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Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging
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A generic computational imaging setup is considered which assumes sequential illumination of a semitranspar-
ent object by an arbitrary set of structured coherent illumination patterns. For each incident illumination pattern,
all transmitted light is collected by a photon-counting bucket (single-pixel) detector. The transmission coefficients
measured in this way are then used to reconstruct the spatial distribution of the object’s projected transmission.
It is demonstrated that the square of the spatial resolution of such a setup is usually equal to the ratio of the
image area to the number of linearly independent illumination patterns. If the noise in the measured transmission
coefficients is dominated by photon shot noise, then the ratio of the square of the mean signal to the noise variance
is proportional to the ratio of the mean number of registered photons to the number of illumination patterns. The
signal-to-noise ratio in a reconstructed transmission distribution is always lower if the illumination patterns are
nonorthogonal, because of spatial correlations in the measured data. Examples of imaging methods relevant to
the presented analysis include conventional imaging with a pixelated detector, computational ghost imaging,
compressive sensing, super-resolution imaging, and computed tomography.
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I. INTRODUCTION

The duality between decomposition and synthesis is one
of the most pervasive and fruitful ideas in mathematical
physics. Key to rendering precise the decomposition-synthesis
duality is the concept of expansions utilizing a superposition
of basis objects drawn from a complete set. The process of
decomposition involves breaking down an object belonging
to a suitably wide class of possible objects, expressing it as a
weighted superposition of objects in the complete basis set. The
inverse process of synthesis takes the weighting coefficients
referred to in the previous sentence, using them to synthesize
the corresponding object from the said coefficients.

Geometrically, the decomposition-synthesis duality sets up
an evident correspondence with linear algebra, a link that is
developed further in the formalism of functional analysis [1].
This is particularly useful when the underpinning equations,
such as the Maxwell equations for electromagnetic waves [2]
or the parabolic equation of paraxial wave optics [3], are
linear differential equations. The process of decomposition
may thereby be viewed as determining all possible projections
of a vector in a specified function space (the set of all possible
vectors in the function space being associated with the set
of all possible objects to be decomposed), with the process
of synthesis corresponding to constructing a given vector
(representing a particular object) from the knowledge of each
of its projections [1].

*Corresponding author: timur.gureyev@unimelb.edu.au

A wide class of optical imaging scenarios may be viewed
from this perspective. An obvious example is a pixelated
charge-coupled device (CCD) camera, in which an arbitrary
L × L pixel image may be synthesized as a superposition of
one-pixel basis images, each of which has only one of the
pixels uniformly illuminated [4]. Other examples relevant to
optical imaging include the plane-wave (Fourier) basis [5],
other complete-eigenfunction expansions such as Hermite-
Gauss and Gauss-Laguerre bases [3], Floquet expansions
[6], the Huygens construction as embodied in the Rayleigh-
Sommerfeld diffraction integrals [7] and the convolution for-
mulation of Fresnel diffraction theory [8], the Green’s-function
formalism for linear shift-variant (LSI) imaging systems and
the convolution formalism for such systems [5], computa-
tional ghost imaging (CGI) [9,10], ghost imaging (GI) using
random speckle bases [11,12], the wavelet decomposition of
optical images [13], and the singular-value decomposition of
computed tomography [14]. The basis elements in this list,
which is far from exhaustive, range from being maximally
localized (as in the pixel basis, together with its limit case given
by the Dirac-delta basis) to being maximally delocalized (as
in the plane-wave basis, many modal decomposition bases,
and in convolution-type propagator formalisms embodying
the Huygens construction). The wavelet basis corresponds to
basis elements with a level of localization that is intermediate
between the pixel basis or the Dirac-delta basis, and the
delocalized bases mentioned above.

In a complete set utilized in the context of solving a given
optical problem, the choice of basis elements is arbitrary. A
corollary of this arbitrariness is the power it imparts to choose
a basis in which the solution to a given optical problem assumes
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a particularly convenient, transparent, tractable, or otherwise
desirable form. Thus, for example, a plane-wave basis may
be chosen in a free-space diffraction context on account of
the analytical power of the associated machinery of Fourier
analysis together with the extreme numerical efficiency of the
fast Fourier transform algorithm [5], a spatially random speckle
field basis may be chosen in a GI context on account of its
amenability to compressive sensing concepts [15], a wavelet
basis may be chosen when it is useful to have a sparse repre-
sentation of an optical image, a modal basis may be useful in
an optical communication context where only a small number
of such modes is likely to be excited [16], and so forth. For
example, in the case of parallel-beam computed tomography,
if the incident illumination patterns are structured radially in
the shape of suitable Zernike polynomials, then a simple and
fast reconstruction of the object can be provided in terms
of Chebyshev polynomials and the measured transmission
coefficients [14].

A second corollary of this arbitrariness, of the choice of
complete basis in the setting of the optical decomposition-
synthesis duality, is the opportunity it affords to study optical
imaging from a perspective that is not limited to a particular
choice of complete basis. This is the perspective adopted by
the present paper, in addressing the particular questions of
spatial resolution and signal-to-noise ratio for intensity-linear
optical imaging using arbitrary complete bases. While most
of the results of the present study are generally applicable to
arbitrary bases as applied to optical imaging, we also draw
some conclusions specific to the comparison between the
localized pixel basis associated with direct imaging, and less
localized bases associated with indirect forms of imaging such
as CGI [9].

There is an evident analogy between inline holography,
viewed as the two-step process of image recording followed by
reconstruction [17], and the generic means of indirect intensity
imaging considered here. While this latter problem, which is
the core topic of the present paper, also considers imaging as
a two-step process of recording followed by reconstruction,
in our case the object to be reconstructed is the projected
transmission distribution of a semitransparent object which can
be obtained by means of a linear transformation of the intensity
registered by the detector, rather than both the intensity and
phase of a complex disturbance.

We close this introduction with an outline of the remainder
of the paper. Section II presents a formalism for describing a
generic intensity-linear imaging setup whose ultimate purpose
is to determine a spatially resolved estimate for an object
transmission distribution obtained from a set of integral trans-
mitted intensity measurements by a single-pixel detector when
the object is illuminated by a sequence of distinct structured
illumination patterns. Special cases that can be described by
this model include, but are not limited to, direct imaging using
a pixelated detector and indirect imaging of the impinging
intensity distribution using computational imaging [9,10],
GI [11,12], and coded aperture imaging [18]. The present
formalism is developed utilizing GI terminology, particularly
in utilizing the term bucket signal for what is in essence the
total scattering cross section [11,12], but as emphasized earlier
the domain of applicability of the formalism is much broader
than GI. This section considers a means for determining the

FIG. 1. Diagram of the imaging setup considered in the present
paper.

point-spread function (PSF) associated with a given set of
illumination patterns, both for the general case of a position-
dependent PSF (Green’s function), and the special case (where
applicable) of a position-independent PSF. Section III then
considers the associated question of spatial resolution for our
rather general imaging setup, special cases of which include all
of the previously mentioned forms of both direct and indirect
imaging. The signal-to-noise ratio (SNR) in the reconstructed
object transmission distribution is then considered in Sec. IV.
The expression obtained for the SNR is factorized into a
product of a function depending solely upon the photon
statistics of the illuminating field and a function depending
solely upon the object and basis functions. The analysis is
then presented from the perspective of a recently introduced
intrinsic quality characteristic [19,20]. This characteristic is
invariant with respect to a broad class of intensity-linear
shift-invariant transformations of imaging systems [20] and it
effectively quantifies the optical quality of an imaging system
(i.e., its efficiency of utilization of photons for imaging of
the illuminated object). Section V draws specific comparison
between the fully localized and nonlocalized bases, from the
perspectives of SNR and spatial resolution of the reconstructed
object transmission distribution, and the previously mentioned
imaging quality metric. Technical details relevant to the ex-
amples considered in Sec. V can be found in the Appendixes.
Section VI contains the conclusions, including a discussion
of a possible classification of imaging systems on the basis
of transformation of SNR and spatial resolution between the
measurement (image) and the reconstruction (object) spaces.

