) = (0,G0,Q0) becomes linearly un-
stable. Above threshold, G0 > Gth, multiple monochromatic
solutions (A,G,Q) = (Ake

−iωkt ,Gk,Qk) exist [36], with an
amplitude Ak and a frequency ωk relative to the filter frequency.
If Ak �= 0, the modes are defined as the solutions of

1 − i
ωk

γ
= √

κ exp

(
(1 − iα)G − (1 − iβ)Q

2
+ iωkτ

)
, (4)

complemented with Eqs. (2) and (3) setting Ġ = Q̇ = 0.
Taking the modulus square of Eq. (4), we find the threshold
condition with Ak → 0+,

Gk
th = Q0 + ln

⎡
⎣1 + (

ωk

γ

)2

κ

⎤
⎦, (5)
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while the modal frequency is given by the ratio of the real and
imaginary parts and reads

ωkτ −(γ τ ) tan [(αGth − βQ0)/2 − ωkτ ] = 0. (6)

In the long-delay limit, one can safely assume that γ τ � 1
and we can find a good approximation of the frequency of the
mode with the lowest gain threshold ω0. Its expression reads
simply

ω0τ = 	 (7)

with 	 the material-induced phase shift per round trip 	 =
(αG0 − βQ0)/2. For this dominant mode, the threshold is
G0

th = Gth = Q0 − ln κ .
Temporally localized structures (LSs) appear in time-

delayed systems (TDSs) in the long-delay limit as periodic
orbits whose period is always slightly larger than the time
delay. This deviation is due to the inertia contained in the
structure of a differential equation like Eq. (1). In our case,
the physical interpretation of this reaction time is stemming
from the finite bandwidth of the filter. The nominal period of
the orbits in a PML laser described by Eqs. (1)–(3) is defined
as T0 = τ + γ −1. The remaining deviation of the period with
respect to T0 results from the nonlinear contributions due to
the dynamics of the gain and of the absorber and to phase-
amplitude coupling. Finally we note that as these temporally
LSs are periodic orbits found in the long-delay limit, they can
be considered in principle as orbits approaching a homoclinic
solution in the limit τ → ∞.

III. BIFURCATION ANALYSIS

The main solution branch. We start by recalling the main
characteristics of our temporally localized structures (LSs) set-
ting α = β = 0. We operate in a regime of bistability in which,
in addition to the stable off solution, two solutions that consist
of temporally LSs exist. One is unstable and corresponds to a
low-intensity temporal pulse while the stable solution is the one
of high intensity. The temporally LSs appear as a saddle-node
bifurcation of the limit cycle (SNL) below the lasing threshold,
see Fig. 1(a), where we represented the maximal intensity of
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FIG. 1. (a), (b) Branch of the single temporally LS as a function
of the normalized gain g. We represent the maximum intensity (a)
and the deviation of the period of the solution T − T0. In (a) the
blue line above threshold is the cw solution with minimal threshold,
whose intensity was multiplied by 102 for clarity. Temporal profiles
for the stable solution [(c), (e)] and the unstable branch [(d), (f)]. Other
parameters are (α,β) = (0,0).

FIG. 2. Branch for the single-pulse solution as a function of the
normalized gain g for strong (a) and weak (b) absorber nonlinearity.
We represent the pulse energy as given by the weakly nonlinear
analysis assuming a hyperbolic secant in blue, while the red dotted
line is the result of a nonperturbative analysis, assuming a Dirac pulse
shape. Only in the strong absorber regime in (a) s = 30 and Q0 = 0.3
do we find a temporally LS bistable with the off solution while in
(b) s = 5 and Q0 = 0.01, the pulse develops only above the lasing
threshold. In this case a good agreement between the weakly nonlinear
analysis and the nonperturbative analysis is found. Other parameters
are α = β = 0.

the pulse, while Fig. 1(b) shows the deviation of the solution
period T − T0. We notice that the period of the stable portion
of the branch is a decreasing function of g. As noted in [31,32],
this results in repulsive interactions between temporally LSs
as a gain depletion created by a LS will accelerate the next
one away from it. We represent the temporal profile of the
stable LS branch in Fig. 1(c), where the multiscale nature of the
solution is apparent. While the optical pulse length is τp ∼ 1,
the gain recovery is 3τg ∼ 75. The inset Fig. 1(e) details the
fast component of the LS. The unstable LS, which plays the
role of a separatrix between the stable LS and the off solution,
is represented in Fig. 1(d). If not otherwise stated, all the data
represented in the figures are dimensionless. We also show
in Fig. 1(a) the dominant continuous wave (cw) solution (the
blue line). We stress that in our regime of localization the cw
solutions are still supercritical and only develop above the
lasing threshold. As such, we do not have bistability for the
cw solution. We stress that the off solution is stable below
threshold and, as such, the LS solution cannot be connected to
it. While the lower branch of the LS solution seems to converge
toward the off solution, it was not possible to extend the branch
to very low intensity due to numerical problems. In addition,
it was shown clearly in [16] [cf. Fig. 2(c) there obtained for
similar parameters] that the lower LS branch is not converging
toward the off solution in the delay differential equation (DDE)
model.

The typical pulse energy for the upper branch is P ∼ 1,
see Fig. 1(e), and P ∼ 0.1 for the lower one, see Fig. 1(f).
As such the absorber is operated in a strong saturation regime
for which sP � 1. This regime is far beyond the reach of the
usual hyperbolic secant Ansätze that allow finding values of the
pulse energy and of the pulse width. Indeed, these hyperbolic
secant Ansätze are correct only if the absorber saturation
can be expanded up to second order, e.g., exp (−sP ) ∼ 1 −
sP + (sP )2/2. On the contrary, New’s approach of mode
locking [42] only considers infinitely narrow pulses, e.g., Dirac
deltas, but does not necessitate any approximation on the pulse
energy. In our case, this second approach gives a much better
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FIG. 3. (a) Branches of the single temporally LS as a function
of the normalized gain g for different values of s. The region of
bistability grows rapidly for small s and saturates for high values.
Other parameters are (α,β) = (1,0.5). (b) Development of the SNL
in (a) for different values of α. The region of bistability shrinks and
becomes more sensitive to s for higher α.

