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Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral
compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method
was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation
(SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic
frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus,
the previous theoretical model can be extended to the case where the pulse can be transformed limited and in
any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by
FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental
pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing
the number of binary phases. The experimental results also verify that our method is superior to that proposed in
[Phys. Rev. A 46, 2749 (1992)]. This method will significantly facilitate the applications of selective two-photon
microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized
to other applications in the field of dispersion compensation.
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I. INTRODUCTION

Selective two-photon microscopy and high-precision non-
linear spectroscopy [1] require the generation of a strong signal
at the desired frequency and the suppression of background
elsewhere, which are enabled by spectral compression. Many
studies have been conducted to achieve this goal by using the
method of quantum coherent control. Broers et al. [2] first
demonstrated spectral focusing in second-harmonic genera-
tion (SHG) and two-photon absorption (TPA) using binary
amplitude (0, 1) modulation with a structure of Fresnel zone
plate. Later, Zheng and Weiner demonstrated the coherent
control of SHG and obtained a signal with a high contrast using
the idea of binary encoded pulses, which was borrowed from
communications technology [3,4]. Moreover, Dantus and co-
workers reported various efforts for spectral compression by
taking advantage of multiphoton intrapulse interference (MII)
[5–14] and demonstrated improved excitation selectivity with
outstanding results and efficiencies via binary phase shaping
(BPS), based on primary numbers, optimization algorithms
[10], and pseudorandom binary phase sequences [14]. How-
ever, most of these methods involve more complex algorithms
and a large number of binary sequences.

Based on the work by Broers et al., Li et al. [15,16]
proposed a more advanced scheme, named Fresnel-inspired
binary phase (0, π ) shaping (FIBPS) for spectral compression,
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in which destructive contributions are sign changed rather than
blocked so that all contributions add constructively. However,
these earlier works discussed only the theoretical model for
spectral narrowing a square-chirped pulse. In this paper, we
extend the theory of FIBPS for spectral compression of pulses
which can be transformed limited (TL) and in any symmetrical
spectral shape (such as Gaussian, Lorentz, and hyperbolic
secant). Furthermore, an analogy of our FIBPS method to
a Fresnel lens is provided, which can introduce negative
dispersion and can also be generalized to applications in the
field of dispersion compensation. Finally, we experimentally
demonstrate the SHG spectral compression for a Gaussian TL
pulse by applying the binary phase sequence to be N = 13,
21, and 41, respectively. With N = 41, a narrowed bandwidth
of only 0.161 nm has been achieved with a compression factor
of 11.3 and relative intensity of 56% compared to the TL SHG
intensity. Perfect agreements between the experimental results
and the theoretical prediction on the bandwidth narrowing
have been demonstrated. Further investigation also verifies
that our method is superior to that of Broers, especially
when the number of binary phase sequences is small. The
narrower bandwidth of SHG can be easily achieved by simply
increasing the number of binary phase sequences.

The paper is structured as follows. In Sec. II we present the
theoretical extension for the spectral compression of SHG by
FIBPS. In Sec. III we present the experimental results. We dis-
cuss the experimental errors and several possible applications
in Sec. IV and close the paper with some concluding remarks
in Sec. V.
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II. THEORETICAL EXTENSION

The SHG intensity in the frequency domain can be ex-
pressed as

ISHG(2ω) ∝
∣∣∣∣
∫

E(ω + ω′)E(ω − ω′)dω′
∣∣∣∣
2

, (1)

where E(ω) = A(ω)eiφ(ω), and A(ω) and φ(ω) are the spectral
amplitude and phase distribution, respectively. Equation (1)
shows that the SHG process occurs only when different pairs
of frequency components within the fundamental pulse (FP)
add up to a single SHG frequency 2ω. Hence, the spectral
compression of SHG can be realized by inducing constructive
interference at desired frequency and destructive interference
elsewhere through modulating the relative phases between
different frequency components within the FP with the pulse-
shaping techniques [17].