II. A COMPUTATIONAL IMAGING SETUP

Consider Fig. 1, which shows an imaging setup where
two-dimensional light intensity patterns Im(r), r = (x,y),
m = 1,2, . . . ,M , are used to illuminate, in sequence, a thin
semitransparent object which is described by a deterministic
dimensionless real non-negative transmission function X(r).
For simplicity, we consider here only the case of spatially
coherent quasimonochromatic incident radiation. The illu-
minating patterns are assumed to have been implicitly inte-
grated over some fixed exposure time, and therefore they are
expressed in units of energy density (energy per unit area,
J/m2). During each exposure, a bucket (single-pixel) photon-
counting detector, with efficiency η (expressed in photons
per joule) and a sufficiently large sensitive surface region �
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collects all the transmitted light. The signal measured by the
detector during the exposure with a given Im(r) is a single
non-negative dimensionless number, am = η

∫∫
�

X(r)Im(r)dr,

which corresponds to the number of registered photons. Such
bucket signals may be measured at any distance from the object
as long as the attenuation in the gap between the object and the
detector is negligible. The goal of the imaging experiment is to
reconstruct (or, at least, to approximate) the unknown object
transmission function X(r) from a set of measured bucket
coefficients am, m = 1,2, . . . ,M .

The imaging scheme described by Fig. 1 may correspond
to, for example, CGI [9–12], possibly in combination with
compressive sensing [15,21], or to other imaging methods
with structured illumination and a single-pixel detector. In the
present paper, we are primarily interested in questions about the
spatial resolution and signal-to-noise ratio that can be achieved
in these types of imaging setup. Note, however, that our context
is much broader than that of GI or CGI, notwithstanding our
use of the term bucket for the photon detector.

In order to maximize the class of unknown transmission
functions X(r) that could be accurately reconstructed from
the measurement of coefficients am, the illumination patterns
Im(r) should be linearly independent, i.e., none of the functions
Im(r) should be representable as a linear combination of other
functions Im′ (r),m′ �= m, with constant coefficients. If the
set of patterns Im(r) is not linearly independent, the linear
subspace spanned by the functions Im(r), m = 1,2,...,M, will
have a dimension M ′ < M , and the class of reconstructable
transmission functions will be narrower compared to the
linearly independent case. In some methods relevant to our
study, the set of illumination patterns can be linearly dependent
in practice, but that only represents a straightforward additional
technicality for the model that we consider. For simplicity,
in the present paper we assume that the set Im(r), m =
1,2, . . . ,M , is linearly independent.

In order to calculate the effect of photon shot noise on the
coefficients am measured by the bucket detector, we assume
that all Im(r) are obtained using the same incident illumination
which is sufficiently monochromatic and has uniform inten-
sity distribution, Iin(r) = Iin, transmitted through different
spatially varying transmission masks Tm(r). So, for example,
Im(r) = IinTm(r) with 0 � Tm(r) � 1. The transmission dis-
tributions Tm(r) are assumed to be deterministic (static) and
dimensionless. A typical case is represented by the functions
Tm(r) = exp[−μLm(r)], where μ is the linear attenuation
coefficient of the mask material and Lm(r) is the spatial dis-
tribution of the mask’s projected thickness along the direction
of the incident illumination. For simplicity we assume, where
appropriate, that the integrals t2 ≡ 1

|�|
∫∫
�

T 2
m(r)dr are the same

for allm = 1,2, . . . ,M , where |�|denotes the area of�. The il-
lumination patterns are also assumed to be deterministic in our
model, while the bucket coefficients are independent random
variables with Poisson statistics, as discussed in detail below.

We will also consider an optional condition that the set Im(r)
may satisfy.

Condition 1. The constant function, such that f (r) = 1
everywhere in �, belongs to the linear space spanned by the
functions Im(r), m = 1,2,...,M, i.e., 1 = ∑M

m=1 αmIm(r) for
some constant coefficients αm.

If condition 1 does not hold for a given set of illumination
patterns Im(r), m = 1,2,...,M, it means that the constant
functions are linearly independent with respect to the set
Im(r). In this case, it should usually be easy to add an extra
illumination pattern IM+1(r) = const [e.g., just a flat-field
illumination with no mask, IM+1(r) = 1] to the set in order
to satisfy condition 1.

We will see below that condition 1 expresses a form of an
energy conservation law. In practical terms, condition 1 means
that any uniform transmission function can be reconstructed
from the measured bucket coefficients am, which is equivalent
to the statement that the coefficients αm in condition 1 can
be expressed as linear combinations of the bucket coefficients
η

∫∫
�

Im(r)dr. The ability to reconstruct uniform transmission

functions represents a desirable property expected from a well-
designed imaging system. Condition 1 is usually satisfied in
most real systems. This natural condition will be shown to lead
to some convenient simplifications in our analysis of the spatial
resolution and SNR below.

Mathematically, we will consider only square-integrable il-
lumination patterns and transmission functions and view them
as vectors from the linear space L2(�) of square-integrable
functions over �. Square-integrability of the illumination
patterns is ensured by each illuminating pattern having a
finite energy, while the square integrability of the transmission
functions is ensured by the facts that they have finite transverse
area and must vary between zero transmission and unity
transmission. The scalar product of two vectors V ≡ V (r) and
U ≡ U (r) is defined as

〈V ,U〉 ≡ 1

|�|
∫∫
�

V (r)U (r)dr. (1)

We will denote the corresponding vector length as
‖V‖ = (〈V ,V 〉)1/2. It will be convenient for us to work
with dimensionless illumination vectors Wm ≡ Wm(r) =
η|�|Im(r), m = 1,2,...,M . Note that the bucket coefficients
can be represented as am = 〈X,Wm〉, where X ≡ X(r).

If the set of vectors Wm, m = 1,2, . . . ,M , is linearly
independent, they can always be orthonormalized [22,23].
Such orthonormalization is not unique. One can use, for
example, the polar decomposition for this purpose. Let W
be the matrix with elements (Wnm) = 〈En,Wm〉 in some
orthonormal basis {En}, i.e., the matrix that consists of vectors
Wm = WEm as its columns. The polar decomposition of W
can be written as W = V(W†W)1/2, where the superscript “†”
denotes transposition, (W†W)1/2 is a positive-definite matrix,
and V is an orthogonal matrix. In particular, all columns of
the matrix V = W(W†W)−1/2 are orthonormal with respect
to the scalar product Eq. (1). Therefore, the set of vectors
V m = VEm represents an orthonormalization of vectors Wm,
m = 1,2, . . . ,M:

V m =
M∑

m′=1

qm m′ Wm′ , and

〈V m,V m′ 〉 = δmm′ , m,m′ = 1,2, . . . ,M, (2)

where δmm′ is the Kronecker delta. The coefficients qmm′ in
Eq. (2) correspond to the matrix Q = (W†W)−1/2. The matrix
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Q2 = (W†W)−1 with elements q
(2)
mm′ = ∑M

l=1 qmlqlm′ can be
used to construct a basis {Um} that is biorthogonal to {Wm}:

Um =
M∑

m′=1

qm′mV m′ =
M∑

m′=1

q
(2)
mm′ Wm′ ,

〈Um,Wm′ 〉 = δmm′ , (3)

m,m′ = 1,2, . . . ,M.

The bases {V m} and {Um} are used below for reconstructing
the object transmission function from the measured bucket
coefficients.

In all realistic imaging systems only a finite number of
elements in the previously mentioned bases will ever be used
in a given experiment. However, by analogy to the utility
of considering bases with infinitely many members (e.g., the
infinite set of Fourier harmonics), it is useful to supplement the
set of vectors V m, m = 1,2, . . . ,M with suitable additional
vectors to form a complete orthonormal basis {V m}, m =
1,2, . . . ,∞. This complete basis spans the Hilbert space L2(�)
with the scalar product defined by Eq. (1). Obviously, the whole
functional space L2(�) can be represented as a sum of the
subspace VM (�), spanned by the first M basis vectors, and its
orthogonal complement: L2(�) = VM (�) ⊕ V ⊥

M (�).
The measured signal {am ,Wm} can be represented as a

vector Y = ∑M
m=1 am Wm in the subspace VM (�). When the

vectors Wm, m = 1,2, . . . ,M , are linearly independent, the
coefficients am in this representation of the signal vector
are unique, i.e., if Y = ∑M

m=1 am Wm = ∑M
m=1 a′

m Wm, then
am = a′

m for all m. It is useful to introduce the (linear)
measurement operator AM which maps the object transmission
function X(r) into the measured signal vector: AM X = Y =∑M

m=1 amWm. By definition, the reconstruction (synthesis)
operator RM is equal to the inverse of the restriction of the
measurement operator AM to the subspace VM (�). Let us
show that RMY = ∑M

m=1 am Um, and that such reconstruction
represents a projection of the object transmission function
X = X(r) onto the subspace VM (�).

