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Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase
reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics
of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering
channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green’s
function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing
channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional
geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell
theory for light scattering from a nondegenerate atomic sample of the same density and size.
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I. INTRODUCTION

Light scattering from ultracold atomic systems existing
under conditions of quantum degeneracy is a challenging and
intriguing issue for both quantum optics and atomic physics.
Together, investigation of these combined fields is practically
important for developing various quantum interface protocols
between light and matter subsystems. Although light scattering
from either degenerate Bose or Fermi gases is of strong interest,
we consider in the current context the degenerate Bose gas only,
which is most typical for alkali-metal systems. The superposed
light and matter wave propagating as a single quantum optical
excitation through a Bose-Einstein condensate (BEC) phase
was predicted in [1] even before the BEC had been created in
the laboratory. Since the successful experimental realizations
of BEC in alkali-metal systems reported in [2,3], evident signa-
tures of cooperative dynamics in light scattering from the con-
densate have been observed in a series of experiments. These
include manifestation of superradiant behavior of Rayleigh
scattering in [4–6], formation of superfluid vortices induced by
coherent optical processes in [7–9] and spin vortices in [10],
and optical control of the BEC phase transition with Faraday
imaging technique in [11]. The strong coherent coupling of
light with a sample led to the condensate fragmentation [4–6]
and an explanation of such a quite nontrivial optomechanical
effect has been attempted in [5] in terms of a Kapitza-Dirac
diffraction phenomenon.

The above experiments have encouraged development of
theoretical insights towards a deeper understanding and precise
description of light scattering under conditions of quantum
degeneracy and from BEC in particular. The basic concept
of a master equation for the order parameter suggests a rele-
vant approach based on time-dependent generalization of the
nonlinear Schrödinger (Gross-Pitaevskii) equation [12–14].
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The coherent effects of conversion of either linear or angular
momentum from light to the condensate are associated with a
stimulated Raman process mediating the dynamics of the order
parameter [9,14]. The superradiant properties of the Rayleigh
scattering, observed in a BEC, was explained by making use
of the effective Hamiltonian approach via the mechanism of
cooperative emission induced by a coherent classical pump in
[15–19].

In the present report we focus on a microscopic quantum
theory of a single-photon scattering towards an ab initio
description of elastic light scattering from a macroscopic
atomic sample existing in the quantum degenerate BEC phase.
Following the second quantized formalism, Bogoliubov theory
[20], and the Gross-Pitaevskii model [21,22], we introduce a set
of coupled and closed diagram equations for the polariton prop-
agator contributing to the T matrix and scattering amplitude.
Under conditions of bosonic quantum degeneracy for atoms,
we follow important density corrections to the quasienergy
structure caused by static interactions and radiation losses as-
sociated with incoherent scattering. We aim to test the validity
of the conventional macroscopic Maxwell description for the
quantum degenerate gas and to follow possible deviations with
light scattering from a nondegenerate atomic sample of the
same density and size.

This paper is organized as follows. In Sec. II we de-
velop our general theoretical framework of light scattering
from a quantum degenerate atomic gas. This represents a
detailed elaboration of the sketch presented in an earlier
work [23]. In Sec. III we derive the basic scattering equa-
tion via the Feynman diagram method (briefly explained in
Appendix A) and discuss general properties of the Green’s
function (polariton propagator) responsible for transporting
an optical excitation in a BEC sample. In Sec. IV we present
the results of our numerical simulations for light scattering
in a one-dimensional geometry; the calculational scheme is
detailed in Appendix B. In Sec. V we make some concluding
remarks.
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II. SCATTERING PROBLEM UNDER CONDITIONS
OF QUANTUM DEGENERACY

The amplitude of a photon scattered by a quantum system
is given by the T matrix

T̂ (E) = V̂ + V̂
1

E − Ĥ
V̂ . (2.1)

In this definition, Ĥ is the Hamiltonian of the quantum system.
It is built from an unperturbed part Ĥ0 and an interaction term
V̂ such that Ĥ = Ĥ0 + V̂ .

The differential cross section is expressed in terms of
the scattering amplitude, given by the applicable T -matrix
element, which is a function of the initial energy Ei :

dσ i→f = V2ω′2

h̄2c4(2π )2 |Tg′e′k′;gek(Ei + i0)|2d�. (2.2)

An initial state |i〉 = |g; e,k〉 is defined by the incoming photon
wave vector k, frequency ω ≡ ωk = ck, polarization vector e,
and the quantum numbers of the scattering system |g〉. In the
case of a collection of atoms, under strict conditions of quantum
degeneracy, |g〉 = |BEC〉N initially describes a collective state
of N atoms in the BEC phase. The final state |f 〉 = |g′; e′,k′〉
is specified by a similar set of quantum numbers, with the
exception that |g′〉 can exist in a disturbed condensate state
for inelastic channels, and the solid angle � is directed along
the wave vector of the outgoing photon k′. The quantization
volume V appearing in the differential cross section is required
by the second quantized description of the interaction operators
for the quantum degenerate system in the basis of plane-wave
modes for the scattering photon and the atoms. The total cross
section can be obtained from the diagonal T -matrix element:

σtot = −2V
h̄c

ImTii(Ei + i0). (2.3)

Then the cross section can be evaluated via calculation of one
T -matrix element for the elastic forward scattering channel.

For a weakly interacting quantum gas (see the comment at
the end of this section) the interaction term V̂ in Eq. (2.1) can
be taken in the dipole long-wavelength approximation [24–26],
which is given by

V̂ = −
∑

n

∫
d3r

[
dμ

nmÊμ(r)�̂†
n(r)�̂m(r) + H.c.

]
, (2.4)

where d
μ
nm is the matrix element of the μth vector component

of an atomic dipole moment and n and m respectively specify
the excited and ground states of the atom. In addition, Êμ(r)
is the μth vector component of the electric-field operator and
for the sake of generality we use covariant or contravariant
notation for the vector and tensor indices. The operators �̂m(r)
and �̂

†
n(r) are the second quantized annihilation and creation

operators of an atom at position r respectively in the ground
and excited states. We will further consider a BEC consisting
of the simplest two-level atoms with a 1S ground state and
1P excited state such that quantum numbers n = 0,±1 and
m = 0 respectively denote the single-atom angular momentum
projection of the excited and the ground states.