To obtain the spectral compression, Li et al. [15,16]
proposed a FIBPS scheme and demonstrate it theoretically
for a square-chirped pulse with a phase distribution φ(ω) =
α(ω−ω0)2, where α is the chirp parameter. If we consider that
the FP has a center frequency of ω0 and a full width of �ω,
the SHG intensity can be rewritten as

ISHG[2(ω0 + �)] ∝
∣∣∣∣
∫ �ω/2+�

−�ω/2+�

|A(ω)|2ei2αω2
dω

∣∣∣∣
2

, (2)

where � = ω−ω0 denotes the frequency detuning from the
central frequency ω0 of the FP. The boundary of the nth
frequency zone tailored by the FIBPS scheme for an FP
spectrum can be expressed as [15,16]

±�n = ±
√

(3/2 + 2(n − 1))π/α (n = 1,2,3 . . .). (3)

The total number of frequency zones (binary phases) N is 2n −
1. According to Eq. (3), an FIBPS function can be obtained as
follows:

FIBPS(�) = π

2

(∏
n

sgn(�n − |�|) + 1

)
, (4)

where sgn is a symbolic function. The above function takes
only the value 0 or π for different frequency zones, and the
phase difference is π between adjacent frequency zones. By
retaining the even frequency zones and introducing the phase
π to odd frequency zones, one can add all the contributions
constructively rather than merely blocking destructive contri-
butions, as mentioned in Ref [2].

Here, we extend this scheme to a more general case in which
the FP is a TL pulse [φ(ω) ≡ 0] and can be in any shape as long
as it is symmetrical about the center frequency, i.e., E(ω0 +
�)=E(ω0 − �). First, we demonstrate that the FIBPS can
introduce a negative quadratic frequency phase factor (negative
chirp) for a TL pulse, leading to the same compression result as
for a chirped pulse. Therefore, a chirp of the FP is not necessary,
and Eq. (3) is also suitable for a TL pulse.

The idea originates from the phase function of a Fresnel
zone plate in the spatial domain, which can be given by [18]

φ(r) = exp

(
− iπr2

λf

)
, (5)

where λ and f are the wavelength of the incident light and the
focal length of the zone plate, respectively. According to the
partition method of the Fresnel zone plate, the radius of the kth
zone is

ρk =
√

kλf . (6)

Similarly, the width of the nth frequency zone in Eq. (3) can
be rewritten as

�n =
√

[4n(1 − 1/4n)π ]/2α =
√

k′λ′f ′ (n = 1,2,3...). (7)

Hence, we can obtain k′ = 4n and λ′f ′ = [(1 − 1/4n)π ]/2α.
By analogy with Eq. (5), the phase function of the FIBPS in
the frequency domain can be expressed as

φ(ω) = exp

(
− iπω2

λ′f ′

)
= exp

[
− i2αω2

(1 − 1/4n)

]
. (8)

We can see from Eq. (8) that the FIBPS can introduce a
negative frequency-dependent quadratic phase factor of −2α

(negative chirp) for a TL pulse when the frequency zone n tends
to infinity in theory, which is analogous to creating a Fresnel
lens. Conversely, a chirped pulse with a chirp parameter of
2α can be compensated and translated into a TL pulse by
shaping its spectrum with FIBPS, which has recently been
realized experimentally [19]. In the practical experiment, one
can achieve the above goal as long as n is sufficiently large, e.g.,
n = 20. In our previous theoretical work, a chirp pulse with the
chirp parameter α was used as the FP. After compensating with
FIBPS, the pulse is still chirped but with a negative chirp pa-
rameter −α which will not affect the final compression result.
Thus, Eqs. (3) and (4) are also valid for a TL pulse and will lead
to the same compression result as for a chirped pulse; the com-
pression result is independent of the shape of the FP spectrum.
Previous theoretical work [15,16] can also be explained and
covered by the current analysis. Thus far, we have developed a
comprehensive theory of FIBPS for the spectral compression
of SHG whenever the FP spectrum is Gaussian or square, a
TL pulse or not. In the subsequent section, as an example, we
will experimentally verify the SHG spectral compression for a

FIG. 1. Shaping scheme for a Gaussian pulse with FIBPS for n =
7, 11, and 21, respectively.
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FIG. 2. Experimental setup. L: lens, HWP: half-wave plate, M:
mirror.

TL pulse by shaping a Gaussian FP spectrum with FIBPS. For
convenience, we will use the above formula with wavelength
instead of frequency. The shaping scheme used in our exper-
iment is shown in Fig. 1, where the Gaussian FP spectra are
shaped with FIBPS for n = 7, 11, and 21, respectively.

III. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup is illustrated in Fig. 2. A commercial
Ti:sapphire laser (Fusion 100–1200, FEMTOLASERS) cen-
tered at 814 nm with a 3-dB bandwidth of 7 nm, pulse duration
of 135 fs, and repetition rate of 75 MHz is used as the FP. After
being collimated by a pair of lenses, the beam is input into a
4-f Fourier pulse-shaping system (MIIPS-HD, Biophotonic).
A half-wave plate HWP1 is used to rotate the polarization of
the input pulse field to obtain maximum diffraction efficiency
when the light passes through the polarization-dependent
grating. A reflection-type liquid crystal on a silicon spatial light
modulator (LCOS-SLM, X10468-2, Hamamatsu) with 792
pixels is placed on the Fourier plane. The different frequencies
in the input pulse are scattered in space by the grating and then
enter the SLM after being collimated by a cylindrical lens.
The shaped pulse is output above the incident pulse along the
vertical direction and then arrives at HWP2 after being reflected
four times, as shown in Fig. 2. Before the output shaped pulse is
focused into 0.5-mm bismuth borate (BIBO) crystal for SHG,
we use an aperture to block the unwanted zero-order diffracted
light from first-order diffracted light, and HWP2 is used to
optimize the SHG efficiency. The generated SHG signal is
focused and then sent into the spectrometer (HR4000, Ocean
Optics Inc., resolution of 0.02 nm) after filtering the residual
FP light. A more detailed description of the experimental setup
can be found in our recent publication [20].

The correspondence between the wavelength and pixels is
calibrated with the pulse shaper by measuring the FP spectrum
before the experiment. To determine the phase of the pulse
before it enters the pulse shaper, phase compensation is per-
formed on the input pulse, and its phase information is obtained
using the MIIPS method [9,20]. In the following experiments,
both FIBPS and the compensated phases of the input pulse are
introduced by the SLM, and the desired phase functions can be
written in the computer to control the phase of pixels in SLM.

B. Results

Figure 3 presents the results of SHG spectral compres-
sion by shaping the FP spectrum with FIBPS for (a) n = 7
(N = 13), (b) n = 11 (N = 21), and (c) n = 21 (N = 41),

FIG. 3. SHG spectral compression with a 0.5-mm BIBO crystal
for n = 7 (a), n = 11 (b), and n = 21 (c). The blue solid lines and
red square points denote the theoretical and experimental results,
respectively. The SHG spectrum has been normalized with respect
to the TL SHG intensity (dashed lines).

respectively. The SHG spectrum has been normalized with
respect to the TL SHG intensity (the dashed line) for
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FIG. 4. Comparison of our SHG compressed results (red) to
Broers’s (blue) with a 10-μm beta barium borate (BBO) crystal for
n = 7. The lines and points denote the theoretical and experimental
results, respectively. The inset shows a comparison of compressed
bandwidth (FWHM) versus n.

comparison. The compressed bandwidth FWHMs in the ex-
periment are 0.393 nm, 0.249 nm, and 0.161 nm, respectively,
while the peak intensities are about 73%, 66%, and 56%,
respectively, compared to the TL SHG intensity. In addition,
we have evaluated the overall intensities of the compressed
SHG pulse relative to that of the TL SHG pulse, and ratios
of 21%, 14%, and 9% have been achieved for n = 7, 11,
and 21, respectively. Compared with the TL SHG spectral
bandwidth of 1.819 nm, Fig. 3(c) shows a compression factor
of 11.3 in our best case. The theoretical prediction for the
spectral compression was also implemented. In the experiment,
the TL FP has a full width (FW) of �λFW = 18.674 nm,
from 804.648 to 823.322 nm (�ω = 5.315 × 1013 rad/s).
The chirp parameters corresponding to n = 7, 11, and 21
are 2α1 = 30023 fs2, 2α2 = 47815 fs2, and 2α3 = 92293 fs2,
respectively. The theoretical predictions for these three shaping
cases were plotted by blue solid lines in Fig. 3, and very good
agreements with the experimental results have been achieved.

C. Experimental comparison of our method to Broers’s

To verify the superiority of our method, we also applied
the Broers method for spectral compression and made a
comparison with our method in the experiment. The results are
shown in Fig. 4. The lines and points represent the theoretical
and experimental results with our method (red) and that of
Broers (blue) for n = 7 (N = 13, as an example), respectively.
The experimental results show good agreement with the theory.
It can be seen that the compressed bandwidth (FWHM)
based on our method was 0.368 nm with a peak intensity of
75% compared to the TL SHG intensity, while with Broers’s
method, the compressed bandwidth was 0.587 nm with a peak
intensity of 64%. It clearly verifies that our method is superior
to that of Broers. The reason is that our method provides
more exact phase relations between the different frequency
components within the FP. The comparison of the compressed
bandwidths between the two methods as a function of n is
shown in the inset of Fig. 4. One can see that the superiority is

evident when n is small. However, with the increase in n, the
difference of the compressed bandwidth will tend to converge.