Consider a projection operator from L2(�) onto the sub-
space VM (�). This operator acts on an arbitrary vector X from
L2(�) according to the expression PM X = ∑M

m=1 bm V m,
bm ≡ 〈X,V m〉. Using Eq. (3), it is then easy to verify that

PM X =
M∑

m=1

bm V m =
M∑

m=1

cm Wm =
M∑

m=1

am Um,

bm =
M∑

m′=1

qm m′am′ , (4)

cm =
M∑

m′=1

q
(2)
m m′am′ .

In particular, Eq. (4) shows that RMY = PM X , so that
this reconstruction indeed corresponds to the projection of the
object transmission function onto the vector subspace spanned
by the illumination patterns. Note that, if the original illumina-
tion vectors Wm, m = 1,2,...,M, are themselves orthogonal
and all have the same length, i.e., 〈Wm,Wm′ 〉 = w2δmm′ with
some constant w > 0, then we can take Um = w−1V m =

w−2Wm, m = 1,2,...,M, qmn = w−1δmn, and cm = w−1bm =
w−2am, greatly simplifying Eq. (4).

Let us see under which conditions the reconstructed func-
tion RMY (r) = PMX(r) represents a good approximation to
the object transmission function X(r). It is easy to verify that
the operator PM is a projector, i.e., P2

M = PM [24], and it can
be represented as a linear integral operator

PMX(r) = 1

|�|
∫∫
�

GM (r,r′)X(r′)dr′ (5)

with the kernel (Green’s function)

GM (r,r′) =
M∑

m=1

Um(r)Wm(r′) =
M∑

m=1

Vm(r)Vm(r′). (6)

From a physical perspective, the operator PM projects an
arbitrary object X to its approximation as a linear combination
of the M independent basis vectors. This generalized form of
filtering, which is consistent with the concept of reconstructing
an object to within a finite resolution, may naturally be
considered in geometric terms as a projection since it discards
any components of the object which are orthogonal to all of the
basis vectors. This intuitively aligns with the formal definition
of an operator P being a projector if P2 = P, since applying a
projection more than once has the same effect as applying it
once.

In some imaging methods, such as CGI [9,10], the illumina-
tion patterns are often chosen in such a way that the following
optional condition is satisfied.

Condition 2. The set of illumination patterns is such that
the corresponding Green’s function is shift invariant (spatially
stationary), at least approximately, in the sense that GM (r +
h,r′ + h) = GM (r,r′) for any vector h, provided that r, r′,
r + h, and r′ + h lie within �.

If condition 2 holds, the Green’s function can be represented
as a function of the difference between the two coordinates:
GM (r,r′) = PM (r − r′), where the corresponding function
PM (r) = ∑M

m=1 Vm(0)Vm(r) acts as a PSF [25,26]:

PMX(r) = 1

|�|
∫∫
�

PM (r − r′)X(r′)dr′. (7)

Note that condition 1 implies that the spatial average of
the PSF is equal to 1: 1 = PM1(r) = 1

|�|
∫∫
�

PM (r − r′)dr′.

Hence, the convolution with the PSF does not change the total
transmission through the object:∫∫

�

PMX(r)dr =
∫∫
�

1

|�|
∫∫
�

PM (r − r′)X(r′)dr′dr

=
∫∫
�

X(r′)dr′.

In this sense, condition 1 implies a natural conservation law
which states that the projection onto subspace VM (�) preserves
the total transmission value of the object.
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The measurement operator AM can also be represented as
a linear integral operator:

AMX(r) = 1

|�|
∫∫
�

AM (r,r′)X(r′)dr′ (8)

with the kernel (Green’s function)

AM (r,r′) =
M∑

m=1

Wm(r)Wm(r′). (9)

Indeed, if we substitute Eq. (9) into Eq. (8), and take X(r) =∑M
m=1 amUm(r), we obtain

1

|�|
∫∫
�

M∑
m=1

Wm(r)Wm(r′)X(r′)dr′

=
M∑

m=1

Wm(r)

〈
M∑

m′=1

am′ Um′ ,Wm

〉

=
M∑

m=1

amWm(r), i.e. AMX(r) = Y (r),

as required. Similarly, the reconstruction operator RM can
be represented as a linear integral operator with the kernel
RM (r,r′) = ∑M

m=1 Um(r)Um(r′). When the illumination pat-
terns are orthogonal, such that 〈Wm,Wm′ 〉 = w2δmm′ , both the
measurement and the reconstruction operator are proportional
to the identity operator in VM (�): AMPMX(r) = w2PMX(r)
and RMY (r) = w−2Y (r).

III. SPATIAL RESOLUTION

In order for the reconstructed function RMY (r) = PMX(r)
to be a good approximation for X(r), for an arbitrary imaged
object X(r), Eq. (7) indicates that the PSF, PM (r), should
approximate Dirac’s delta function. Equation (6) then becomes
a completeness (closure) relation: |�|−1 ∑M

m=1 Vm(r)Vm(r′) ∼=
δ(r − r′) [24]. In general, however, the projection operator PM

effectively blurs any function, X(r), on which it acts, degrading
the spatial resolution as a result. We will see below that
when the basis vectors correspond to the Fourier harmonics,
the blurring due to the convolution with the relevant PSF
corresponds to truncation of the Fourier decomposition of the
object transmission function to the linear combination of the
first M Fourier components (low-pass filtration). One can see
that the degree of blurring in Eq. (5), as measured by the width
of the reconstructed response to a delta-function-like input
signal X(r′), can be different for different points r. However,
when the Green’s function is shift invariant, the width of the
response to a localized input is the same at every point in �,
being equal to the width of the PSF. This width corresponds to
the spatial resolution of the imaging setup.

According to [20,27,28], a convenient measure of the width
of a function g(r) can be given by the expression

(�2r)[g] ≡
∫∫

g(r)dr(∫∫
g2(r)dr

)1/2 . (10)

To motivate this definition, let H be the peak value of
g(r), and observe that the right-hand side of Eq. (10) may

be approximated by the ratio of H�2
2 (height multiplied by

area of base) to the square root of H 2�2
2 (square of the

height multiplied by area of base), such a ratio therefore being
equal to �2 (width of the base). Unlike the more conventional
measure of width, related to the variance of a function, the
definition in Eq. (10) works well with the formalism of vector
decomposition over an orthogonal basis, as demonstrated
below. At the same time, the width defined according to
Eq. (10) produces values which are fully consistent with the
natural understanding of the width of a function in the case
of Gaussians, Lorentzians, rectangular (uniform), and other
popular distributions [20]. It is also important for the following
to note that the definition of spatial resolution in Eq. (10) is
optimistic, in the sense that for any integrable function g(r)
the following inequality holds: (�2r)[g] � (3π1/2/2)(�r)[g],
where {(�r)[g]}2 ≡ ∫∫ |r − r̄|2|g(r)|dr/

∫∫ |g(r)|dr [20]. In
other words, the spatial resolution estimated in accordance
with Eq. (10) is always finer than or equal to the more
conventional spatial resolution, defined via the spatial variance
of the PSF, multiplied by the constant 3π1/2/2 ∼= 2.66. Details
about the relationship between the two definitions of the spatial
resolution (width of the PSF) can be found in Ref. [20].

First we consider the spatial resolution of the function
gr′ (r) = G(r′,r) = G(r,r′) which depends on the argument r′
as a parameter. We will assume for simplicity that condition
1 is satisfied. The corresponding results without condition 1
can be derived in the same way, but the expressions are more
complex. When the constant function 1 lies in the space VM (�),
we have PM1 = 1, and hence∫∫

�

gr′ (r)dr =
∫∫
�

GM (r′,r)dr = |�|(PM1)(r′) = |�|.

Next, using the orthonormality of vectors V m, we obtain∫∫
�

g2
r′(r)dr =

∫∫
�

G2
M (r′,r)dr =

M∑
m=1

V 2
m(r′)

∫∫
�

V 2
m(r)dr

= |�|
M∑

m=1

V 2
m(r′).

Therefore,

(�2r)[gr] =
(

|�|/
M∑

m=1

V 2
m(r)

)1/2

. (11)

Obviously, for reasons discussed earlier, this resolution may
in general be different at different points r in �. Note that the
spatial average of the function fM (r) = ∑M

m=1 V 2
m(r) over �

is equal to M , due to the normalization of vectors V m:

1

|�|
∫∫
�

M∑
m=1

V 2
m(r) dr =

M∑
m=1

‖V m‖2 = M.