In accordance with the general concept of quantum degen-
eracy for the system ground state existing in the BEC phase at

zero temperature (see [25]), we accept that

�̂0(r)|BEC〉N = �(r)|BEC〉N−1, (2.5)

where �(r) is the order parameter (often termed the wave
function) of the condensate. We consider the BEC as a macro-
scopic object such that the order parameter is insensitive to any
small variation of the number of particles in the condensate.
Then the scattering amplitude, expressed by on-shell T -matrix
elements contributing to Eqs. (2.2) and (2.3) for the scattering
of an incident photon of frequency ω to the outgoing photon
of frequency ω′, is given by

Tf i(E) = 2πh̄(ω′ω)1/2

V

∫∫
d3r ′d3r

∑
n′,n

× (d · e′)∗n′0(d · e)0ne
−ik′r′+ikr �∗(r′)�(r)

×
(

− i

h̄

)∫ ∞

0
dt e(i/h̄)(E−EN−1

0 +i0)t iGn′n(r′,t ; r,0),

(2.6)

where EN−1
0 is the initial energy of the condensate consisting

of N − 1 particles. The internal dynamics of the scattering
process is described by a single optical excitation evolving in
the condensate

iGn′n(r′,t ′; r,t) = 〈BEC|T �n′(r′; t ′)�†
n(r; t)|BEC〉N−1

(2.7)

with projection onto the product of condensate and field
vacuum states such that entirely

|BEC〉N−1 ≡ |BEC〉N−1
atoms |0〉field. (2.8)

Equation (2.7) defines the time-ordered causal Green’s func-
tion (propagator) associated with the polaritonic quasiparticle
excitation superposed between the field and atom. The excita-
tion propagates through a condensate consisting of N − 1 par-
ticles. The operators contributing to the polariton propagator
are the original atomic operators transformed in the Heisenberg
representation and dressed by the interaction process. In the
element of the T matrix of the form (2.6), the outer operators V̂

in their basic definition (2.1) are revealed in the rotating-wave
approximation (RWA). Such an assumption is valid since we
are interested in nearly resonant scattering when both ω and
ω′ are close to the atomic transition frequency ω0.

The Green’s function (2.7), rewritten in the interaction
representation, can be expanded in the perturbation theory
series

iGn′n(r′,t ′; r,t)

= 〈BEC|Ŝ−1T
[
�

(0)
n′ (r′; t ′)�(0)†

n (r; t)Ŝ
]|BEC〉N−1

= 〈BEC|T [
�

(0)
n′ (r′; t ′)�(0)†

n (r; t)Ŝ
]|BEC〉N−1, (2.9)

where in the interaction representation the � operator is
superscripted by the index (0). We consider that the condensate
itself is a stable system, which should not be modified by
the interaction (2.4) without its advanced perturbation by an
incoming photon. This should be justified by the requirement
that the evolution operator

Ŝ = T exp

[
− i

h̄

∫ ∞

−∞
V̂ (0)(t)e−0|t |

]
(2.10)
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does not change the BEC state such that Ŝ|BEC〉N−1 =
|BEC〉N−1. Although this requirement seems to be accepted
in assumptions of the RWA, let us make an important remark
concerning its applicability.

The condensate, considered as a physical object, is not an
ideal gas. The small but physically important difference EN

0 −
EN−1

0 = ε0 ≡ μc + E0 gives a binding energy for adding
a particle into an atomic ensemble, which incorporates the
chemical potential μc and the internal ground-state energy E0

of a single atom. The latter could be set to zero, but in our
derivation it is convenient to leave E0 as a physical parameter.
For the quantum degenerate gas, consisting of not extremely
dense and weakly interacting atoms and fairly described in
the framework of the Gross-Pitaevskii model [21,22], the
inequality

μc �
h̄2k2

0

2mA

	 h̄γ (2.11)

is fulfilled, where k0 ≡ λ̄−1
0 is wave number for a resonant

photon, mA is the atomic mass, and γ is the natural spontaneous
decay rate for the upper state of the atom. In accordance with
the model (see [25]), the chemical potential for a homogeneous
BEC is given by

μc = n0

∫
d3r U (r) > 0, (2.12)

where U (r) is an interaction potential in the system of two
atoms and n0 is the atomic density. The subtle point is that the
interaction U (r) incorporates both the short-range repulsive
part and the long-range attractive dipole-dipole polarization
interactions. The latter is also known as the van der Waals
interaction and the related asymptotic behavior of the potential
U (r) is constructed in the second order of the same Hamilto-
nian (2.4) but keeping the terms beyond and alternative to the
RWA concept.

The conflicting situation with double accounting of the
interaction Hamiltonian (2.4) can be resolved once we pay
attention to the fact that the van der Waals interaction is
meaningful on a distance of an atomic scale r ∼ O(1)a0, where
a0 is the Bohr radius, but the optical coupling experiences the
distances r ∼ λ̄0 � a0. That means that there is no intersection
in the diagram representation of U (r) with those which are
induced by the evolution operator (2.10) and which couple
a pair of distant atoms where one is always excited. In this
case the evolution operator (2.9) indeed does not affect the
condensate state and the second line in Eq. (2.9) is valid
beyond the restrictions of the RWA approach since the internal
interaction in the atomic ensemble is weak and can be safely
separated from the optical excitation dynamics mediated by
the scattering process.

The inequality (2.11) provides us with the chemical poten-
tial as the smallest parameter of the theory and is fulfilled up
to the densities n0λ̄

3
0 � 1. This is a typical condition when

considering a condensate consisting of alkali-metal atoms.
From the physical point of view that means that we consider
the BEC in conditions close to an ideal gas and assume that
the matrix elements in (2.4), as well as the atomic energy
structure in the perturbation theory expansion, is the same as
for independent atoms. Nevertheless, we do not ignore the

gas nonideality and the interatomic interaction U (r) in the
ground state as it is crucially important for proper description
of the general behavior of the order parameter � = �(r,t)
under the framework of the Gross-Pitaevskii model including
superfluidity as the main macroscopic quantum property of the
condensate. In its main approximations, our consideration is
applicable up to the bound of μc � h̄γ .

III. DYNAMICS OF THE OPTICAL EXCITATION
IN THE CONDENSATE

A. Diagrammatic representation

The polariton propagator (2.9) can be expanded in the
perturbation theory series and the appearing terms can be
regrouped with the Feynman diagram method. The basic
elements and definitions are given in Appendix A. Since the
considered interaction processes are primarily developing in
near-resonance conditions, we follow the RWA approach and
keep the leading expansion terms. Eventually, the polariton
propagator can be constructed as a dressed Green’s function of
an excited atom and obeys the Dyson-type diagram equation

(3.1)

where it is depicted as a straight double line. This corresponds
to the fact that the original atomic propagator is assumed
dressed by all interaction processes. The ingoing and outgoing
vertical arrows provide an image of the order parameter and
form the self-energy part responsible for coherent conversion
of the excitation between the field, in which the free dynam-
ics is expressed by an undressed wavy line, and an atom
subsequently recovered in the condensate phase. Consistent
with this diagram equation, the above coherent process partly
degrades because of interaction with the vacuum modes when
the excited atom emits a photon spontaneously and escapes
coherent dynamics, propagating through the condensate as a
simple spectator.

The latter process contributes in (3.1) with an incomplete
polariton propagator, which is illustrated by a straight solid
line in the diagrams and obeys the Dyson-type equation

(3.2)

which should be considered together with the equation for the
dressed field propagator

(3.3)

These two diagram equations are mutually closed and repro-
duce the self-consistent dynamics of an atomic dipole interact-
ing with its environment, similar to the conditions in a typical
disordered atomic gas. Indeed, any optical excitation created
from the condensate has a chance to be incoherently reemitted
into the vacuum modes and transfer the atom, emitting such a
photon, out of the condensate phase. These circumstances are
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described by the incomplete polariton propagator (3.2) having
a similar diagrammatic representation as atomic excitation in a
disordered gas. Such incoherent scattering induces losses and
leads to degradation of coherent dynamics supported by the
self-energy operator in Eq. (3.1). In a natural optical association
this process introduces the dielectric permittivity constructed
in a way similar to that of a disordered atomic gas of the same
density.