IV. DISCUSSION

As shown in Figs. 3 and 4, there are minor discrepancies
between the experimental results and the theory, mainly on both
sides. Such discrepancies can be attributed to the following
factors: (1) Although the use of the MIIPS method can
compensate for the majority of phases of the input pulse, there
remains a small residual uncompensated phase, resulting in
experimental errors. (2) The BPS we designed does not exactly
coincide with the pixels in the SLM because of the limitation of
the resolution of this pulse shaper, and this noncorrespondence
will become more distinct when N increases. This is also one
of the main reasons why the compression intensity decreases
with n in Fig. 3. We also implemented the SHG spectral
compression experiment for n = 31 (N = 61, not given in
the text), where the obtained SHG intensity was lower and
the compression bandwidth was even slightly larger than that
for n = 21, indicating that the noncorrespondence between
the phase shaping point and SLM pixels has become evident.
We believe this error can be gradually eliminated with the
improvement in SLM manufacturing technology and pulse
shaper resolution. (3) The pixels in the SLM are discrete, and
there is a gap (0.4 µm) between adjacent pixels. Since the light
field passing through these gaps is not modulated (∼2%), this
part of the energy will be lost, affecting the compression effect.
In a practical experiment, as the shaper resolution is limited, it
is necessary to choose a reasonable N to obtain a satisfactory
compression effect.

It should be noted that binary amplitude modulation [2] can
also be applied for spectral compression, while the compres-
sion effects of SHG spectrum will be worse with a broader
bandwidth, lower intensity, and larger background [15]. Addi-
tionally, although we demonstrated the spectral compression
of SHG for a Gaussian pulse, FIBPS is independent of the
shape of the FP spectrum and it is suitable for a variety of
commonly used pulses such as Gaussian, square, Lorentz, and
hyperbolic secant. This is because FIBPS originates from the
quadratic phase factor in Eq. (2) and is not related to the spectral
amplitude. Moreover, based on the theoretical analysis, FIBPS
can introduce a negative frequency-dependent quadratic phase
factor (negative chirp) for a TL pulse; thus, it is not necessary
that the FP be chirped. If a pulse is not a quadratic-phase
chirped pulse but has an arbitrary phase, we can compensate
the phase and translate it into a TL pulse by the MIIPS
method in principle before a compression experiment. Thus,
FIBPS provides a general method and can not only realize the
spectral compression of SHG, but also be applied for solving
other problems related to the dispersion compensation, such
as chirped light pulse compression [19] and the compression
of chirped biphotons [21]. According to Eq. (3), the chirp
parameter related to the size of the dispersion is proportional
to n for a given spectral bandwidth of the FP. Thus, our
method can be very convenient to match the required amount
of dispersion by only adjusting n. Note that because n takes a
positive integer, the compensation is discrete.

We also implemented the experiment of SHG spectral
compression with a 10-µm beta barium borate (BBO) crystal
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for n = 11, 21 (not given in the text) and obtained the same
compression effects. However, the compressed bandwidth in a
short crystal will be broader than in a long crystal owing to the
broadening of the phase-matching bandwidth. Furthermore,
the SHG intensity obtained in a long crystal is higher than
that in a short one because the SHG power scales linearly
with the crystal length [3]. Therefore, in practical applications,
longer crystals should be selected as the SHG crystal to obtain
a narrower bandwidth with a high signal intensity.

V. CONCLUSION

We have extended the theory of FIBPS for spectral com-
pression of SHG to a TL pulse with any symmetrical spectral
shape and experimentally verified it for a Gaussian TL pulse
as an example. For a given FP spectral bandwidth, a narrower
bandwidth can be obtained in principle by simply increasing
the total number of binary phases N while requiring a higher
shaper resolution. The experiment also verified that our method
is superior to that of Broers. Our method provides deterministic
BPS with a small amount of binary phase sequences for
effectively realizing SHG spectral compression without search
space maps or any complex algorithms. These results will be
useful in the applications of selective two-photon microscopy

[7], two-photon imaging through biological tissue [11], and
high-precision nonlinear spectroscopy [1,12]. Furthermore,
FIBPS can be analogous to a Fresnel lens; thus it can introduce
negative dispersion and can also be generalized to applications
in the field of dispersion compensation, such as chirped pulse
compression and the compression of chirped biphotons. Our
work paves the way for exploring the applications of FIBPS to
other fields involving a frequency-dependent quadratic phase
factor, such as nonlinear spectroscopy, ultrafast optics, and
quantum optics.
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