If the Green’s function is shift invariant, the function
fM (r) is constant in �, because fM (r) = ∑M

m=1 V 2
m(r) =

GM (r,r) = GM (0,0) = fM (0), and hence fM (r) = M for any
r. Therefore, in the shift-invariant case,

∫∫
�

g2
r′(r)dr = M|�|

and (�2r)[gr] = (|�| /M)1/2. As mentioned previously, in the
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shift-invariant case, the Green’s function can be represented as
a PSF, GM (r,r′) = PM (r − r′), and so the width of the Green’s
function in this case is equal everywhere to the width of the
PSF, which determines the uniform spatial resolution:

(�2r)[PM ] = ( |�|/M)1/2. (12)

The square of the width of the PSF can be interpreted as
the effective pixel area. Equation (12) shows that the square of
the spatial resolution of the considered computational imaging
system using M illumination patterns Im(r), m = 1,2, . . . ,M ,
which are linearly independent and satisfy conditions 1 and
2, is always equal to the image area divided by the number
of illumination patterns. This simple result is consistent, for
example, with the expected spatial resolution of a 2D imaging
system with a low-pass filter retaining only the first M Fourier
harmonics. It is interesting that this intuitive result holds for
the much more general class of bases considered here, than
just the Fourier basis. We consider some relevant illustrative
examples in more detail below.

By calculating the average width of the Green’s function
AM (r,r′) = ∑M

m=1 Wm(r)Wm(r′) using Eq. (10) as above, it is
possible to verify that the spatial resolution of the measured
signal Y (r) = ∑M

m=1 am Wm(r) is equal to

(�2r)[AM ] =
(

|�|
∑
m

∑
m′

〈Wm〉〈Wm′ 〉〈Wm,Wm′ 〉/

∑
m

∑
m′

〈Wm,Wm′ 〉2

)1/2

.

In the orthogonal case, i.e., when 〈Wm,Wm′ 〉 = w2δmm′ ,
we have 〈1〉 = 〈∑M

m=1 〈Wm〉Um(r)〉 = w−2 ∑M
m=1 〈Wm〉2 as a

consequence of condition 1. Using this fact it easy to verify
that (�2r)[AM ] becomes equal to (|�|/M)1/2. Comparing this
result with Eq. (12), we see that in the case of orthogonal
illumination patterns the average spatial resolution is the same
in the measurement and in the object spaces.

It is interesting to compare Eq. (12) with previously pub-
lished results on spatial resolution in CGI. It is known that
the spatial resolution in GI with thermal or pseudothermal
light is limited primarily by the transverse coherence length
in the detector plane, or, equivalently, by the speckle size
[12,25,29–32]. The result is effectively the same in the case of
CGI, where the spatial resolution is limited by the aperture of
the spatial light modulator (SLM) in the case of far-field illumi-
nation conditions [9,33,34]. The imaging scheme considered in
the present paper (Fig. 1) corresponds to CGI in the near-field
regime corresponding to a very short distance between the
SLM and the object. In that case, the spatial resolution is limited
by the effective pitch (pixel) size h of the SLM [12,33], which
affects the spatial resolution in the same way as the coherence
length does in the case of far-field illumination. Comparing
this with Eq. (12), we note that, while it is still true that in the
case of a very large number of illumination patterns the spatial
resolution is limited by the pitch size h of the transmission
masks, Eq. (12) in fact offers a complementary result which
holds in the case of an arbitrary (including very small) number
of illumination patterns. The pitch limit replaces the result
given by Eq. (12) only when the number of illumination

patterns M becomes larger than D = |�|/h2, because in that
case the set of illumination patterns can no longer be linearly
independent. Note that D represents the dimensionality of the
vector space of illumination patterns with area � and pitch size
h. Therefore, any set with M > D patterns must be linearly
dependent. This can be clearly seen in the example with the
pixelated masks considered in Sec. V.

IV. SIGNAL-TO-NOISE RATIO

Now let us consider the signal-to-noise ratio (SNR) of the
reconstructed distribution described by Eq. (4) or, equivalently,
Eq. (5). Here the signal at each point r is formally defined as an
ensemble averaged mean value, PMX(r) = ∑M

m=1 āmUm(r), of
the function RMY (r) = PMX(r) reconstructed multiple times
using Eq. (4) with coefficients am measured under identical
experimental conditions; ām are the mean values of the mea-
sured coefficients. The random character of the measurements
of coefficients am is assumed to be determined by the typical
behavior of a photon-counting detector, as discussed below.
The corresponding noise is defined as the standard deviation
of the reconstructed values PMX(r) at a given point r. The
SNR is then

SNR[PMX](r) = PMX(r)

[Var(PMX)(r)]1/2 , (13)

where Var(PMX)(r) = [PMX(r) − PMX(r)]
2

is the corre-
sponding noise variance. Using Eq. (4), we find that

[PMX(r) − PMX(r)]
2 =

[
M∑

m=1

(am − ām)Um(r)

]2

=
M∑

m=1

M∑
m′=1

Cov(am,am′ )Um(r)Um′(r),

where Cov(am,am′ ) = amam′ − āmām′ are the covariances of
the measured coefficients. We also assume that the measure-
ments of different coefficients am are statistically indepen-
dent and hence Cov(am,am′ ) = δmm′Var(am) and, therefore,
Var(PMX)(r) = ∑M

m=1 Var(am)U 2
m(r). Hence,

SNR[PMX](r) =
M∑

m=1

āmUm(r)/

[
M∑

m=1

Var(am)U 2
m(r)

]1/2

.

(14)

In order to estimate the noise in the measured coefficients
am, we use the conventional semiclassical model of statistical
optics [27]. According to this approach, the propagation
of light is calculated for continuous classical deterministic
electromagnetic fields and the quantization and randomness
is considered in connection with light sources and photodec-
tion. For most thermal and similar light sources, to a very
good approximation, the dominant contribution to noise in
the registered signals comes from photodetection shot noise
and, possibly, also from other detector-related noise, such as
electronic dark current noise [27]. For simplicity, we consider
here only the case of a perfect photon-counting detector, for
which only the photon shot noise is significant.
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A photon-counting detector converts the incident radiant
energy (integrated over the detector’s entrance surface) into
the corresponding photon numbers, with the efficiency of
the process described by the previously introduced detection
efficiency constant η which has the dimensionality of photons
per Joule [27]. In this process of conversion, a deterministic
flux of light energy entering the detector results in the stochas-
tic process of photon counting satisfying Poisson statistics
[27]. Therefore, the mean values of the measured coefficients
am = ηIin

∫∫
�

X(r)Tm(r)dr are equal to ām = n̄ xm, where n̄ =
η Iin |�| is the mean number of photons used in the measure-
ment of each coefficient, and xm = 1

|�|
∫∫
�

X(r)Tm(r)dr are

dimensionless transmission coefficients. Similarly, according
to the properties of Poisson statistics of the shot noise,
Var(am) = ām = n̄xm.

Let N̄ ≡ M n̄ be the mean total number of photons utilized
in the whole experiment (this already takes into account the
detection efficiency). Then, in view of Eq. (4), Eq. (14) can be
rewritten as a product of two distinct factors:

SNR[PMX](r) = (N̄/M)1/2FM,X(r), (15)

where the first factor, (N̄/M)1/2, reflects the effect of the
photon statistics on the SNR, and the second term,

FM,X(r) ≡
(

M∑
m=1

xmSm(r)

)/(
M∑

m=1

xmS2
m(r)

)1/2

, (16)

is a deterministic function of r, where, by definition, the
vectors Sm ≡ Sm(r) constitute a biorthogonal basis for Tm(r):
〈Sm,Tm′ 〉 = δmm′ . We will call FM,X(r) the form factor. This
factor depends only on the set of transmission masks Tm(r) and
the object transmission function X(r), but not on the number
of photons. Note that while the vectors Tm correspond to the
original illumination vectors normalized by the mean number
of incident photons, such that Tm = n̄−1Wm, the vectors Sm

represent the suitably normalized versions of the biorthogonal
vectors Um: Sm = n̄ Um.