agreement with exact numerics, although the details of the
pulse shape and chirp cannot be obtained. The comparison
of both approaches is depicted in Fig. 2 for the regime of
strong and weak nonlinearities. The details of the calculations
can be found in the Appendix, for the simple case where
α = β = 0. We notice that only in the strongly nonlinear
regime one can obtain a subcritical branch and bistability
with the off solution. Also, only the beginning of the lower
branch of solutions is properly reproduced by the hyperbolic
secant solution, since in this situation the pulse energy can
be made arbitrarily small. While bistability is preserved by
both approaches, neither the upper branch nor the folding
point can be properly obtained using the hyperbolic secant
Ansatz. New’s approach is much more indicative of the extend
of the bistable region and the pulse energy, if one compares
with the results in Fig. 1, although it does not allow finding
the details or the possible instabilities of the temporally LSs.
Finally, we note in Fig. 2(b) that for more standard parameters
for passive mode locking (PML), i.e., s = 5 and Q0 = 0.01,
the pulsed solutions develop only above the lasing threshold
and that in this case a good agreement between the weakly
nonlinear analysis and the nonperturbative analysis is found.
This comparison between the standard approaches of PML
justifies the need for a detailed bifurcation analysis using path
continuation techniques to fully study the localization regime.
Figure 3(a) shows the LS branches obtained with ddebiftool for
various values of s and more realistic linewidth enhancement
factors. The region of bistability grows rapidly for low s,
while for higher values the high intensity part of the branch
is converging quickly. The evolution of the SNL with α is
presented in Fig. 3(b). For high α the existence of bistability
requires large values of s.

Multipeaked solutions. Still setting α = β = 0, we depict
in Fig. 4(a) how, in addition to the main solution branch,
additional solutions appear while increasing the bias current.
We only present the first three branches bifurcating upon
increasing g, yet additional solutions continue to appear at
an increased rate when g → 1. However, their evaluation be-
comes numerically tedious. We represent the temporal profiles
of the intensity at g = 0.95 on the upper part of the three
branches in Fig. 4(b), at their respective folding points in
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FIG. 4. (a) Multiple branches of temporally LSs as a function of
the normalized gain g. In addition to the main branch appearing for
the lowest values of the gain at g

(1)
SNL = 0.7, other branches appear

via additional SNL bifurcations at g
(2)
SNL = 0.774, g

(3)
SNL = 0.816, and

consist of pulses composed of two or three maxima. The temporal
profiles for the intensity are presented in panels (b)–(d), where, from
top to bottom, we show the solutions on the upper branches (b) at
g = 0.95 (see vertical dashed line), the profiles at the saddle points (c),
and those on the lower branch (d) with max(I ) = 0.05 (see horizontal
line). Other parameters are (α,β) = (0,0).

Fig. 4(c), and on the lower part of the branches close to their
appearance threshold, in Fig. 4(d). The low-intensity branches
are composed of LSs with an increasing number of bumps,
similar to the molecules found for dissipative solitons systems;
see, e.g., [43]. Yet, the dynamics of the gain prevents, with
parameters typical of semiconductors, the creation of stable
molecules. As mentioned earlier, the gain dynamics induces a
strong repulsion. All the multibump solutions evolve toward
single-pulse solutions when they reach the upper branch at high
values of g.

Secondary Andronov-Hopf bifurcation. We now turn our
attention toward the dynamics found for large, yet realistic,
values of the linewidth enhancement factors in the gain and
the absorber sections. For the gain, we set α = 3.7 while for
the absorber we set β = 0.5. As the latter is operated below the
transparency, the effects of band filling are much weaker, which
justifies using a much smaller value of the Henry factor. As the
bifurcation study of quasiperiodic orbits is not currently possi-
ble with ddebiftool, we performed direct numerical simulations
of Eqs. (1)–(3). We integrated Eqs. (1)–(3) with a fourth-order
Runge-Kutta with Hermite interpolation of the time-delayed
term and a step size 
t = 10−2. We depict in Fig. 5(a) the
bifurcation diagram obtained by direct numerical integration,
performing a parameter sweep in g, upward and downward
starting from a central value. Using numerical integration, we
can only show the upper part of the main branch, as it is the
only stable solution. We observe that the main solution branch,
which actually consists of a strongly nonlinear (pulsating) limit
cycle, develops a secondary oscillation frequency (typically
ranging between a few tens and a few hundreds of round trips)
when the gain is increased toward the lasing threshold. This
slowly evolving orbit during which the pulse parameters are
oscillating in time is depicted in Fig. 6 using a space-time
representation for α = 3.8. Here, we show the evolution of the
pulse train, from one round trip to the next. This diagram allows
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FIG. 5. (a)–(f) Stable branch of temporally LS as a function of
the normalized gain g, obtained via direct numerical simulation of
Eqs. (1)–(3). The dynamics are represented by the extrema of the
time traces of the maximal pulse intensities. (a) α = 3.7, most of the
branch is stable, although a secondary supercritical AH bifurcation is
obtained for gH1 � 0.98. (b) For α = 3.8, the quasiperiodic regime
shifts toward lower gH1 � 0.92 while another, subcritical, AH occurs
at lower current gH2 � 0.81. (c) At α = 4 and (d) α = 4.05, the two
quasiperiodic solutions come closer and finally merge at α = 4.1 as
shown in (e). Higher values of α = 5 lead to a quasiperiodic cascade
(f). Other parameters: β = 0.5.

us to identify this secondary Andronov-Hopf (AH) instability
as a trailing edge instability. As it occurs for large values of
α and increasing values of the gain, we posit it is a dispersive
(phase) instability.