B. Incoherent losses and the dielectric permittivity
of the condensate

The self-energy part in (3.3) (polarization operator) empha-
sizes the coherent structure of the matter state considered in
conditions of quantum degeneracy. Nevertheless, for an infi-
nite, locally homogeneous isotropic medium, which physically
requires that the sample size and inhomogeneity scale of the
order parameter �(r) would be comparable to or longer than
the radiation wavelength, the solution of Eq. (3.3) is expected
to be similar to the case of a disordered atomic gas of the same
density. Indeed, both vertices in the self-energy part of Eq. (3.3)
are linked by the propagator (3.2) in which the respective
resonant excitation degrades on a time scale of natural decay
when the excited atom can drift a distance much less than its
radiation wavelength. Thus both vertices are taken in proximal
spatial points such that the order parameter actually contributes
to Eq. (3.2) as the local atomic density n0(r) = |�(r)|2. With
this simplification we can construct solutions of Eqs. (3.2)
and (3.3) as for an infinite, homogeneous isotropic medium in
closed analytical form and compare the result with the similar
performance of an incoherent scattering process developing in
a disordered atomic gas.

1. Analytical performance

For the sake of convenience and for further derivation we
switch the primed and unprimed arguments and indices in the
notation of the Green’s functions [see, for example, Eq. (2.9)
and our definitions of the undressed functions in Appendix A].
In stationary and homogeneous conditions these functions
depend only on the difference between their spatial and time
arguments. Then we can make a Fourier transform for the
dressed Green’s functions, constructed by the diagram method,
and define

D(E)
μμ′(k,ω)

=
∫

d3R

∫ ∞

−∞
dτ eiωτ−ik·RD(E)

μμ′(R,τ )

∣∣∣∣R=r−r′
τ=t−t ′

(3.4)

for the photon propagator, fulfilling Eq. (3.3), and

G
(γ )
nn′ (p,E)

=
∫

d3R

∫ ∞

−∞
dτ e(i/h̄)Eτ−(i/h̄)p·RG

(γ )
nn′ (R,τ )

∣∣∣∣R=r−r′
τ=t − t ′

(3.5)

for the incomplete polariton propagator, fulfilling Eq. (3.2).
The superscript γ is added to associate such a propagator
with excitation dynamics mediated by spontaneous scattering
processes. In the representation (3.4) we assume the dressed

positive-frequency component of the vacuum Green’s function
(A4) with ω > 0 and the equivalence between the causal and
retarded-type definitions for this case.

In the Fourier representation Eq. (3.3) can be straight-
forwardly resolved with respect to the incomplete polariton
propagator

D(E)
μμ′(k,ω) = − 4πh̄ω2

ω2
k − ε(k,ω)ω2

[
δμμ′ − c2 kμ′kμ

ε(k,ω)ω2

]

≈ − 4πh̄ω2

ω2
k − ε(ω)ω2

[
δμμ′ − c2 kμ′kμ

ε(ω)ω2

]
, (3.6)

where

ε(k,ω) = 1 − 4π

h̄
d2

0 n0G
(γ )(h̄k,h̄ω + ε0). (3.7)

Here d0 is the modulus of the transition dipole moment (the
same for all the transitions),n0 = |�|2 = const is the density of
atoms, and for an isotropic medium with a degenerate excited
state (En = constn) we have

G
(γ )
nn′ (p,E) = δnn′G(γ )(p,E). (3.8)

Taking into account the inequality (2.11), we expect a neg-
ligible deviation in (3.7) from the limit of immobile atoms
and approximate ε(k,ω) ≈ ε(0,ω) ≡ ε(ω), which justifies the
second line in Eq. (3.6). Equation (3.6) (as well as similar
tensor relations found later in the paper) is performed for Carte-
sian components μ,μ′ = x,y,z, but for the case of spherical
components μ,μ′ = 0,±1 one has to change δμμ′ → gμμ′ =
(−1)μδμ,−μ′ .

The obtained result looks similar to that of a conventional
medium beyond quantum degeneracy. As we can see, with
reference to [25], such a type of photon Green’s function in a
medium can be associated with a fundamental solution of the
macroscopic Maxwell equations where ε(ω) is the dielectric
permittivity of the medium. However, in the case of quantum
degeneracy the excitations in both the field and matter subsys-
tems, i.e., the photon and the excited atom, transport through
the sample in a superposed polariton mode, as suggested by
the complete graph equation (3.1). Although the association
with a conventional medium is not intrinsically consistent, we
call ε(ω) a dielectric permittivity of the condensate, keeping in
mind in such an analogy that it is constructed involving only
the contribution of excitations over the condensate created in
the incoherent scattering process.

Equation (3.2), decoded in the Fourier representation,
contains the field Green’s function (3.6) contributing to the
self-energy part in the form of the convolution integral with an
atomic propagator (see Appendix A for a clarifying comment).
Since recovering the incoherent losses as well as the inter-
action with the quantized continuum is mostly important for
nearly resonant conditions, we can expect that in the integral
evaluation, the internal arguments are varied in sufficiently
broad domains but located near ω ∼ ω0 and k ∼ k0 = ω0/c,
where ω0 = (En − E0)/h̄ is the atomic transition frequency.
Considering the field Green’s function as an analytical function
of detuning � = ω − ω0 in the complex half plane where
Im[�] > 0, the integral over ω (approximated as an integral
over � in infinite limits) can be reliably reproduced by the
residue at the pole point ωE = (E − E0)/h̄ [where � →
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�E = (E − En)/h̄]. In such an estimate we can safely ignore
the small pole displacement associated with the Doppler shift
as a negligible relativistic-type correction to the remaining
integral evaluated over k variable.

Under these assumptions, Eq. (3.2) reads[
E − p2

2mA

− En − �(γ )(p,E)

]
G(γ )(p,E) = h̄ (3.9)

and the self-energy part �(γ )(p,E) is expressed by the sum

�(γ )(p,E) = �(st)(p,E) + �(rad)(p,E), (3.10)

where the first term is given by

�(st)(p,E) = 4π

3

∫
d3k

(2π )3

d2
0

ε(k,ωE)

≈ 4π

3

∫
d3k

(2π )3

d2
0

ε(ωE)
(3.11)

and can be associated with the interaction of the dipole
with its own field in the environment of the over-condensate
component, created in the incoherent excitation process. The
second term is given by

�(rad)(p,E) = −8π

3
d2

0

∫
d3k

(2π )3

ω2
E

c2k2 − ε(k,ωE)ω2
E

≈ −8π

3
d2

0

∫
d3k

(2π )3

ω2
E

c2k2 − ε(ωE)ω2
E

(3.12)

and reveals radiation backaction of the incoherent emission on
the dipole’s dynamics.

Equations (3.9)–(3.12) and (3.7) entirely construct one
closed but quite complicated self-consistent equation for the
incomplete propagator G(γ )(p,E), which has a nonlinear inte-
gral form. However, the equation can be essentially simplified
by applying a faithful approximation, expressed by the second
lines in Eqs. (3.11) and (3.12), which assumes that in Eq. (3.9)
the kinetic energy term for p ∼ h̄k0 is small in comparison
to the self-energy part. As we have pointed out above, this
is justified by the inequality (2.11). In this approximation the
dielectric permittivity ε(ω) and the function G(γ )(p,E) (with
p ∼ h̄k0) can be found in an analytical form once we resolve
the problem with divergences existing in both contributions to
the self-energy part (3.10).