Consider the case when the illumination vectors Wm ≡
η|�|Im(r), m = 1,2,...,M , are orthogonal and have the
same length with respect to the scalar product defined in
Eq. (1), so that 〈Wm,Wm′ 〉 = w2δmm′ , where w = n̄t and
t = ‖Tm‖ for all m. Here, we have Sm = t−2Tm , 〈Sm,Tm′ 〉 =
t−2n̄−2〈Wm,Wm′ 〉 = δmm′ , which leads to an expression for
the form factor in terms of the orthogonal transmission masks:

FM,X(r) =
(

M∑
m=1

xmTm(r)

)/(
M∑

m=1

xmT 2
m(r)

)1/2

. (17)

The form factor in Eq. (17), and hence also the correspond-
ing SNR, still generally depend on the object transmission
function X(r), as well as on the transmission masks Tm(r),
and can have different values at different points r inside
�. In practice, when the performance of an imaging system
is evaluated, the SNR is often measured in flat (uniform)
areas of the reconstructed images, which are much larger
than the area of the system’s PSF. As the effect of uniform
attenuation, X(r) = const, in a flat object is trivial, we shall
only consider the flat SNR in the absence of the object, in
which case X(r) = 1. Considering the definition of the SNR

in Eq. (13) with X(r) = 1, we note first that, as a consequence
of condition 1, PM1(r) = 1. Since the noise variance in the
reconstruction of a uniform object for arbitrary illumination
patterns may still be position dependent, we shall spatially
average the value of the noise variance, Var(PM1)(r), in the
denominator of Eq. (13). This leads to the notion of squared
averaged flat SNR, SNR2

a , defined as the ratio of the spatially
averaged squared reconstructed signal to the spatially averaged
noise variance, in the absence of an object:

SNR2
a ≡ 〈[PM1(r)]

2〉
〈Var(PM1)(r)〉 = (N̄/M)

(
Fa

M,1

)2
. (18)

In the derivation of Eq. (18), we used Eq. (15) and intro-
duced the squared flat averaged form factor,

(
Fa

M,1

)2 ≡ 1/

(
M∑

m=1

tm ‖Sm‖2

)
, (19)

which is defined by spatially averaging the squared denomi-
nator of Eq. (16), with X(r) = 1 and tm ≡ 〈Tm〉. Note that the
flat SNR defined in Eq. (18) does not depend on the imaged
object, and hence is an intrinsic characteristic of the imaging
system.

As the vectors Sm are biorthogonal to Tm, and, in par-
ticular, 〈Sm,Tm〉 = 1, the length of the vectors Sm must be
larger than or equal to the inverse of the length of Tm, so
that ‖Sm‖ � t−1. Therefore

∑M
m=1 tm‖Sm‖2 � t−2 ∑M

m=1 tm,
equality being achieved only in the case when the length
of all vectors Sm is equal to t−1. The latter is possible
only when all vectors Sm are parallel to Tm, which is the
orthogonal case; the corresponding result can also be obtained
directly from Eq. (17). Therefore, SNR2

a � (N̄/M) t̃M , where
the quantity t̃M ≡ t2/

∑M
m=1 tm is a particular form of average

transmission coefficient for a given set of transmission masks.
Note that t̃M = ∑M

m=1 t2
m/

∑M
m=1 tm in the orthogonal case,

because 1 = ∑M
m=1 tm〈Sm〉 = t−2 ∑M

m=1 t2
m as a consequence

of condition 1. When t̃M is multiplied by the mean number
of incident photons, it makes the SNR2

a equal to the suitably
averaged number of photons registered in each individual
measurement, in the case of orthogonal illumination patterns
and no object. This result agrees with the naturally expected
behavior in the case of image noise dominated by photon shot
noise. Note that this SNR does not increase with the number
of measurements, as the measurements of individual bucket
coefficients are independent. Instead, when the reconstruction
makes use of all M individual measurements, the increased
number of measured bucket coefficients is translated into a
larger number of effective pixels in the reconstructed distribu-
tion, i.e., it results in improved spatial resolution, rather than
in an increased SNR in each pixel.

We have shown that squared reconstructed flat SNR,
SNR2

a , is always equal to or smaller than the average num-
ber of photons registered in each individual measurement
of a bucket coefficient, with equality achieved only in the
case of orthogonal illumination patterns. The fact that, in
the case of nonorthogonal illumination patterns, the SNR is
smaller than the value expected in the case of uncorrelated
Poisson statistics is related to the presence of effective spa-
tial correlations between the data obtained with individual
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illumination patterns, even though the measurements of in-
dividual bucket coefficients am are statistically independent.
This phenomenon is studied further in Sec. V below.

It has previously been argued [19,20] that the ratio of SNR
to spatial resolution, divided by the square root of the incident
photon fluence, provides a good measure of the quality of an
imaging system. The latter ratio, which was called the intrinsic
quality characteristic (IQC) in Ref. [19], is also an invariant of
the system which does not change under linear filtering [20].
Therefore, it is useful to estimate this characteristic in the case
of computational imaging systems considered in the present
paper. It follows from Eqs. (11) and (15) that, when the space
VM (�) contains constant functions (i.e., under condition 1),
we have

Q2(r) ≡
( |�|

N̄

)1/2 SNR[PMX](r)

(�2r)[gr]

= FM,X(r)

(
M∑

m=1

V 2
m(r)/M

)1/2

. (20)

The subscript index 2 in the notation Q2(r) reflects the fact
that the spatial resolution is calculated according to Eq. (10),
rather than on the basis of the spatial variance of the PSF
[20]. When the Green’s function is shift invariant (i.e., under
condition 2), we have

∑M
m=1 V 2

m(r) = M , and hence

Q2(r) = FM,X(r). (21)

As we noted above, the form factor FM,X(r) is independent
of the number of photons used in the imaging experiment,
but it can exhibit distinct spatial distributions for different
illumination masks and imaged objects.

An object-independent flat version of the IQC can be
defined in terms of the flat SNR following Eqs. (18) and (19):

Q2,a = Fa
M,1 � (t̃M )1/2, (22)

with Fa
M,1 defined in Eq. (19) and t̃M = t2/

∑M
m=1 tm . When

the illumination vectors satisfy the orthogonality condition
〈Wm,Wm′ 〉 = w2δmm′ , it follows that Q2,a = (t̃M )1/2.

When one is interested in estimating the efficiency of an
imaging system with respect to the radiation dose delivered to
the sample, which is proportional to the photon fluence incident
on the object rather than on the masks, it can be useful to
consider the quantity

Q̃2,a ≡ (N̄/N̄t )
1/2Q2,a � M1/2t/

M∑
m=1

tm, (23)

where N̄t ≡ N̄M−1 ∑M
m=1 tm is the mean total number of

photons incident on the object, after transmission through the
masks, during the measurements of M bucket coefficients.

It is also possible to calculate the squared flat SNR in
the measured signal Y1,M (r) corresponding to X(r) = 1, by
evaluating

SNR2
a,in ≡ 〈[Y1,M (r)]

2〉/〈Var(Y1,Mr)〉
= (N̄/M)

∑
m

∑
m′

tmtm′ 〈Tm,Tm′ 〉/
∑
m

tm‖Tm‖2.

This value becomes equal to (N̄/M)t̃M in the orthogonal
case, i.e., when 〈Tm,Tm′ 〉 = t2δmm′ . This means, in particular,
that in the case of orthonormal illumination patterns the flat
SNR does not change in the reconstruction process. As we
showed previously that the spatial resolution also does not
change between the measurement and the object spaces in this
case, it follows that the flat IQC Q2,a = (t̃M )1/2 is invariant
under the action of the reconstruction operator RM in the case
of orthogonal illumination patterns.

Similarly to the case of spatial resolution considered at
the end of Sec. III, here we would like to compare the result
given by Eq. (15) with previously published results on SNR
in CGI. It has been widely accepted that the SNR in GI is
proportional to the square root of the number of illumination
patterns [25,33,35]. Comparing this with Eq. (15), we note
that such behavior corresponds to the increase of the number
of photons N̄ in Eq. (15), which increases with each additional
illumination pattern. The fact that Eq. (15) contains the number
of illumination patterns, M , in the denominator instead of the
numerator is due to the specific formulation of the problem in
the present paper. Indeed, we do not assume that an increase in
the number of illumination patterns is always associated with
an increase in the total number of incident photons. Instead,
we assume that a fixed mean number of incident photons
N̄ (the dose) can be distributed over a different number of
illumination patterns M . In this formulation, when the number
of illumination patterns increases, the mean number of photons
in each pattern, N̄/M , actually decreases. In addition to this
difference in the formulation of the problem, the difference
in the approach to the spatial resolution between our paper
and most of the published works on CGI is also crucial to
Eq. (15), as the SNR is usually calculated per pixel or per
spatial resolution unit. As discussed at the end of Sec. III above,
previously published papers on CGI typically assume that the
spatial resolution is independent of the number of illumination
patterns and is limited only by the transverse coherence length
(in the case of far-field illumination) or the SLM pitch size
(in the case of near-field illumination). Thus, the previously
published results about SNR in CGI, compared to the results
obtained in our paper, effectively correspond to the limit of a
large number of illumination patterns, where the accumulation
of additional illumination patterns does not affect the spatial
resolution, but increases the number of incident photons, with
the number of photons determining the SNR. In contrast,
in the present paper we study the effect of a finite number
of illumination patterns and their potential non-orthogonality
on the SNR and spatial resolution of computational imaging
systems. In order to illustrate the role of the key parameters of
computational imaging systems affecting their SNR and spatial
resolution, we consider several simple model systems below.