The evolution of this emerging limit cycle is depicted in
Fig. 5(c) for higher values of α = 4 which shifts the secondary
AH to lower values of g. The branch no longer ends after
bending down at the fold but rather abruptly. This point can be
identified as another subcritical AH with the help of ddebiftool.
In this regime, the region of stable operation is delimited by
these two AH bifurcations. Using higher values of α = 4.1
leads to a collision and a merging of the two quasiperiodic
solutions; see Figs. 5(d) and 5(e). In this regime, stable LSs
do not exist and solely oscillating quasiperiodic solutions are

FIG. 6. Quasiperiodic limit cycle time trace obtained with g =
0.95, see dotted line in Fig. 5(b), using a space-time representation.
Other parameters are α = 3.8 and β = 0.5.
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FIG. 7. (a) Two-dimensional bifurcation diagram as a function
of g and α. Dark blue: Off solution. Blue: Stable LS. Light
blue: Periodically oscillating. Yellow: Quasiperiodic LS oscillation.
(b) Vertical cuts of the diagram in (a) obtained for g1 = 0.75 and
g2 = 0.9 as a function of α. One notices for low values of α an
extended domain of stability ranging from the appearance of the
SNL bifurcation for low g toward threshold g = 1. We superposed
the results obtained with ddebiftool where the red dash-dotted and
pink dashed lines correspond to the SNL and the secondary AH,
respectively. The secondary AH bifurcation is born on the SNL branch
indicated by a green circle. Other parameters: β = 0.5.

found. For larger values of α and high gain, a typical transition
to irregular dynamics via quasiperiodicity is observed, which
is visible in Fig. 5(f) where the maximal pulse intensity shows
quasicontinuous values.

In order to understand how the various regimes are con-
nected together, we performed a double scan in the parameters
α and g. Our results are summarized in Fig. 7. We superposed
to these numerical results the evolution of the SNL point
for the primary branch as well as the secondary AH point
found by using ddebiftool, finding a good agreement. While
ddebiftool cannot track the emerging solution, it can identify
the secondary AH point, which is actually a Neimark-Sacker
bifurcation. First, we note in Fig. 7(a) that the SNL values
depend rather weakly on α and that the minimal value of gSNL

is not attained for α = 0. This is due to the presence of a
nonzero value of β and a small value of α can compensate
for the chirp created by the absorber. However, the Lorentzian
filter in Eq. (1) limits the optical bandwidth of the field and
high values of α induce additional chirp for the pulses which,
in turn, creates additional optical bandwidth that gets absorbed
by the filter. As such, highly chirped pulses experience more
losses and cannot exist for too low values of the gain, which
explains why the SNL point increases in g for large values of α.
Also, one notices a different scenario depending on the value of
α. For low values of α an extended domain of stability ranges
from the appearance of the SNL bifurcation for low g = gSNL

toward threshold g = 1. For higher values of α ∈ [3.7,3.75],
the solution stability is still governed by the SNL for low
values of g but by the AH bifurcation that is crossed at higher
values of g. We notice that the two AH bifurcations depicted in
Figs. 5(b)–5(d) are actually stemming from the same AH curve
in the (g,α) plane that can be crossed twice upon increasing
g. For higher values of α ∈ [3.75,4.1], the stable domain for
the LS is enclosed between the two AH points. For values of
α > 4.1, where the two AH points merged, the only kind of
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LS that exists is an oscillating one. Finally, we depicted by a
green circle in Fig. 7 the intersection between the SNL and the
secondary Hopf curve at a zero-Hopf (ZH) point.

Similar diagrams were obtained for other values of param-
eters, and we note that, while it is not the case with β = 0.5,
some bistability between steady and oscillating solutions could
be observed in a finite interval of (g,α) by setting β = 0. It
stands to reason that this bistability could be preserved for low
values of β and adapted values of the other parameters such as
(κ,q0,s).

Organization of solutions in the (g,α) plane. We now turn
our attention to how the multiple solution branches depicted
in Fig. 4 organize by making a three-dimensional bifurcation
diagram of the LS solutions where our control parameters are
(α,g). First, we set the linewidth enhancement factor of the
absorber to β = 0. Our results are summarized in Fig. 8, where
we present various slices of the diagram, the solution curves
in α, for increasing values of g. We represent the maximum
pulse intensity as well as the period deviation of the solutions.
As we want to emphasize the solution structure, we extended
our analysis to negative values of α. For β = 0, the diagram
is perfectly symmetrical, since negative values of α simply
consist of taking the complex conjugate of Eq. (1). First, we
note in Figs. 8(a) and 8(d) that the solution loop folds for
larger values of α, here αfold ∼ ±1. As previously mentioned,
α induces additional chirp of the solution which limits the
region of existence of the LSs. A higher value of g allows the
LS solution to exists at higher values of α. This evolution of
the folding point is another representation of the evolution of
the SNL curve shown in Fig. 7. One notices that the solution
structure, at low g, resembles a paraboloid growing in radius
when g is increased, that then deforms nonlinearly. At higher
values of g, an additional solution loop emerges; see Figs. 8(b)

and 8(e). This loop corresponds to the solutions with a double
pulse, and it grows in radius at higher g, see Figs. 8(c) and
8(f), where also a third loop with a three-peaked solution
emerges.

We depict the interaction occurring between these various
solution loops when they become of comparable amplitude.
The interactions between the primary and the secondary loops
is described in Fig. 9. For g = 0.879, the outer branch, which
is the stable solution for large α, develops a pair of folds via
a cusp bifurcation. This cusp takes the form of an additional
loop along the branch, if one represents the maximum pulse
intensity; see the inset in Fig. 9(c). For g = 0.898, the pri-
mary and secondary solution loops have crossed each other
via a transcritical bifurcation. This mechanism is important
because, at high values of α, it is now the secondary branch,
initially unstable and showing solutions with two peaks, that is
responsible of giving the stable solution with a single peak; see
Fig. 9(b) and the inset in Fig. 9(d). As previously mentioned,
the mechanism by which the two-solution loops can cross is a
transcritical bifurcation. We depict this mechanism by which
the solution curves are allowed to cross each other in a small
vicinity of the bifurcation point in Fig. 10.