2. Renormalization of the self-energy divergences

Let us express the contribution (3.11) in the form

�(st)(p,E) ∼ −d · E(vac)(0) − d · [E(med)(0) − E(vac)(0)],

(3.13)

where we have assumed that an atomic dipole d is located at
the origin of the coordinate frame and the diverging integral
(3.11) was converted to the dipole’s infinite electric field
E(med)(0) in the medium with a dielectric constant ε. We also
subtracted and added the same quantity existing in vacuum
with ε = 1. The vacuum term means the dipole self-action, i.e.,
an artificial object of the theory, which reveals the incorrectness
of the dipole gauge on the distances comparable to the atomic
scale. The infinite energy, associated with this term, should
be incorporated into the physical energy of the excited atom as

internal energy of the pointlike dipole particle. Then the second
term in Eq. (3.13) is a physical quantity showing how the dipole
self-action is modified in the environment of other dipoles. One
expects that the incoherent scattering is a locally cooperative
process and the selected dipole is indistinguishable from other
proximal dipoles responding to the driving field of an exciting
photon. Then, in accordance with the arguments performed
in Refs. [26–28], we can accept the standard Lorentz-Lorenz
interpretation of the field and energy shift, associated with
static interaction of a collection of proximal dipoles

E(med)(0) − E(vac)(0) → 4π

3
n0d,

�(st)(p,E) → −4π

3
n0d

2
0 , (3.14)

where we substituted d2 → d2
0 .

The second contribution (3.12) can be interpreted as an
interaction with the quantized vacuum continuum manifestable
via the radiation Lamb shift and spontaneous decay rate. By
setting ε = 1 the integral transforms to

�(vac)(p,E) = −8π

3
d2

0

∫
d3k

(2π )3

ω2
E

c2k2 − ω2
E − i0

∣∣∣∣
E∼En

⇒ h̄�L − ih̄

2
γ, (3.15)

where �L → ∞ is the vacuum Lamb shift further renormal-
ized and incorporated into the atomic energy En, dressed by
interaction with the vacuum modes. The regularized integral
given by the difference of (3.12) and (3.15) becomes converg-
ing and reproducible by residues at its pole points. Eventually,
we arrive at the renormalization of the radiation correction to
the self-energy part

�(rad)(p,E) ⇒ − ih̄

2

√
ε(ωE)γ, (3.16)

which contains both the radiation damping and energy shift
modified by the radiation coupling with the over-condensate
component created by the excitation process.

3. Incomplete propagator in closed form

By substituting the renormalized self-energy parts (3.14)
and (3.16) into (3.10) and (3.9) and in accordance with our
definition of the dielectric permittivity given by Eq. (3.7) with
k → 0 we obtain the equation

ε
(
ω − μc

h̄

)
= ω − ω0 − 8π

3h̄
n0d

2
0 + i

2

√
ε(ω)γ

ω − ω0 + 4π
3h̄

n0d
2
0 + i

2

√
ε(ω)γ

. (3.17)

On the left-hand side the frequency argument of the permittiv-
ity is displaced by the chemical potential μc. This emphasizes
the fact that for a single optical excitation from the condensate
the extra action is needed, which is a meaningful part of the
binding energy ε0 = E0 + μc given by the chemical potential.
Although in our model this displacement is rather small, it
recognizes a qualitatively important extension up to the case
of a strongly nonideal gas. However, by neglecting it, we
obtain an equation for the dielectric permittivity identical to an
atomic ensemble consisting of cold disordered and randomly
distributed atomic dipoles (see Ref. [27]).
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Equation (3.17) can be analytically solved and its solution
can be applicable to the case of an inhomogeneous medium
if the density n0 = n0(r) and order parameter �(r) are varied
on a spatial scale comparable to the radiation wavelength or
longer. Then Eq. (3.9) suggests the approximate form in the
mixed space-frequency representation[

E + h̄2

2mA

� − En + 4π

3
n0(r)d2

0

+ ih̄

2

√
ε(r,ωE)γ

]
G(γ )(r,r′; E) = h̄δ(r − r′), (3.18)

where we parametrized the dielectric constant ε = ε(r,ω) by
its spatial dependence. Indeed, in this equation G(γ )(r,r′; E),
considered as a function of r − r′, transports a single-photon
excitation, created from the immobile condensate, from point
r′ to point r, which degrades on a spatial scale sufficiently
less than λ̄0 = k−1

0 . Thus Eq. (3.18) accepts only proximal
spatial arguments r ∼ r′ ∼ (r + r′)/2, where n0 = n0(r) is
approximately constant.

We have constructed the incomplete polariton propagator
(3.2) in a form that is similar to the complete excited-state
propagator of a single atom in a disordered atomic gas of
the same density. Such an analogy, emphasizing the similarity
in spontaneous scattering from both systems, was expectable
and prefaced this part of our derivation. Nevertheless, as was
pointed out above, the analogy is not so straightforward and
in the conditions beyond the Gross-Pitaevskii model (i.e., for
a nonideal quantum gas with strong internal coupling) it could
appear as an important deviation in the description of such
physically different systems.

C. Complete polariton propagator

By decoding the diagram equation (3.1) for the complete po-
lariton propagator we extend spontaneous dynamics, described
by Eq. (3.18), by involving the process of coherent conversion
of the excitation between the field and condensate[

E + h̄2

2mA

� − En + 4π

3
n0(r)d2

0

+ ih̄

2

√
ε(r,ωE)γ

]
Gnn′ (r,r′; E)

−
∑
n′′

∫
d3r ′′ �

(c)
nn′′(r,r′′; E) Gn′′n′(r′′,r′; E)

= h̄δnn′δ(r − r′). (3.19)

The kernel of the respective integral self-energy operator
(simplifying the argument superscripted with a double prime
to a single prime) is given by

�
(c)
nn′(r,r′; E) = 1

h̄

∑
μμ′

�(r)�∗(r′) d
μ
n0d

μ′
0n′

×D
(E)
μμ′

(
r − r′,ωE − μc

h̄

)
, (3.20)

where the vacuum field Green’s function, expressed as the
wavy line in the diagram equation (3.1) and defined by
Eqs. (A1) and (A4), contributes here in the mixed space-

frequency representation

D
(E)
μμ′(R; ω) = −i

∫ ∞

−∞
dτ eiωτ

〈
T E(0)

μ (r,t)E(0)
μ′ (r′,t ′)

〉∣∣∣∣ τ=t−t ′
R=r−r′

= −h̄
|ω|3
c3

{
i
2

3
h

(1)
0

( |ω|
c

R

)
δμν

+
[
XμXμ′

R2
− 1

3
δμμ′

]
ih

(1)
2

( |ω|
c

R

)}
. (3.21)

Here the averaging is over the vacuum state and h
(1)
L (· · · )

with L = 0,2 are the spherical Hankel functions of the first
kind.