V. EXAMPLES

A. Localized illumination masks

Let us consider an example which is based on a conventional
imaging setup with a pixelated detector with L × L pixels
(for which the issues of spatial resolution, SNR, and IQC
have been previously obtained using similar criteria [20]),
but presented here in a form consistent with the imaging
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setup with structured illumination and single-pixel detector
as described in Sec. II of this paper. For this purpose, we
define a set of M = L2 single-pixel illumination patterns,
Vm(r) = LTm(r), where L is an integer and Tm(r) = T (r − rm)
are single-pixel transmission masks. The points rm denote the
positions of the centers of the detector pixels, each with area h2,
indexed by m = 1,2,...,M . As expected, the spatial resolution
in this imaging system can be shown equal to (see details in
Appendix A)

(�2r)2[gr] = |�|/M = h2. (24)

The squared SNR is equal to

SNR2[PMX](r) = (N̄/M2)〈X(r)〉m, (25)

where 〈X(r)〉m = h−2
∫∫

�m(r)

X(r′)dr′ is the average object trans-

mission in the pixel with index m(r), i.e., the pixel that
contains the point r. A similar result is obtained for the flat
SNR: SNR2

a = (N̄/M)(t2/
∑M

m=1 tm) = N̄/M2, since t2 =
tm = 1

|�|
∫∫
�m

dr = 1/M in this case. The extra factor M−1 in the

denominator of Eq. (25) reflects the fact that incident photons
are used very inefficiently when single-aperture masks and
a bucket detector are used instead of uniform illumination
(no masks) and a position-sensitive detector (the masks block
most of the incident photons). Note, however, that as far as
the radiation dose delivered to the sample is concerned, the
present method is as efficient as the direct imaging with a
pixelated detector. Here, the average transmission coefficient
of the masks is equal to M−1 ∑M

m=1 tm = M−1. Therefore,
the SNR calculated with respect to the number of photons
transmitted through the masks, i.e., the number of photons
incident on the object, N̄t = N̄/M , is equal to SNR2

a = N̄t/M ,
which is the same as in the case of imaging with a pixelated
detector, no masks, and the total number of incident photons
equal to N̄t .

Equations (24) and (25) lead to the following result for the
IQC:

Q2
2(r) = |�|

N̄

N̄ xm(r)

M h2
= xm(r) = 〈X(r)〉m

M
. (26)

If we recalculate this quantity with respect to the pho-
tons incident on the object by dividing Q2

2(r) by the aver-
age transmission coefficient of the masks, M−1 ∑M

m=1 tm =
M−1, we arrive at the result Q̃2

2(r) ≡ MQ2
2(r) = 〈X(r)〉m.

In other words, the IQC of the system with single-pixel
masks, evaluated with respect to the incident dose delivered
to the sample, is equal to the square root of the absorp-
tion coefficient of the object. Considering the case X(r) = 1
we obtain Q2

2,a = M−1 and Q̃2,a = 1. This coincides with
the result previously derived in Ref. [20] by a different
approach.

Consider now the imaging system with overlapping two-
pixel transmission masks T (2)

m (r) = Tm(r) + Tm+1(r), m =
1,2, . . . ,M , where M is odd and the index m is formally
considered cyclical, i.e., TM+1(r) ≡ T1(r). Such overlapping
masks are no longer orthogonal, as 〈T (2)

m ,T (2)
m+1〉 = 1/M . It

is straightforward to verify that the biorthogonal basis here

consists of the vectors

S(2)
m (r) = (M/2)

[
m∑

m′=1

(−1)m−m′
Tm′(r)

+
M∑

m′=m+1

(−1)m+1−m′
Tm′(r)

]
.

Therefore, ‖S(2)
m ‖2 = (M2/4)

∑M
m′=1 ‖Tm′ ‖2 = M2/4.

Evaluating the squared flat form factor according to Eq. (19)
and substituting it into Eq. (22), we obtain that the squared
flat IQC is equal to

Q2
2,a = 1/

(
M∑

m=1

t (2)
m

∥∥S(2)
m

∥∥2

)

= 1/

(
M∑

m=1

(2/M)(M2/4)

)
= 2/M2.

The corresponding IQC corrected for the average mask
transmission coefficient M−1 ∑M

m=1 t (2)
m = 2/M is equal to

Q̃2
2,a = 1/M . We see that both these squared IQCs are smaller,

by factors proportional to 1/M , than the corresponding char-
acteristics for the single-mask system considered above. This
is an instructive example of the effect of nonorthogonality
of illumination patterns on the SNR and IQC of imaging
systems. Note that the object-space spatial resolution of the
system with overlapping two-pixel masks T (2)

m (r) is the same
as the one for the system with single-pixel masks Tm(r), as
expected in the case of super-resolution imaging with subpixel
shifting of a PSF. However, as we see from the above results,
the SNR achieved in such super-resolution imaging will be
considerably smaller compared to the SNR in the single-pixel
imaging system, at the same incident photon fluence. In other
words, in order to achieve the same image quality (i.e., the
same SNR and the same spatial resolution) as in the system
with the PSF of area h2, by subpixel shifting of the PSF of area
2h2, one would have to increase the radiation dose delivered
to the imaged object by a factor of M , where Mh2 is the field
of view.

B. Delocalized harmonic masks

Here we consider a computational imaging system de-
fined as in Sec. II, but with the harmonic transmission
masks Tm(r) = 1/2 + Fm(r), Fm(r) = fmx

(x)fmy
(y), f1(t) =

1/2, fl(t) = (1/
√

2) sin(πlt/A) when l = 2,4, . . ., is even,
and fl(t) = (1/

√
2) cos[π (l − 1)t/A], when l = 3,5, . . ., is

odd. The image domain is represented by the square � =
{−A/2 < x < A/2,−A/2 < y < A/2}. Note that we have
normalized all Fourier harmonics in the above definition of
transmission masks in a way that ensures that the transmission
values are non-negative and do not exceed 1 at any point
r in �.

The spatial resolution evaluated in accordance with Eq. (10)
is equal to

(�2r)2[gr] = |�|/M, (27)

provided that we restrict the values of M to M = 1 + 4M ′ for
some positive integer M ′ (see Appendix B for details).
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The SNR is described by Eq. (15) with

FM,X(r) = Q2(r) = x1 + 4
∑M

m=2 (3xm − 2x1)Fm(r){
x1

[
1 − 16

∑M
m=2 Fm(r)

] + 16
∑M

m=2

∑M
m′=2 (9xmδmm′ + 4x1)Fm(r)Fm′(r)

}1/2 . (28)

Using Eq. (28) with xm = tm and taking into account that
〈Fm〉 = 0, when m > 1, we obtain the following value for the
flat IQC:

Q2
2,a = (

Fa
M,1

)2 = t2
1 /

[
t1 +

M∑
m=2

(9tm + 4t1)

]

= 3/[4 + 40(M − 1)]. (29)

Dividing Q2
2,a by the average transmission coefficient

of the masks, M−1 ∑M
m=1 tm = [(3/4 + (1/2)(M − 1)]/M ∼=

1/2, when M  1, we obtain that Q̃2
2.a

∼= 3/[2 + 20(M − 1)]
for large M .

One can see that here the value of the IQC, calculated
with respect to the incident dose delivered to the sample,
rapidly decreases when the number of illumination patterns M

grows. This can be contrasted with the constant value Q̃2,a = 1
obtained for general orthogonal illumination patterns at the
end of Sec. V. This difference is a typical consequence of
nonorthogonality of illumination patterns. The low value of
the IQC here is related to the fact that the average signal in the
considered computational imaging setup receives contribution
from only one measurement, i.e., that of coefficient a1, while
the noise variances from measurements of all coefficients am,
m = 1, . . . ,M , add up. In other words, the measurements of
all nonzero coefficients am do not contribute to the average
signal, but they do contribute to the noise. Note, however,
that the measurements of nonzero coefficients am are still not

useless, as far as the quality measure Q2,a is concerned, as these
coefficients contribute to the spatial resolution, as is evident in
Eqs. (11) and (12).