Finally, we consider how this bifurcation scenario changes
when β �= 0. We set β = 0.5 and the first consequence of
having β �= 0 is that the symmetry α → −α of the bifurcation
diagrams depicted in Fig. 8 is broken. While for β = 0 pairs
of transcritical bifurcations would appear symmetrically and
reconnect parts of some solution loops with others on both
sides, it is not the case anymore. Our results are depicted in
Fig. 11 where we can appreciate the changes in the bifurcation
scenario. While the gradual appearance of additional solutions
is preserved when increasing g, see Figs. 11(a) and 11(e), we
notice that the transcritical bifurcations appear in an alternated
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FIG. 8. Two-dimensional bifurcation diagram in α for increasing values of g. We represent the maximum intensity [(a)–(c)] and the period
deviation [(d)–(f)]. The value of the gain is g = 0.707 [(a), (d)], g = 0.784 [(b), (e)], and g = 0.822 [(c), (f)]. Stability is indicated with thick
lines. Additional solution loops are born via saddle-node bifurcations upon increasing g. Changes of stability are marked with circles for SNL
and squares for secondary AH bifurcations. Other parameters: β = 0.
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FIG. 9. (a)–(d) Bifurcation diagrams as a function of α for two
close-by values of the gain, g = 0.879 [(a), (c)] and g = 0.898 [(b),
(d)]. We represent in (a) and (b) the deviation of the period and the
maximum intensity in (c) and (d). Stable solutions are depicted in
thick lines. Open circles denote the fold positions whereas squares
indicate the AH bifurcation points. Other parameters: β = 0.

way, first for a negative value of α, see Figs. 11(b) and 11(f),
then for a positive, yet different value of α, see Figs. 11(d) and
11(h). This has the consequence of giving the solution surface
the visual appearance of a Klein bottle, as depicted for instance
in Figs. 11(c) and 11(g). Here, the apparent self-intersection
of the primary solution branch is visible. However, while the
branch seems to self-intersect when looking at the maximum
pulse intensity, another measure of the branch would give a
different representation.

2.5 2.6 2.7 2.8
4.5

5

5.5

6

6.5

T-
T 0

10-3

FIG. 10. (a) Zoom around the transcritical bifurcation depicted
in Fig. 9. The deviation of the period is shown. The values of g are
interspersed in the interval g ∈ [0.8793; 0.8812]. Other parameters:
β = 0.

IV. THE EXPONENTIAL HAUS MASTER EQUATION

In this section, we turn our attention toward the predictions
given by a different approach that is based on a partial
differential equation (PDE) instead of a delay differential
equation (DDE). This modified Haus master equation con-
siders the evolution of a pulse on a slow timescale that
corresponds to the number of round trips in the cavity. As
such, this iterative pulse mapping can be much more efficient
computationally. In addition, while the localized structures
(LSs) are periodic solutions of a DDE, they become steady
states of a one-dimensional PDE, which can lead to further
bifurcation analysis. For instance, the branches of periodic
solutions of a PDE can be computed using the path continuation
methods while the quasiperiodic solutions of the DDE cannot
be evaluated with ddebiftool at the moment—another argument
that makes the PDE approach appealing. One can actually
restrict the numerical domain along the propagation axis to
a box that is a few times the extension of the optical pulse.
That way, the long gain recovery during which the field is zero
can be discarded, which results in a much reduced number of
degrees of freedom during the continuation.

We outline how the DDE given by Eqs. (1)–(3) can be
recast into a PDE. We have seen that, at the lasing threshold,
the maximum gain mode needs to have a frequency shift
ω0 = 	/τ . While the frequency shift is arbitrarily small in
the long-delay limit, the phase shift per pass 	 is not. It is
essential, as it compensates for the index variation created by
the active medium after one round trip. Within the framework
of an iterative pulse model such as the Haus master equation,
which does not contain anymore proper boundary conditions
for the field, this frequency shift has to be canceled out before
making the correspondence between the DDE and the PDE. We
perform the change of variable A(t) = E(t)e−iω0t in order to
cancel this rotation, which leads to the modified field equation

Ė

γ
− i

	

γ τ
E = Rτe

i	Eτ − E, (8)

while the carrier equations are identical simply setting A → E.
Following the method depicted in [32], Eqs. (8), (2), and (3) can
be transformed into a PDE, taking advantage of the long-cavity
limit at which we operate this system experimentally. We do not
repeat the procedure that can be found in [32] and only sketch
the reasoning. We start by defining a smallness parameter as
the inverse of the filter bandwidth setting ε = 1/γ . Physical
intuition dictates that the pulse width scales as the inverse of
the filter bandwidth and that it is proportional to γ −1 = ε.
This intuition is confirmed by the numerical continuation. In
a related way, one can foresee that the period of the pulse
train scales as T0 ∼ τ + γ −1; i.e., the period is always larger
than the delay due to causality and the finite response time of
the filtering element that limit the optical bandwidth available.
As such, we assume that the solution is composed of two
timescales and write

d

dt
→ ∂

∂z
+ ε2 ∂

∂s
(9)

with (z) governing the fast evolution along the cavity axis and
s depicting the slow dynamics after each round trip. Following
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FIG. 11. (a) Two-dimensional bifurcation diagram in α for increasing values of g. We represent the maximum intensity [(a)–(d)] and the
period deviation [(e)–(h)]. The value of the gain is g = 0.879 [(a), (e)], g = 0.898 [(b), (f)], g = 0.937 [(c), (g)], and g = 0.956 [(d), (h)].
Stability is indicated with thick lines. Open circles denote the fold positions whereas squares indicate the AH bifurcation points. The different
branches intersect asymmetrically when increasing g at β = 0.5.

[26], we express the delayed term as

E(t + τ ) = E(z + ευ,s + ε2τ ), (10)

which means that the solution after one round trip is slowly
evolving and drifting. Upon expanding all contributions up to
O(ε3), one finds that the drift term can be canceled setting
υ = −1. In other words, the solution at the next round trip is
shifted to the right, which precisely corresponds to a period of
T0 = τ + γ −1. Finally, defining a timescale normalized by the
round trip as σ = s/ε2τ and setting I = |E|2 we find

∂E

∂σ
− 1

2γ 2

∂2E

∂z2
=

(√
κe

1−iα
2 G− 1−iβ

2 Q+i	 − 1 + i
	

γ τ

)
E,

(11)

∂G

∂z
+ 1

τ

∂G

∂σ
= �(G0 − G) − e−Q(eG − 1)I, (12)

∂Q

∂z
+ 1

τ

∂Q

∂σ
= Q0 − Q − s(1 − e−Q)I. (13)

We can now invoke the long-delay limit and discard in
Eq. (11)–(13) all the contributions that are proportional to
1/τ . Note that while the contribution 	/(γ τ ) is irrelevant,
we must keep the term exp (i	) in Eq. (11). Hence, we obtain
the following PDE system:

∂E

∂σ
− 1

2γ 2

∂2E

∂z2
= (√

κe
1−iα

2 G− 1−iβ

2 Q+i	 − 1
)
E, (14)

∂G

∂z
= �(G0 − G) − e−Q(eG − 1)I, (15)