The derived equation (3.19) traces the dynamics of a single-
particle excitation in the condensate with the assumption that
the order parameter, density distribution, dielectric permittiv-
ity, etc., have a smooth profile on a mesoscopic scale, similar
to the conventional macroscopic Maxwell theory. It can be
visualized as a Schrödinger-type equation for an excited atom
propagating in space and modified by interacting with the en-
vironment. Here the kinetic energy term is actually responsible
for the negligible drift of the excitation during the decay time
when the transferred momentum of the polariton is limited
by the value of h̄k0 in its order of magnitude. Nevertheless,
the optical excitation itself can propagate through the sample
with a much faster speed approaching the speed of light,
which can be demonstrated via the solution of Eq. (3.19) in
the limit of an infinite homogeneous medium. To show this
we include below part of the discussion from our previous
work [23].

Equation (3.19) can be solved in an infinite, homogeneous
isotropic medium. The solution is found in the reciprocal space
as a linear combination of the transverse and the longitudinal
components with respect to the momentum argument. We will
also take, for further calculations in this section, the internal
binding energy of the condensate as weak; this means that
we take the chemical potential to be negligible in comparison
with characteristic spectral parameters such as the spontaneous
radiative decay rate and the (much smaller) single-particle
recoil energy [see (2.11)]. Then the Fourier components of
the complete polariton propagator can be expanded as

Gnn′ (p,E) = G‖(p,E)
pnpn′

p2
+ G⊥(p,E)

[
δnn′ − pnpn′

p2

]
,

(3.22)

where, in accordance with the selection rules for the dipole
moment operators in Eq. (3.20), we link the vector in-
dices, in the Cartesian frame, with the quasiparticle mo-
mentum p with quantum numbers of the atomic excited
state.

The longitudinal and transverse components of the polariton
propagator are given by

G‖(p,E) = h̄

[
E − En − p2

2mA

− 8π

3
n0d

2
0

+ ih̄

2

√
ε(ωE)γ

]−1

,
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G⊥(p,E) = h̄

[
E − En − p2

2mA

+ 4π

3
n0d

2
0

+ ih̄

2

√
ε(ωE)γ − 4πn0d

2
0 ω2

E(
ω2

E − c2p2/h̄2
)
]−1

.

(3.23)

As the excitation frequency is shifted towards atomic reso-
nance E → En the optical coupling shows behavior associated
with that of a noncondensed disordered atomic gas. The
collective dipole polarization is driven by the propagating field
and the environment of nearby dipoles induces a frequency
shift to the low-energy side of atomic resonance. This shift,
given by−4πn0d

2
0 /3, is the well-known static Lorentz-Lorentz

shift. However, unlike a disordered gas, there is an additional
frequency shift, induced by the polarization interaction with the
condensate background. This is given by the last term on the
right-hand side of Eq. (3.23). If we consider the quasiparticle
as essentially immobile, thus having negligible momentum
p 	 h̄ω/c, the dependence on E vanishes and this part of
the interaction also becomes static. The transverse component
of the polariton propagator then coincides with its longitudinal
part such that the excitation process becomes isotropic with a
positive static shift 8πn0d

2
0 /3.

The spectral behavior of the polariton propagator in the
form (3.22) and (3.23) consists of two branches. One is an
atom-type excitation near atomic resonance E ∼ En, on which
we have commented above. Another resonance exists in the
transverse part of the polariton propagator and is located near
the energy E ∼ E0 + cp, which is a pole feature of the last term
in the denominator of the transverse component G⊥(p,E). This
resonance describes the optical excitation propagating through
the sample near the speed of light and creates the photon-type
polariton branch. A detailed discussion of the spectral behavior
of the polariton modes in the infinite homogeneous medium
was given in [23].

In general, with an inhomogeneous configuration with the
order parameter of an arbitrary profile, Eq. (3.19) accepts only
a numerical solution. In the next section we present such
a solution in a one-dimensional geometry and compare the
results with predictions of conventional macroscopic Maxwell
theory.

IV. RESULTS

Degenerate quantum gases have unique properties and are
of particular interest in reduced spatial dimensionality [29,30].
This motivates us to initially consider our results for several in-
stances of a one-dimensional model. Further, Eq. (3.19) is quite
difficult for numerical solution in a general three-dimensional
configuration. Below we perform the results of our numerical
simulations for a one-dimensional model expressed in terms of
transmission and reflection of light from a slab atomic sample,
where atoms can exist either in a quantum degenerate phase or
as a disordered classical gas. The considered geometries are
shown in Fig. 1 for three tested configurations: a uniform slab
of BEC with constant density [Fig. 1(a)], an inhomogeneous
distribution parametrized by the order parameter with a cosine
profile [Fig. 1(b)], and interference of two matter waves for

FIG. 1. Geometry of the considered one-dimensional scattering
process: (a) a uniform BEC slab of depth L and with the order
parameter � = √

n0 = constz, where n0 is the density of atoms, (b) an
inhomogeneous distribution parametrized by the order parameter
�(z) = √

n0 cos(πz/L), and (c) interference of two matter waves
created by the BEC sample (b) split in two fragments [see Eq. (4.2)
and the explanation in the text].

two BEC segments counterpropagating through each other
[Fig. 1(c)]. In the last case, as we show, such an internal motion
of the overlapping condensate fragments can crucially modify
the light scattering process.

A. Smooth profile of the order parameter

Any testable profile of the order parameter should be
consistent with the physical model of the condensate and, in the
case of weak internal coupling, performs as a possible solution
of the Gross-Pitaevskii equation [21,22]. In the macroscopic
limit any homogeneous spatial profile of the order parameter
can be suggested as an example of a Thomas-Fermi-type
approximate solution, for which the shape can be fitted by
varying the trapping potential. This approximation works for
the condensate confined by an atomic trap where the period
of free oscillation is longer than 2π/μc, with μc estimated
(in a homogeneous limit) by Eq. (2.12), and it is based on
the priority of internal interaction. However, even in the case
of an ideal gas with μc → 0 the order parameter of a quite
general profile can be accepted as well, but in this case as
the ground-state eigenfunction of the stationary single-particle
Schrödinger equation in the trap potential.

As the first example let us consider the case of a homo-
geneous degenerate quantum gas filling a slab of depth L

with the order parameter given by � = √
n0 = constz, which

is shown in Fig. 1(a). In a one-dimensional geometry, by
applying the Fourier transform, the scattering equations (3.19)
can be rewritten as an infinite set of algebraic equations (see
Appendix B for derivation details). The obtained system of
algebraic equations can be numerically solved, which give us
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the spectra of transmission T (ω) and reflection R(ω). The
same quantities can be independently constructed via solution
of the macroscopic Maxwell equations (see [31]) and are given
by

T (ω) =
∣∣∣∣ 2

√
ε(ω)

2
√

ε(ω) cos ψ(ω) − i[1 + ε(ω)] sin ψ(ω)

∣∣∣∣
2

,

R(ω) =
∣∣∣∣∣∣

sin[ψ(ω)]

sin
[
ψ(ω) − i ln 1−√

ε(ω)
1+√

ε(ω)

]
∣∣∣∣∣∣
2

, (4.1)

where ψ(ω) = L
√

ε(ω)ω/c. By substituting here the dielectric
permittivity (3.17) (with canceled chemical potential) we
arrive at the result predicted for a macroscopic disordered gas
(see [27]).