C. Pseudorandom delocalized masks

This example has a direct relationship to standard GI using
random speckle fields [26], CGI [9–12] and compressive
sensing [21]. Here we assume that the first illumination
pattern is spatially uniform, I1(r) ≡ I1 = const, and the other
illumination patterns satisfy the equation [26]

1

|�|
∫∫
�

[Im(r) − I1][Im′(r) − I1]dr = σ 2δmm′ ,

m,m′ = 2,3,...,M, (30)

where the spatial average of the intensity patterns is assumed to
be the same, I1 = 1

|�|
∫∫
�

Im(r)dr, for all m = 1, . . . ,M , and

σ 2 = |�|−1
∫∫
�

[Im(r) − I1]2dr is the spatial variance of the

intensity patterns, assumed to be the same for all m > 1 [the
spatial variance of the pattern I1(r) = const is obviously equal
to zero]. Physically, Eq. (30) amounts to the natural condi-
tion that when distinct background-subtracted pseudorandom
illumination patterns are multiplied together, they average to
zero.

The spatial resolution here is described by Eq. (10), while
the SNR is expressed by Eq. (15) with

FM,X(r) = Q2(r) = x1 + κ2 ∑M
m=2 (xm − x1)Fm(r){

x1
[
1 − 2κ2

∑M
m=2 Fm(r)

] + κ4
∑M

m=2

∑M
m′=2 (xmδmm′ + x1)Fm(r)Fm′(r)

}1/2 , (31)

where κ = I1/σ � 1 and Fm(r) = Im(r)/I1 − 1, m =
2,3, . . . ,M (see the details in Appendix C). As in the case
of harmonic illumination masks, the form factor here can in
general be different for different transmission functions and
different points in the image domain. The squared flat IQC in
this example is equal to

Q2
2,a = (

Fa
M,X

)2 = t2
1 /

[
t1 + κ2

M∑
m=2

(tm + t1)

]

= t1/[1 + 2κ2(M − 1)], (32)

where we have taken into account that the average transmis-
sion of all masks is assumed to be the same, i.e., tm = t1
for any m. Dividing Q2

2,a by the average transmission coef-
ficient of the masks, which is equal to t1, we obtain Q̃2

2,a
∼=

1/[1 + 2κ2(M − 1)]. Therefore, the value of the IQC, calcu-
lated with respect to the incident dose delivered to the sample,

rapidly decreases when the number of illumination patterns M

grows. As in the case with overlapping two-pixel masks and
harmonic delocalized masks considered above, this behavior
is a consequence of nonorthogonality of illumination patterns.

Because the IQC of imaging systems with pseudorandom
delocalized masks rapidly deteriorates as the number of illu-
mination patterns increases, it appears that it can only remain
reasonably high if the number of measurements M can be kept
low. This effectively requires that the class of imaged objects
is strongly correlated with a small number of illumination
patterns, ensuring that the representation of any unknown
imaged object X(r) is sparse in the basis of vectors Im(r).
As this is exactly the central premise of compressive sensing
imaging [15,21], the method can be saved by this sparsity
assumption. Indeed, the present argument can be viewed as
motivating the necessity to use compressive sensing and/or
related approaches in CGI of scenes with M  1 resolution
elements using M  1 pseudorandom illumination patterns.
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VI. DISCUSSION AND CONCLUSIONS

The major difference in the estimated behavior of the
SNR in the case of computational imaging using orthogonal
illumination patterns, as in the case of single-pixel masks,
and the nonorthogonal delocalized harmonic masks or the
pseudorandom illumination patterns satisfying Eq. (30), can be
attributed to the nonorthogonality in the latter cases. The SNR
significantly deteriorates when the coefficients cm used for the
reconstruction of the unknown object transmission function
according to Eq. (4) are calculated from the experimentally
measured coefficients am containing random noise. A decrease
in SNR inevitably takes place when one subtracts two measured
values, such as am, m > 1, and a1, because the mean values
of the coefficients are subtracted, reducing the magnitude
of the resultant signal, but the variances add up, increasing
the resultant noise. This unfavorable effect is well known in
many forms of imaging that involve postdetection processing
of experimentally registered light intensity distributions. For
example, it is exactly this effect that is known to lead to
low SNR and correspondingly large low-frequency artefacts in
in-line phase-contrast imaging with the transport-of-intensity
equation [36–38], when the signal of interest is obtained
by subtraction of two images collected at different defocus
distances.

The considerations presented in the previous paragraph can
in fact be applied to a generalized model of imaging systems de-
scribed by Eq. (4), where the signal of interest is reconstructed
by means of an equation which is linear with respect to the
measured values, am, which contain Poisson or other uncor-
related random noise. Note that the measured coefficients am

can correspond to intensities measured at individual pixels of a
detector or to integrated intensities collected with a structured
illumination pattern and a single-pixel (bucket) detector, or to
something else still. In fact, we can drop the reference to the
method by which the input values am are measured, and also
ignore the particular methods of image reconstruction, leaving
just a general linear equation connecting the measured intensity
values am and the reconstructed object coefficients cm in the
same vector basis:

cm =
M∑

m′=1

rmm′am′ , (33)

where rmm′ ≡ q
(2)
m m′ according to Eq. (4). The correspond-

ing continuous version of Eq. (33) is given by a lin-
ear integral equation with the Green’s function RM (r,r′) =∑M

m=1 Um(r)Um(r′). Depending on the qualitative manner in
which the SNR and the spatial resolution are affected by
Eq. (33), one can naturally divide such systems into three
distinct classes:

(I) Rotation and multiplicationlike class. In this case the
matrix rmm′ is a product of an orthogonal matrix and a
constant number, and the corresponding integral transform
is proportional to a unitary operator. The simplest example
can be given in the case M = 2 by the transformation c1 =
a1 + a2, c2 = a2 − a1, which can be represented as a rotation
by an angle equal to π/4 radians, followed by multiplication by
the factor

√
2. In this case, the image reconstruction operation

does not change the average SNR achieved in the measured

signal (a decrease of SNR for some coefficients cm, compared
to the coefficients am, is exactly matched by the corresponding
increase of other coefficients) and also does not change the
spatial resolution (it preserves the width of the spatial Fourier
spectrum).

(II) Convolutionlike class. In this case the matrix elements
rmm′ are typically all non-negative. The corresponding integral
transform acts in a way similar to low-pass filtering. The
simplest example can be given in the case M = 2 by the
transformation c1 = a1, c2 = (a1 + a2)/2. In this case, the
image reconstruction operation increases the average SNR
(reduces noise by means of spatial correlations), but worsens
spatial resolution (shrinks the spatial Fourier spectrum), in
the transition from the measurement space (corresponding
to coefficients am) to the object space (corresponding to
coefficients cm).

(III) Deconvolutionlike class. In this case the matrix el-
ements rmm′ typically have alternating signs, and the corre-
sponding integral transform acts somewhat similarly to high-
pass filtering. The simplest example can be given in the case
M = 2 by the transformation c1 = a1, c2 = 2a2 − a1, which
is inverse to the transformation given as an example for class II
above. In the present case, the image reconstruction operation
reduces the average SNR (increases noise by means of spatial
decorrelations), but improves the spatial resolution (broadens
the spatial Fourier spectrum).

The imaging system with single-pixel masks considered
in Sec. V belongs to class I. In such systems, the spatial
resolution and the average SNR do not change in the transition
from the measurement space to the object space. Examples
of systems from class II are represented by any low-pass
filtering operation. Such systems improve the SNR (by means
of spatial correlations), but lower the spatial resolution (blur
the image). The imaging systems with overlapping two-pixel
masks considered at the end of Sec. V A, the harmonic
masks considered in Sec. V B, and the pseudorandom masks
considered in Sec. V C all belong to class III. The average
SNR in this case decreases in the transition from the measured
bucket coefficients am to the object coefficients cm. The spatial
resolution does improve in the transition from the image
(measurement) space to the object space. The latter fact was
recently demonstrated in an experiment [26].