∂Q

∂z
= Q0 − Q − s(1 − e−Q)I. (16)

Equations (14)–(16) can be understood as a generalization
of the Haus master equation to large gain and absorption per

pass. Indeed, one of the main advantages of the model of [36]
is the consideration of large gain and absorption per round
trip, a feature that is still preserved by the exponential terms in
Eqs. (14)–(16). The longitudinal variable (z) identifies as a fast
time variable and represents the longitudinal evolution of the
field within the round trip. From the inspection of Eqs. (12) and
(13) one can clearly see that the parity symmetry (z) → (−z)
is being broken by the carrier dynamics that is only first order
in ∂z; a symmetry is only recovered upon making the adiabatic
elimination of G and Q. Notice that while the regime of a fast
absorber is a meaningful limit, the gain is the slowest variable
and it cannot be eliminated by taking the long-cavity limit.

V. BIFURCATION ANALYSIS OF THE EXPONENTIAL
HAUS EQUATION

In this section we present the bifurcation analysis of the
generalized Haus master equation described by Eqs. (14)–(16)
and discuss how it is related to that of the delay differential
equation (DDE) model given by Eqs. (1)–(3). The temporally
localized structure (LS) solutions of Eqs. (14)–(16) are slowly
drifting oscillating solutions that can be found as steady states
of Eqs. (14)–(16) by setting

E(z,σ ) = E(z − υσ,σ ) exp (−iωσ ), (17)

which adds a contribution (υ∂z + iω)E to the right-hand side
of Eq. (14). We recall that the steady states of Eqs. (14)–(16)
are actually the periodic solutions of Eqs. (1)–(3). We followed
the LS solutions of Eqs. (14)–(16) in parameter space, by using
pseudo-arclength continuation within the pde2path framework
[40].

In our case, the primary continuation parameter is, e.g.,
the gain parameter g or the linewidth enhancement factor α.
However, the spectral parameter ω and the drift velocity υ

become two additional free parameters that are automatically
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adapted during the continuation. In order to determine (ω,υ),
we impose additional auxiliary conditions. In particular, we set
the solution speed, defining u(z,σ ) = [Re(E), Im(E),G,Q],
by using the integral phase condition∫

u
∂uold

∂z
dz = 0, (18)

where uold denotes the solution obtained in the previous
continuation step. Further, one needs an additional auxiliary
condition to break the phase shift symmetry of the system in
order to prevent the continuation algorithm to trivially follow
solutions along the corresponding neutral degree of freedom.
This condition can be easily implemented by, e.g., setting the
phase of the LS to zero in the center of the computational
domain. This condition allows finding the value of ω and reads

Im

[
E

(
L

2

)]
= 0. (19)

To increase computational efficiency, we used a domain
whose length L is much smaller than the recovery time of the
gain and set L = 10. In addition, we impose no-flux boundary
conditions on both ends of the numerical domain

du

dz
(0) = du

dz
(L) = 0, (20)

while the number of mesh points is N = 512. We note that
other kinds of boundary conditions such as setting E(0) =
E(L) = 0 gave very similar results. Notice that in the case
where the domain is sufficiently large that the field intensity is
zero, the proper conditions for G and Q are of the Robin type
and are simply Eqs. (15) and (16) setting E = 0:

∂G

∂z
+ �G = �G0,

∂Q

∂z
+ Q = Q0. (21)

Now one can start at, e.g., a numerically given solution,
continue it in parameter space, and obtain a LS solution branch.
The result is depicted in Fig. 12, where the evolution of (a) the
(peak) intensity I and (b) the drifting speed υ as a function
of the normalized gain g is presented. We observe that the
main branch of the temporally LS bifurcates from g = gth = 1,
possesses a fold at some fixed value gSN (marked as the red
circle in Fig. 12), and goes to higher intensities. Note that in the
case of Eqs. (14)–(16), the solution appears upon increasing
g as a saddle-node bifurcation (SN) and not a saddle node of
the limit cycle (SNL) as for Eqs. (1)–(3). The critical value
is gSN = 0.721 which compares very well with the results of
the DDE model for which we have gSNL = 0.716. We note
that the drifting speed υ is a decreasing function of g for the
stable branch of the solution. This result is in good agreement
with the solutions of Eqs. (1)–(3) because the drift velocity can
be identified with the deviation of the period with respect to
T0, per unit of τ ; hence the corresponding transformation is
υ = (T − T0). Further, in Figs. 12(c) and 12(d) we show two
exemplary stationary LS profiles that exist for different values
of g. One can see that the peak intensity of the LS changes
significantly along the branch, leading to the formation of a
narrow peak of high intensity at the upper branch part.

The Haus partial differential equation (PDE) (14)–(16)
also predicts the existence of additional, unstable branches of
solutions that are composed of several peaks. We depict in

(b)

(c) (d)

(a)

(c)

(c)
(d)

(d)

FIG. 12. (a), (b) Branch of the single temporally LS as a function
of the normalized gain g calculated for (α,β ) = (1.5, 0.5). We
represent (a) the maximum intensity and (b) the drift velocity υ.
The LS is stable beyond the saddle-node bifurcation point gSN =
0.721 (red circle). (c), (d) Two exemplary stationary LS profiles
for the unstable branch (c) and the stable one (d) for g = 0.896
and g = 0.886, respectively. Other parameters are (γ, κ, �, Q0, s) =
(10, 0.8, 0.04, 0.3, 30).

Fig. 13 the secondary branch of two-peaked solutions. Here,
a double-peak LS emerges at low intensities and folds back
at g

(2)
SN = 0.813 which compares very well with g

(2)
SNL = 0.808

given by the DDE model. In addition, in Figs. 13(b)–13(d)
we depict three exemplary LS profiles that exist for different
values of g. As in the case of the DDE model (cf. Fig. 4), the
low-intensity branch is composed of two-bump solutions of
different heights and evolves toward a single-bump solution
for high values of g at the upper-branch part. Note that the
whole branch of two-bump solutions is unstable.