In Fig. 2 we compare the spectra of light transmission
through and reflection from the condensate and disordered
atomic gas of the same density n0λ̄

3
0 ∼ 0.05 and in the ge-

ometry of Fig. 1(a). The inset shows the dielectric permittivity
given by solution of Eq. (3.17). Since an optical excitation from
the condensate changes its energy, the excitation spectrum of
nonideal degenerate quantum bosonic gas is redshifted from
the atomic resonance by the value of the chemical potential.
The shift is small and seems negligible since the condition
(2.11) is normally fulfilled for any dipole-type transition and
in alkali-metal systems in particular. Thus we could safely
ignore this shift when constructing the susceptibility for the
condensate as the solution of Eq. (3.17). Nevertheless, we
leave it in our reproduction of the spectral responses since
such a redshift is a physical effect and can be visible in the
transmission and reflection spectra. The redshift has been
observed in the transmission spectrum of a BEC consisting
of helium atoms on a spectrally narrow dipole-forbidden
magnetic-type transition [32].

Surprisingly, this global offset of the spectral profile is only
one difference between the transmission and reflection spectra
of degenerate and nondegenerate atomic gases. To demonstrate
this we plotted the graphs as a function of detuning � =
ω − ω̃0, where ω̃0 = ω0 − μc/h̄ and where we additionally
displaced the spectra of a disordered gas on μc/h̄. We have
obtained excellent, i.e., point-by-point, coincidence of degen-
erate and nondegenerate spectra despite the fact that they were
calculated via solution of exceptionally different equations.
The small deviation for reflection near its resonant point is
a result of additional boundary contributions ignored in the
Fourier transformation of the Laplace operator to the algebraic
form of Eq. (B8) and this incorrectness, as we have verified,
softens in the macroscopic limit L/λ0 → ∞. The reflection
itself is weak but not negligible and results from the scattering
from the sample edges and is enhanced by the interference
effect. Such an excellent coincidence of two independent
rounds of calculations clearly indicates that for light scattering
from an ensemble of atoms, with a uniform density distribution,
the optical response of the system is insensitive to either the
classical or quantum nature of statistical averaging.

This can be confirmed by similar calculations performed
for the order parameter with a trigonometric profile �(z) =√

n0 cos(πz/L) [in the geometry of Fig. 1(b)] and the results
are shown in Fig. 3. For this case we make additional simplifica-

(a)

(b)

FIG. 2. Spectral dependences of (a) transmission and (b) re-
flection calculated as a solution of the scattering equations (3.19)
vs the comparative solution of the Maxwell equations (4.1) in a
one-dimensional geometry for a homogeneous medium with a slab
geometry shown in Fig. 1(a). The graphs are plotted as a function
of detuning � = ω − ω̃0 from the displaced resonance frequency
ω̃0 = ω0 − μc/h̄ (see the text). The results are performed for different
sample depths L, scaled by the wavelength λ0 at the atomic resonance,
and for the density n0λ̄

3
0 ∼ 0.05. The reflection spectra for different L

are unresolved in the graph with the plotted precision. The inset shows
the dielectric permittivity of the sample ε(ω) = ε ′(ω) + iε ′′(ω) given
by solution of Eq. (3.17) as a function of ω − ω0. Both the rounds of
calculations give identical results, and to show this in the example of
L = 10λ0 we additionally indicate (by the dotted curve) the prediction
of the macroscopic Maxwell theory.

tions by expanding
√

ε(z,ω) in a Taylor series near the vacuum
point ε = 1 and keeping only the forwardly propagating wave
in the macroscopic Maxwell description of the problem. Again
the calculations show good (within the made approximations)
agreement between both approaches. We used the same peak
density n0λ̄

3
0 ∼ 0.05 and the same sample depths as in the

plots of Fig. 2. In the case of smoothed sample bounds with a
density profile n0(z) = n0 cos2(πz/L) the backward scattering
is expected to be a many orders of magnitude weaker process
because of vanishing boundary contributions. The latter can be
seen via the negligible response of the reflected light as follows
from the calculation data shown in the bottom panel of Fig. 3
and clarified in its inset.

B. Interference of two counterpropagating BEC fragments

Finally, let us consider the experimental configuration
when, as a result of coherent interaction with light, a BEC

053805-8



LIGHT SCATTERING FROM AN ATOMIC GAS UNDER … PHYSICAL REVIEW A 97, 053805 (2018)

(a)

(b)

FIG. 3. Same as in Fig. 2 but for the density distribution
parametrized by the order parameter �(z) = √

n0 cos(πz/L) for a
slab geometry shown in Fig. 1(b). In the case of a smooth sample
boundary the backward scattering reveals a many orders of magnitude
weaker process than in the case of sharp boundaries.

sample is fractured into a number of macroscopic pieces [5,6].
To simplify the complicated experimental picture we model the
process by the presence of only two fragments counterpropa-
gating with respect to each other in their center-of-momentum
reference frame. The considered configuration is shown in
Fig. 1(c) and reveals a strong density oscillation associated
with interference of the order parameters (matter wave packets)
from the BEC pieces in the area of their overlapping. The
existence of such a fringe structure of the density distribution
has been directly observed as an effect of interference of two
condensates in experiment [33]. The spatial phase-matching
condition, determined by internal relative motion of the frag-
ments, crucially affects the scattering process. Indeed, the
wavelength of the oscillation is determined by the speed of
relative motion and after accumulation of essential linear mo-
mentum from light can exceed a scale of the light wavelength.
Then such a density grating should lead to strong Bragg
diffraction and, as we show by our numerical simulations
below, to significant enhancement of the backward scattering.

The process can be described by the order parameter of the
spatial profile

�(z) =
√

2n0 cos
(πz

L

)
cos(�qz)

=
√

n0

2
cos

(πz

L

)
ei�qz +

√
n0

2
cos

(πz

L

)
e−i�qz

≡ �+(z) + �−(z), (4.2)

which is constructed as an ideal overlap of two matter wave
packets associated with the condensate fragments of identical
shape and size counterpropagating with respect to each other
with the relative linear momentum 2h̄�q per atom. Let us make
a clarifying comment concerning the validity and consistency
of the suggested profile as a solution of the time-dependent
Gross-Pitaevskii equation.

Both of the partial contributions �+(z) and �−(z) are
representative solutions of the order parameter equation, for
example, in the Thomas-Fermi approximation. That can be
justified via transforming the dynamical description of any of
the wave packets to that reference frame where the particular
fragment is motionless and then we arrive at the configuration
considered in the preceding section. However, the entire
process of expansion and fragmentation of the condensate,
modeled by (4.2), can be imagined only after the BEC is
released from the trap and it results from both the external
disturbance and internal interaction processes. The superposed
state (4.2) can physically model the complicated dynamics
of the condensate fragmentation once we ignore the weak
nonideality of the atomic gas in comparison with the kinetic
energy associated with the relative motion of the fragments [see
the inequality (2.11)]. This can be fulfilled for quite high rela-
tive speed with �q � 1/L and 2h̄2�q2/mA > μc. Then the
factor cos(�qz) is a strongly oscillating function of z, which
implies its averaging 〈cos2 �qz〉 → 1/2 in the normalization
of the order parameter by a total number of particles. Then the
expansion (4.2) corresponds to the beginning of the splitting
process of the released matter wave �(z) = √

n0 cos(πz/L),
as shown in Fig. 1(c), in two separated wave packets �+(z)
and �−(z) propagating in opposite directions.