Interestingly, the situation with the imaging systems using
nonorthogonal illumination patterns, as considered above, is
exactly opposite to the situation with reconstructive imaging
using the homogeneous transport-of-intensity equation (TIE-
Hom) [38], as considered in our recent publication Ref. [39].
It has been shown previously that the TIE-Hom imaging
is capable of increasing SNR by factors of up to two or-
ders of magnitude, without sacrificing spatial resolution, in
certain common imaging contexts [40–44]. We showed in
Ref. [39] that the IQC can increase in the process of free-space
propagation of a transmitted wave from the object space to
the measurement space (i.e., the image or detector space),
because here the spatial resolution can improve without an
increase of the noise. The key to that fact is the behavior of
photon noise, which, in the case of thermal light sources,
is dominated by the photodetection shot noise. Given that
the total number of photons is preserved in the process of
free-space propagation, the average photon shot noise is the
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same in the object and the image spaces (possibly, after the
geometric magnification is taken into account). Thus the noise
stays the same, while the spatial resolution can improve (the
spatial Fourier spectrum can become broader) in the process of
free-space propagation in the near-Fresnel region [39], giving
one a net increase in the ratio of SNR to the spatial resolution. In
the case of imaging with nonorthogonal illumination patterns,
the situation is the opposite. As we have demonstrated above,
in that case the ratio of the SNR to the spatial resolution
(and the corresponding IQC) in the object space is lower
in the case of nonorthogonal illumination patterns compared
to the equivalent orthogonal case. This happens because the
spatial resolution in the object space is the same for orthogonal
and nonorthogonal (linearly independent) bases, as the spatial
resolution in the reconstructed object is determined only by
the dimensionality of the space spanned by the illumination
vectors, as shown in Sec. III. At the same time, the SNR
is lower in the case of nonorthogonal bases, compared to
orthogonal bases with the same average transmission, as shown
in Sec. IV, because in the nonorthogonal cases the SNR is
drastically lowered (typically in proportion to the number of
illumination patterns) by the reconstruction operator which
effectively spatially decorrelates the noise in the measured
signal [because Eq. (33) performs a deconvolution in this case].

Note that unlike the situation with the imaging setups
considered in Ref. [20], in the setup studied in the present
paper it was not possible to show that the IQC is the same in the
measurement and object spaces, i.e., that it does not change in
the process of object reconstruction. This is probably due to the
fact that although the reconstruction operator RM here is linear,
it is not necessarily shift invariant when the illumination pat-
terns are not orthogonal. The behavior of the spatial resolution
and SNR in the case of measurements in nonorthogonal bases,
and its consequences for the efficiency of the corresponding
imaging systems, may be worth investigating further in the
future.
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APPENDIX A: LOCALIZED ILLUMINATION MASKS

Let the points rm = (mxh,myh) denote the positions
of the centers of the detector pixels with area h2

each, indexed by integers m = (mx − 1)L + my ,
mx,my = 1,2,...,L, m = 1,2,...,M . The function T (r)
is the indicator function of a pixel, i.e., T (x,y) = 1,
when |x| < h/2 and |y| < h/2, and T (x,y) = 0
is zero otherwise. Each shifted function Vm(r) = LT (r − rm)
is then equal to L inside the pixel with index m, represented
by the domain �m = {|x − mxh| < h/2,|y − myh| < h/2},
and is equal to zero elsewhere. The whole image domain is
represented by the square

� =
M⋃

m=1

�m

= {h/2 < x < Lh + h/2,h/2 < y < Lh + h/2},

consisting of M = L2 pixels �m, with the total area |�| =
M|�m| = L2h2. The orthonormality relationship, 〈Vm,Vm′ 〉 =
δmm′ for any m,m′ = 1,2, . . . ,M , with the scalar product de-
fined by Eq. (1), follows from the fact that the spatial supports
of functions Vm(r) with different indexes do not overlap, while
for m = m′ we get |�|−1

∫∫
�

V 2
m(r)dr = |�|−1L2|�m| = 1.

The projector onto the space spanned by vectors V m, m =
1,2, . . . ,M, can be defined as in Eq. (5). The corresponding
Green’s function is not shift invariant in general (although it is
invariant with respect to shifts by a whole number of pixels).
The spatial resolution can be evaluated in accordance with
Eq. (10):

(�2r)2[gr] = |�|/
M∑

m=1

V 2
m(r) = |�|/L2 = |�|/M = h2,

(A1)

where we have taken into account the fact that any point r in �

lies within a single pixel, and hence there is one and only one
basis function which is equal to L at this point (here we ignore
the points r that lie on the boundaries of pixels, because such
points constitute a set of measure zero). We see that the spatial
resolution here is the same at any point r. The result agrees with
one’s natural expectation that the spatial resolution of the direct
imaging setup using a detector with the pixel size h should be
equal to that pixel size.

The SNR can be calculated according to Eqs. (15) and (16).
Because in this case the original illumination patterns Wm =
n̄Tm = (n̄/L)V m are orthogonal, the form factor FM,X(r) can
be expressed by Eq. (17) with xm = 1

|�|
∫∫
�

X(r)T (r − rm)dr.

Note also that because the supports of indicator functions
of different pixels do not overlap, we have Tm(r)Tm′(r) =
δmm′T 2

m(r) for any point r in �. Using this property, it is easy
to see that[

M∑
m=1

xmTm(r)

]2

=
M∑

m=1

x2
mT 2

m(r) = x2
m(r) and

M∑
m=1

xmT 2
m(r) = xm(r),

where m(r) is the index of the pixel containing the point r and

xm(r) = 1

|�|
∫∫
�

X(r′)Tm(r)(r′)dr′.

Substituting these expressions into Eq. (17), we obtain that
F 2

M,X(r) = xm(r), and therefore

SNR2[PMX](r) = (N̄/M)xm(r), (A2)

which corresponds to the average number of (transmitted)
photons registered in the pixel containing the point r. Note
that xm(r) = M−1〈X(r)〉m, where

〈X(r)〉m = 1

|�m|
∫∫
�

X(r′)Tm(r)(r′)dr′

is the average value of the object transmission function over
the pixel containing the point r.
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APPENDIX B: DELOCALIZED HARMONIC MASKS

The illumination vectors here are indexed by m = (mx −
1)L + my , mx,my = 1,2,...,L, and m = 1,2,...,M , and are
equal to Wm = n̄Tm, where n̄ = η Iin |�| is the average
number of photons used in the measurement of each bucket co-
efficient. The orthonormalized basis can be chosen as follows:
V 1 = (4/3)n̄−1W 1 = (4/3)T 1 = 1 and V m = 4n̄−1[Wm −
(2/3)W 1] = 4[Tm − (2/3)T 1] = 4Fm. It is straightforward to
verify that 〈V m,V m′ 〉 = δmm′ , m,m′ = 1,2, . . . ,M .

Note that
∑M

m=1 V 2
m(r) = M , provided that M = 1 + 4M ′

for some positive integer M ′, which is easy to show by
grouping together terms with the same mx and my . Restricting
the values of M to integers of the form 1 + 4M ′, we obtain that
the spatial resolution evaluated in accordance with Eq. (10)
will be equal to

(�2r)2[gr] = |�|/
M∑

m=1

V 2
m(r) = |�|/M. (B1)

This shows, as one would naturally expect, that the spatial
resolution here is equal to the image area divided by the number
of Fourier harmonics used in the imaging system.

Using the simple relation 〈Fm,Fm′ 〉 = (1/16)δmm′ , it is
straightforward to verify by direct calculations that in this
case the biorthogonal basis Um, such that 〈Um,Wm′ 〉 =
〈Um,n̄(1/2 + Fm′)〉 = δmm′ , consists of functions

U1(r) = n̄−1(4/3)[1 − 8
∑M

m=2 Fm(r)],Um(r) = n̄−116Fm(r),
m = 2,3,...,M . Taking into account that Sm(r) = n̄ Um(r) and
substituting the obtained expressions for Sm(r) into Eqs. (16)
and (21), we obtain Eq. (28).

APPENDIX C: PSEUDORANDOM DELOCALIZED MASKS

In view of Eq. (30), the orthonormalized vectors V m can be
naturally chosen here as

V1(r) = I1(r)

I1
= 1,

Vm(r) = Im(r) − I1

σ
, (C1)

m = 2,3, . . . ,M.

If the set of illumination patterns is shift-invariant, i.e.,
it satisfies condition 2, then the spatial resolution of this
imaging system is given by Eq. (12). In order to estimate the
SNR using Eqs. (15)–(17), we need to find the biorthogonal
basis Um or the coefficients qml . Introducing the vectors
Fm ≡ Im/I1 − 1 = Tm/t1 − 1, m = 2,3, . . . ,M , t1 = 〈T1〉 =
T1, we obtain from Eq. (30) that 〈Fm,Fm′ 〉 = κ−2δmm′ , where
κ = I1/σ � 1. It is then straightforward to verify by direct
calculations that in this case the biorthogonal basis Um,
such that 〈Um,Wm′ 〉 = 〈Um,n̄t1(1 + Fm′)〉 = δmm′ , consists
of functions U1(r) = n̄−1t−1

1 [1 − κ2 ∑M
m=2 Fm(r)], Um(r) =

n̄−1t−1
1 κ2Fm(r), m = 2,3,...,M . Substituting Sm(r) = n̄ Um(r)

into Eqs. (16) and (21), we obtain Eq. (31).
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