For the third, unstable branch composed of three bumps, we
were not able to find a proper starting solution as the whole
three-peak branch in g is unstable and is not connected to other
branches. In addition, note that the exponential Haus model
(14)–(16) is a system of stiff nonlinear PDEs which makes
searching for an appropriate initial guess a numerically tedious
task. Indeed, the number of unstable multipeaked solutions
increases with g. While the intensity branches of several
multipeaked solutions remain well separated, the values of the
spectral parameter ω become almost indiscernibly close to the
threshold. However, we can reconstruct the three-peaked solu-
tion branch in the so-called uniform-field limit (UFL), where
the gain, absorption, and losses are supposed to be small at each
round trip [see Eqs. (A3)–(A5) and Fig. 20 in the Appendix].

In addition to stationary LS solutions, Eqs. (14)–(16) also
predict the existence of temporally oscillating solutions. We
start their analysis with the case where the line enhancement
factor of the absorber β = 0 and perform a continuation in α.
There, the branches with different numbers of peaks emerge
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(c) (d)
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(c) (b)
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FIG. 13. (a) Branch for the two-peaked LS solution obtained for
(α, β) = (1.5, 0.5) as a function of the normalized gain g where
we represent the maximum intensity. Temporal profiles for the
low-intensity solution (b) at gb = 0.885, the solution at the fold
g

(2)
SN = 0.813 (c), and on the upper branch (d) at gd = 0.932. The

whole solution branch is unstable. Other parameters are the same as
in Fig. 12.

and reconnect via the same scenario as in the DDE model
(1)–(3) involving transcritical bifurcations (cf. Fig. 9) although
it is much more difficult to obtain such results within the PDE
continuation. An example of the resulting branch structure for
g = 0.955 is depicted in Fig. 14, where the branches of the
primary (red) and secondary (cyan) solutions are shown after
the reconnection.

One can see that on the main branch the LS is stable between
the symmetrically situated AH bifurcation points H±1, whereas

(a) (b)

H-3 H3

H-1 H1

H-3 H3

H-1 H1

H-2 H2

H-2 H2

FIG. 14. A bifurcation diagram as a function of α obtained for
β = 0 at a fixed value of the gain g = 0.955. We represent (a) the
maximum intensity as well as (b) the drifting speed of the solution υ.
Stability is indicated with thick lines: On the main branch (red) the LS
is stable between the Andronov-Hopf (AH) points H±1; the secondary
AH bifurcations are indicated as H±2. The LS on the secondary branch
(cyan) is stable between the AH points H±3 and the folds. Other
parameters are the same as in Fig. 12.

FIG. 15. Space-time representation of the intensity field of AH
unstable solutions obtained from direct numerical simulations of the
model (14)–(16) for different values of α at fixed g = 0.955 and β = 0
(cf. Fig. 14). Parameters are chosen to be close to the AH points H1(a)
α = 2.8 and H3 (b) α = 3.6. Other parameters are the same as in
Fig. 12.

the secondary AH bifurcations appear at H±2. Further, the LS
solution on the secondary branch becomes stable for the high α

values between the AH points H±3 and the corresponding folds,
which is again in agreement with the DDE results (cf. Fig. 9).
In addition, in Fig. 15 we show a space-time representation
of the intensity field evolution obtained by direct numerical
simulations of Eqs. (14)–(16) for two different values of α

close to the AH bifurcation points H1, H3 keeping the other
parameters fixed. For the numerical integration of the model
in question a Fourier-based semi-implicit split-step method is
employed; see the Appendix of [44]. Our results reveal that
indeed two AH bifurcations can be found for different values
of α that coexist at a fixed value of g. This yields two different
transient and final states, as apparent in Fig. 15.

As in the case of the DDE model, for β = 0 the resulting
branches are perfectly symmetrical. However, when β �= 0 the
symmetry of the diagram is broken and one does see how the
solution curves deform when the gain is increased in Fig. 16.
Here, the evolution of the peak intensity (a) and the drifting
velocity (b) of the main solution branch are presented for
β = 0.5. Stability of the LS solution is indicated with thick
lines, whereas cyan squares mark the positions of appearing
AH bifurcations. At variance with ddebiftool, for the PDE

(a) (b)

FIG. 16. Two-dimensional bifurcation diagram in α for β = 0.5
when increasing the gain g. We represent the maximum intensity of
the main LS solution (a) as well as its the drifting speed υ (b). The
values of the gain are g = 0.73 (green), g = 0.78 (blue), g = 0.83
(cyan), and g = 0.94 (red). Stability is indicated with thick lines,
whereas cyan squares indicate the positions of the AH bifurcation.
Other parameters are the same as in Fig. 12.
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(a) (b)

FIG. 17. Real parts of the first two components of the critical
eigenfunction ψ of the Hopf unstable solution (red dashed lines)
together with the (Re(E),Im(E)) components of the field (black solid
lines). Parameters are (g,α,β) = (0.94,4.179,0.5) (cf. Fig. 16). Other
parameters are the same as in Fig. 12.

model (14)–(16) we have access to the critical eigenfunctions
of the system that inform on the particular shape of the wave
form. An example of the real parts of the first two components
of the critical eigenfunction ψ = [ψ1,ψ2,ψ3,ψ4] associated
with the AH instability (dashed red lines) are shown together
with the corresponding (Re(E), Im(E)) components of the
field (solid black lines) in Fig. 17. Here, the parameters
are chosen to be close to the AH bifurcation point at the red
line of Fig. 16, corresponding to g = 0.94. It turns out that
the components of the unstable eigenfunction are localized on
the trailing edge of the field components. That is, the branch
of the LS gets destabilized via oscillations, localized on the
trailing edge of the LS (cf. Fig. 15).