In Fig. 4 we show the spectra of transmission and reflection
for the order parameter with the spatial profile given by
Eq. (4.2). It is expected that for a classical disordered gas
any internal motion of its macroscopic fragments with a rather
slow relative speed would not modify the scattering process
at all. As an example, such an expansion with a relative
speed given by the recoil limit ∼h̄k0/mA would induce only a
negligible Doppler shift between the spectral outputs from both
fragments. However, in the case of BEC such an internal mo-
tion dramatically modifies the scattering process. As pointed
out above, the spatial modulation of the order parameter
initiates a mechanism of the Bragg diffraction and scattering
on the spatially oscillating density. As a consequence, this
leads to strong enhancement of the backward scattering and
it is manifestable in an abrupt structure of the transmission
spectrum as well. The strongest scattering is observed for
the modulation wave number �q = k0 when the condensate
expands with the relative speed v0 = 2h̄k0/mA. As follows
from the dependences of Fig. 4, this effect experiences a
broader spectral domain as the sample spatial scale is longer.

In Fig. 5 we reproduce the dependence of the reflection
coefficient as a function of 2π/�q for different sample depths
L. As can be seen from these graphs, the reflection always
has local maxima at the points �q = 2π/λ0,2π/2λ0, . . ..
This is the optimal condition for manifestation of the Bragg
diffraction, which creates the oppositely propagating polariton
wave via scattering of the impinging wave on the periodic
structure. As a consequence of the Bragg-type scattering,
an additional amount of linear momentum transfers to the
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(a)

(b)

FIG. 4. Same as in Fig. 2 but for the density
distribution parametrized by the order parameter �(z) =√

2n0 cos(πz/L) cos(�qz) with 2�q = k0 for the geometry
shown in Fig. 1(c). Both the forward and backward scattering have
a clear signature of the coherent enhancement due to the effect of
the Bragg diffraction. In (a) the dotted curve indicates the reference
transmission spectrum for L = 10λ0 with a smoothed profile of the
order parameter and corresponds to the configuration of a disordered
atomic gas.

condensate and enforces its fragmentation. So the Bragg
diffraction also results in a certain optomechanical action on
the system and accordingly leads to kinematic entanglement
of the spatially structured BEC (see [6]).

In our calculation model we can describe such an effect
of optomechanical interface primarily for the backward and

1 2 3 4 5 6

2 Π
q

10 13

10 10

10 7

10 4

0.1

Reflection

L 10 Λ0

L 30 Λ0

L 50 Λ0

FIG. 5. Reflection coefficient for the order parameter of Fig. 4,
at the point of atomic resonance, plotted as a function of 2π/�q (in
units of λ0) for different sample depths L.

forward scattering channels. Nevertheless, in experiment [5]
the fragmentation was observed for the scattering directions
orthogonal to the incident light along the major axis of an
ellipsoid-shaped condensate sample. The observed effect had
been associated in [5] with the Kapitza-Dirac phenomenon
of the matter wave scattering on the spatial structure created
by an electromagnetic wave. In this sense, we can point out
that in the case of excitation of a BEC sample by an external
light pulse, consisting of many photons, the entire dynamics
apparently results from several physical processes, which
includes internal interactions, disturbance of the matter wave
(order parameter) by an external driving field and formation
of the polariton structure by optical excitation. Then the
Bragg scattering reveals a coherent mechanism for rearranging
photon-type polariton waves (see Sec. III C) propagating in
different directions. The coherently scattered photons emerge
from the sample, indicating the prior propagation directions of
these waves.

V. CONCLUSION

In this paper we have developed a formalism of the
microscopic quantum scattering theory directed towards an
ab initio description of the elementary process of a single-
photon scattering from a quantum degenerate atomic gas.
The gas exists in the BEC phase parametrized by the order
parameter introduced in the framework of the Gross-Pitaevskii
model. The main mathematical objective of our calculational
approach is the single-particle Green’s function (propagator)
tracking the propagation of a specific polariton wave through
the condensate. The polariton is created as a quantum super-
posed state between the photon and condensate.

The polariton propagation is disturbed by the process of
incoherent scattering and its entire dynamics is described
by the closed scattering equation for the complete polariton
propagator as we derived. The crucial difference from the light
propagation through a disordered nondegenerate atomic gas
is that in the considered case the atomic medium represents a
coherent matter wave strongly rejecting its classical interpre-
tation. The conventional vision of the macroscopic Maxwell
description of the electromagnetic wave in a bulk medium
seems insufficient and even can be incorrect in some situations.

To clarify the above point we have solved the derived scat-
tering equations in a one-dimensional geometry and compared
the result with predictions of the conventional macroscopic
Maxwell theory for the disordered atomic gas of the same
density and size as the BEC sample. For steady-state conditions
and uniform distribution of the order parameter we obtained
identical results for the transmission and reflection spectra for
both approaches. The most surprising seems the observation
that excellent coincidence between the data has been obtained
here from solutions of two different equations. From the
point of view of the light scattering process, that nontriv-
ially indicates physical equivalence between the classical-type
disordered system, where atoms are randomly distributed as
pointlike dipoles, and the uniform quantum coherent state,
where atoms are distributed in the space as a matter wave
expressed by a smooth profile of the order parameter. Such
a quantum degenerate atomic system exists in a steady state
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and can be associated with a relevant stationary solution of the
Gross-Pitaevskii equation.

Nevertheless, we observe a significant difference once the
BEC is fractured into a number of interfering matter wave
fragments, which crucially modifies the density distribution.
In the latter case the scattering process evolves towards
conditions of Bragg diffraction, which strongly affects the
process and can coherently redirect the propagating polariton
wave in the backward or other directions associated with the
condensate fragmentation. This type of Bragg diffraction is
specific since the oscillating matter pattern is mostly sensitive
to the relative speed of the fragments and can be observed
even for low atomic densities. Evidently, such an usual density
grating can be only phenomenologically performed under the
frame of the conventional macroscopic Maxwell description
and, as we pointed out, for a classical disordered gas any
internal motion of its macroscopic fragments with a rather slow
relative speed should not modify the scattering process at all.
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APPENDIX A: OVERVIEW OF THE DIAGRAM APPROACH

Below we introduce basic elements of the diagram equa-
tions, which are constructed and discussed in the main text. We
follow standard definitions and rules of the microscopic version
of the Feynman diagram method, as described in Ref. [25], but
revise it for a nonrelativistic dipole-type coupling of light and
atoms (see Ref. [26]). The expansion of the evolution operator
(2.10) in the Green’s function (2.9) generates the sequence of
expectation values of the various operator products, which after
a set of transpositions and with the aid of the Wick theorem
can be regrouped to the results visualized by diagrams. The
diagrams consist of the objects given below.