Interestingly, we can also show how the AH bifurcation can
be inhibited or activated by considering the influence of group
velocity dispersion (GVD). We note that while this analysis
is direct within the framework of the modified Haus equation,
and simply consists of adding an imaginary contribution to
the second-order derivative in z in Eq. (14) +iD∂2

z E, it is
not directly possible to do the same transformation with the
DDE model. Adding some amount of dispersion in a DDE
model can only be done via a much more involved method
[45]. We note that the dispersion coefficient D corresponds
to D = −β2/τ with β2 the chromatic dispersion. As such
D > 0 corresponds to anomalous dispersion which favors, e.g.,
with a self-focusing nonlinearity ∼ +i|E|2E, the appearance
of bright solitons. In our case, however, the effect of GVD
is more complex than for the case of weakly dissipative
solitons because the nonlinearity can be either focusing or
defocusing depending on the values of α and β. In addition the
nonlinearity is mediated by two dynamical variables having
very different timescales. To illustrate the influence of GVD
on the LS behavior we show in Fig. 18 the evolution of the
main solution branch in g for two different values of α and
three different values of D. Here, we represent the maximum
intensity [(a), (c)] and the spectral parameter ω [(b), (d)]. We
notice in Figs. 18(a) and 18(b) for α = 4.5 that the solution
is stable beyond the AH bifurcation (cf. thick lines). This AH
point actually corresponds to the first, subcritical, secondary
AH bifurcation depicted in Fig. 7 below which the oscillation
rapidly explodes nonlinearly. Here the effect of positive GVD
is to inhibit the AH bifurcation. Some amount of anomalous
dispersion favors the existence of the temporally LSs as it

(a) (b)

(c) (d)

FIG. 18. Main solution branch as a function of the normalized
gain g for different amounts of the GVD parameter D and dif-
ferent values of α at fixed β = 0.5. (a), (b) α = 4.5 and (c), (d)
α = 4.3. We represent the maximum intensity [(a), (c)] and the
frequency shift ω [(b), (d)]. The different curves correspond to
D = −10−3 (dash-dotted red), D = 0 (solid blue), and D = 10−3

(dotted cyan). The corresponding saddle nodes (red circles) in (a)
and (b) are located at gSN = [0.80, 0.808, 0.819], while the AH
bifurcation positions (cyan squares) are gAH = [0.944, 0.888, 0.883].
In (c) and (d) the saddle nodes (red circles) are located at gSN =
[0.793, 0.801, 0.811], while the AH bifurcation positions (cyan
squares) are gAH = [0.839, 0.849, 0.858]. Other parameters are the
same as in Fig. 12.

pushes the secondary AH bifurcation to higher values of
g, resulting in an extended range of stability in Figs. 18(a)
and 18(b). Yet, this scenario is changed for slightly smaller
values of α = 4.3, where one can see that the effect of GVD
is inverse and favors the secondary AH for D > 0 while
inhibiting it for D < 0. From this analysis we can draw the
conclusion that while the main-branch characteristics such as
the folding point, intensity, and pulse shape are well reproduced
by the exponential Haus master equation, the scenario for the
secondary AH bifurcation is affected. In particular, while we
do see the emergence of the subcritical AH bifurcation, the
supercritical AH is absent. This difference can be ascribed to
the fact that the carrier frequency of the solution ω oscillates
in time leading to a delayed phase ωτ that is slowly evolving,
a feature lost in the PDE mapping presented in Eqs. (14)–(16).

Finally, we depict the summary of our bifurcation analysis
of both the DDE and the PDE models in Fig. 19 allowing
for a more direct global comparison. Here we represent the
bifurcation diagram in the (g, α) plane, showing the SNL
points of the DDE for both the primary (red dashed line) and
the secondary (solid blue line) branches, and compare it with
the SN points of the PDE (green circles), as well as the the
secondary AH bifurcation occurring on the primary branch in
the DDE (pink dotted line) in addition to the primary AH of
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g

FIG. 19. Bifurcation diagram in the (g,α) plane, showing the
evolution of the bifurcation points of both DDE and PDE models.
The primary SNL bifurcation (dotted red line) of the DDE defines the
breadth of the paraboloid for the primary solution. The secondary SNL
is depicted in solid blue and the cusp is visible around g = 0.935. The
secondary AH bifurcation is depicted in dotted pink and it connects
with the SNL on a codimension two point. The SN points of the
PDE are shown as green circles, whereas cyan crosses stay for the
primary AH points. The cusp for the PDE is around g = 0.932. Other
parameters are β = 0.5.

the PDE model (cyan crosses). Here, the appearance of the
cups is visible for both models. We do notice a small deviation
for the folding point of the solution while the secondary
Andronov-Hopf lines are significantly different. While the
AH lines grow and fall as a function of g in the DDE case, the
one in the PDE model is steadily increasing, which explains
the difference encountered in Fig. 18. While scanning g in the
DDE model, one can cross twice the AH line, giving rise to the
sub- and supercritical limit cycles depicted, e.g., in Figs. 5(c)
and 5(d); the line can only be crossed once in the PDE model,
giving rise only to either a supercritical or a subcritical limit
cycle, depending on the value of α. Finally, it was not possible
to follow the cusp bifurcation on the secondary branch in the
PDE model for all values of g, although we believe that it
would closely follow the same trend as in the DDE model.

VI. CONCLUSION

In conclusion, we discussed the bifurcation and the sta-
bility analysis of the time periodic solutions of the passively
mode-locked (PML) laser found in the long-delay limit. We
demonstrated that besides the main solution branch disclosed
in [16], numerous additional branches exist, and that upon
increasing the bias current, they splice with the main solution
loop via transcritical bifurcations leading to a seemingly self-
intersecting manifold for the solutions. We showed that for
large but realistic values of the α factor in the gain section,
the secondary branch is an essential part of the bifurcation
scenario as it is the one giving the stable solution for large gain.
A secondary Andronov-Hopf (AH) bifurcation is found either
increasing the gain or the α factor leading to slowly evolving
oscillations of the temporally localized structures (LSs) wave
form. As the destabilization is found for increasing α factor,

this points toward a dispersive nature of this instability. In
addition, the bifurcation analysis of the modified Haus equation
is presented. We showed that this model needs to consider an
additional phase factor in order to properly reproduce the lasing
threshold. A good agreement was found, not only for a single
time trace, but for the whole bifurcation diagram, although
the analysis with pde2path proved to be more technically
involved. It was shown that the Andronov-Hopf instability
found for large α values can be mitigated by introducing some
amount of group velocity dispersion which counteracts the
dispersive effect induced by the material. Our preliminary
study indicated that group velocity dispersion (GVD) may
have a profound impact on the dynamics of temporally LSs.
Notice that introducing GVD at the level of the Haus partial
differential equation (PDE) is direct while it is known to be
quite challenging in the delay differential equation (DDE)
approach.

While we found a good agreement for the bifurcation
diagram explaining the emergence of the single LS, we found
some discrepancies regarding the secondary instabilities. In
particular, the evolution of the secondary AH line in the (g,α)
plane was found to be significantly different, leading to a
qualitatively different bifurcation scenario for values of α in a
particular interval: While the AH line could be crossed twice
in the DDE model, it is only crossed once in the “equivalent”
PDE. However, this discrepancy was found to occur only
in a small interval of the linewidth enhancement factor of
the gain section. Overall we demonstrated in this paper that
while the coherent modal structure of the DDE is lost due
to the absence of boundary conditions and the secondary AH
regime can be shifted, the exponential Haus master equation
can be considered as an effective order parameter equation
representing the dynamics of a temporally LS found in the
DDE model. The good agreement between the two approaches
validates further studies regarding the effect of GVD on
temporally LSs, but also on light bullets.
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APPENDIX

Analytical solutions for the pulse shape in the subcritical
region below threshold can only be found in the so-called
uniform-field limit (UFL) where the gain, absorption, and
losses are small at each round trip. We note that these approx-
imations mean that G and Q are small, but their responses
are not necessarily weakly nonlinear in the field intensity. The
UFL consists of linearizing the gain and absorption per pass
in Eqs. (14)–(16), setting eG = 1 + G and e−Q = 1 − Q. This
approximation will allow us to factor out the cavity losses. To
do so we define the new expression of the threshold in this
linearized model as

Gth = Q0 + 2
1 − √

κ√
κ

. (A1)

053820-12



DYNAMICS OF TEMPORALLY LOCALIZED STATES IN … PHYSICAL REVIEW A 97, 053820 (2018)

(a) (b)

FIG. 20. (a) Multiple branches of one- (solid blue), two- (dashed
red), and three-peaked (dotted cyan) LSs of Eqs. (A3)–(A5) obtained
for (α, β) = (1.5, 0.5) as a function of the normalized gain g0 where
we represent the maximum intensity. (b) Corresponding temporally
LS profiles for the high-intensity solutions at g0 = 0.97. Other
parameters are (s, γ̃ , q0, �) = (30, 6.36, 1.5, 0.04).

We also defined the normalized absorption as

q =
√

κQ

2(1 − √
κ)

(A2)

and as such, g = G/Gth, g0 = G0/Gth and q0 =√
κQ0/[2(1 − √

κ)], leading to

G0 = 2g0
1 − √

κ√
κ

(q0 + 1).

Replacing these expressions into the linearized Eq. (14), we
find the following,

∂E

∂σ̃
− 1

2γ̃ 2

∂2E

∂z2

= [(1 − iα)(q0 + 1)g − (1 − iβ)q − 1 + iθ ]E, (A3)

∂g

∂z
= �(g0 − g) − g|E|2, (A4)

∂q

∂z
= q0 − q − qs|E|2, (A5)

where we normalized the slow time as σ̃ = (1 − √
κ)σ , the

filter bandwidth γ̃ =
√

1 − √
κγ , and the phase 	 as θ =

	
√

κ/(1 − √
κ), hence θ = α(q0 + 1)g0 − βq0. In Eqs. (A3)–

(A5), the parameter κ is now factored out, and the nonsaturable
losses are unity. Also, the lasing threshold is now conveniently
g = 1.

Figure 20(a) shows how the first three branches of mul-
tipeaked LSs appear in Eqs. (A3)–(A5) while increasing the
normalized gain. We also represent in Fig. 20(b) the corre-
sponding temporal profiles of the intensity field on the upper
part of three branches. Note that as in the DDE model (1)–(3),
additional solutions continue to appear for g0 → 1; however
their numerical treatment becomes very involved.

Dimensional analysis of Eqs. (A3)–(A5) indicates that the
pulse width is typically τp ∼ 1/γ̃ and the pulse peak intensity

∼γ̃ , so that we can distinguish between the regimes of a slow
absorber (found for short pulses) and that of a fast absorber
depending on whether γ̃ � 1 or γ̃ 
 1. In the first and second
cases, the dynamics of q(z) are respectively

qslow(z) � q0 exp

(
−s

∫ z

0
I (u)du

)
, (A6)

qfast(z) � q0

1 + sI (z)
. (A7)

We search for solutions in the slow absorber regime as the
bistable region below threshold can be found more easily in
this regime. We denote the partially integrated pulse energy
P (z) = ∫ z

I (z,t)dz. During the pulse emission, the fast stage
in which stimulated terms are dominant, we have

g(z) = g0 exp[−P (z)], q(z) = q0 exp[−sP (z)]. (A8)

We note P (+∞) = P , the total pulse energy. If, for the sake of
simplicity, we set α = β = 0, the solutions of Eqs. (A3)–(A5)
are unchirped, drifting hyperbolic secants of the form

E(z,σ̃ ) =
√

P

2τ
sech

(
z − υσ̃

τ

)
. (A9)

Expanding g(z) and q(z) in Eq. (A8) up to second order in P (z)
and identifying the constant tanh (x) and tanh2 (x) terms allows
finding a system of equations defining the pulse parameters
(P,τ,υ) as

0 = 2 + [−4 + g0(4 − 2P + P 2)(1 + q0)

−q0(4 − 2Ps + P 2s2)]γ̃ 2τ 2, (A10)

0 = 4υ − P [g0(P − 2)(1 + q0) + q0s(2 − sP )]τ,

(A11)

0 = g0P
2(1 + q0) + P 2q0s

2 + 8

γ̃ 2τ 2
. (A12)

Solving the power P as a function of the gain leads to

gH (P ) = 16(1 + q0) − 8Pq0s + 3P 2q0s
2

(16 − 8P + 3P 2)(1 + q0)
. (A13)

On the other hand, assuming a Dirac pulse shape E(z,σ̃ ) =√
Pδ(z) leads to another solution for the pulse power, in which

we neglect the effect of pulse filtering as given by the second
derivative in Eq. (A3) but where we do not need to expand
Eq. (A8) up to second order in P . One can see for instance [44]
for the details of these calculations, which can also be obtained
out of the UFL as in [36]. We find the following expression for
the gain as a function of the pulse energy,

gN (P ) = (1 − e−Ps)q0 + Ps

(1 − e−P )(1 + q0)s
. (A14)

The comparison between the results given by Eq. (A13) and
Eq. (A14) is given in Fig. 2.
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