The undisturbed causal-type electric-field Green’s function
is defined via transposition of the field operators in any
pair product from chronologically T -ordered to normally N -
ordered form

iD
(E)
μμ′(r,t ; r′,t ′)

= T
[
E(0)

μ (r; t)E(0)
μ′ (r′; t ′)

] − N
[
E(0)

μ (r; t)E(0)
μ′ (r′; t ′)

]
. (A1)

It can be linked with a fundamental object of quantum elec-
trodynamics, namely, with the causal-type photon propagator

D
(E)
μμ′(r,t ; r′,t ′) = 1

c2

∂2

∂t∂t ′
D

(c)
μμ′(r,t ; r′,t ′)

∣∣∣∣r �=r′
or

t �=t ′

, (A2)

where we follow the gradient invariance of the theory and
fix the propagator by a vanishing scalar potential such that
μ,μ′ = x,y,z. By simplifying the notation for each argu-
ment μ,r,t → x and μ′,r′,t ′ → x ′, the electric-field Green’s

function is imaged by a wavy line

iD(E)(x, x ) ⇔ (A3)

where the ending indices are often omitted in graph equations.
This function depends only on the difference of its spatial and
time arguments and its Fourier image is given by

D
(E)
μμ′(k,ω) =

∫
d3R

∫ ∞

−∞
dτeiωτ−ik·R D

(E)
μμ′(R,τ )

∣∣∣R=r−r′
τ=t−t ′

= 4πh̄ω2

ω2 − ω2
k + i0

[
δμμ′ − c2 kμ′kμ

ω2

]
, (A4)

where ωk = ck.
The electric-field Green’s function is expressed via solution

of the microscopic Maxwell equations with a pointlike dipole
source and for ω > 0 coincides with the positive-frequency
component of the retarded-type fundamental solution of these
equations D

(R)
μ′μ(k,ω),

D
(E)
μμ′(k,ω)|ω>0 = ω2

c2
D

(R)
μμ′(k,ω)

∣∣∣∣
ω>0

. (A5)

The positive-frequency domain is only important in the RWA
approach and in this approximation it is convenient to add an
arrow in the diagram (A3) to indicate creation and annihilation
events of a virtual photon at the edging points of the wavy line.

The undisturbed atomic Greens’s function is defined via
transposition of the atomic operators in any pair product
from chronologically ordered to normally ordered form. For
operators of the excited state this reads

iG
(0)
nn′ (r,t ; r′,t ′)

= T
[
�(0)

n (r; t)�(0)†
n′ (r′; t ′)

] − �
(0)†
n′ (r′; t ′)�(0)

n (r; t) (A6)

and similarly with the replacement n,n′ → m = m′ = 0 for
operators of the ground state. By simplifying the notation for
each argument n,r,t → x and n′,r′,t ′ → x ′ the atomic Green’s
function is imaged by an arrowed straight line

iG(0)(x, x ) ⇔ (A7)

where the ending indices are often omitted in graph equations.
This function also depends only on the difference between its
spatial and time arguments and its Fourier image is given by

G
(0)
nn′ (p,E)

=
∫

d3R

∫ ∞

−∞
dτ e(i/h̄)Eτ−(i/h̄)p·RG

(0)
nn′ (R,τ )

∣∣∣∣R=r−r′
τ=t−t ′

= δnn′
h̄

E − p2/2mA − En + i0
, (A8)

where mA is the atomic mass and the internal atomic state is
assumed to be degenerate such that En = constn.

The atomic Green’s function is expressed by the fundamen-
tal solution (atomic propagator) of the Schrödinger equation
for a free atom which describes propagation of an atomic
wave initially localized in a certain spatial point. As follows
from (A6), this function vanishes if t < t ′ such that the
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causal-type atomic propagator is identical to the retarded-type
propagator.

There are different diagram vertices indicating optical
interactions of different types. If a virtual photon interacts with
an atom, which is also presented as a virtual object in a diagram,
then in the RWA we associate the process with the two vertices

i

h̄
dµ

nm ⇔

i

h̄
dµ

mn ⇔

,

.

(A9)

If a similar process is developing with condensate particles we
associate it with the vertices of another type

i

h̄
dµ

nm Ξ(r) e−
i
h̄ 0t ⇔

i

h̄
dµ

mn Ξ∗(r) e+ i
h̄ 0t ⇔

,

,

(A10)

which describe either excitation of an atom from the conden-
sate phase (upper diagram) or its recovering in the condensate
phase (lower diagram). The detailed specification of vertices
is usually unnecessary and often omitted if it does not confuse
interpretation of the diagram.

In the original representation each vertex corresponds to
the integral over respective spatial and time variables and
each contributing line is decoded in accordance with (A3) and
(A7). In the stationary and homogeneous conditions after the
Fourier transform, the external lines are decoded in accordance
with (A4) and (A8) but internal lines, when they shape a
loop, contribute as convolution-type integrals over reciprocal
variables such as energy (frequency) and momentum (wave
vector), with conservation of the total energy and momentum
transporting by the diagram. For more details we refer the
reader to Refs. [25,26].

APPENDIX B: ONE-DIMENSIONAL SCATTERING

Consider the scattering problem for a slab geometry of
an atomic medium, homogeneous and infinite in the plane
transverse to the wave vector of the incident photon. In this
case the T -matrix element, given by Eq. (2.6) and selected for
either forward or backward elastic scattering channels, is given
by

Ti ′i(E) = 2πω

L

∫∫
dz′dz

∑
n′,n

(d · e)∗n′0(d · e)0n

× e−ik′z′+ikz�∗(z′)�(z)Gn′n
(
z′,z; E − EN−1

0

)
,

(B1)

where the output frequency and polarization are unchanged
such that ω′ = ω and e′ = e and we redefined f = i ′ with
emphasis on the physical equivalence of initial and final states

in the one-dimensional scattering process. All the integrands
are considered as functions of longitudinal coordinates z,z′
and the polariton propagator is proportional to a δ function
of transverse coordinates x,y and x ′,y ′ [see Eq. (3.19)]. The
integral evaluated in the transverse plane over variables dxdy

and dx ′dy ′ cancels out the area scaleLxLy in the normalization
volume V = LxLyLz and we defined Lz = L.

Let us express the S-matrix components via the T matrix

Si ′i = δi ′i − i
L
h̄c

Ti ′i(Ei + i0). (B2)

In a one-dimensional geometry for the nondegenerate ground
state of the degenerate quantum gas the light scattering can
be described by coefficients of transmission T (ω), reflection
R(ω), and losses L (ω), which are subsequently given by

T (ω) = |Si ′i |2|k′=k>0, R(ω) = |Si ′i |2|k′=−k<0,

L (ω) = 1 − T (ω) − R(ω) (B3)

and can be found via solution of the simplified equations
(3.19)–(3.21) as we show below.

Consider the example of the slab with the order parameter
�(z) = √

n0 = constz inside the medium. In this case the
integral equation (3.19) can be transformed to the set of
algebraic equations via spatial Fourier transform with periodic
boundary conditions on the sample bounds. The azimuthal
symmetry justifies the diagonal structure of the polariton
propagator

Gnn′ (z,z′; E) = δnn′G(z,z′; E). (B4)

Then, with the assumption that the origin of the coordinate
frame is located in the middle point and z ∈ (−L/2,L/2),
where L is the sample length, it can be expanded as

Gss ′ (E) = 1

L

∫∫ L/2

−L/2
dz dz′e−iksz+iks′ z′

G(z,z′; E),

(B5)

G(z,z′; E) = 1

L

∑
s,s ′

eiksz−iks′ z′
Gss ′ (E),

where ks = 2πs/L and ks ′ = 2πs ′/L with s,s ′ = 0,±1,

±2, . . .. The Green’s function (B4) contributes to the trans-
mission amplitude (B2) at a specific energy argument E −
EN−1

0 = Ei − EN−1
0 = h̄ω + EN

0 − EN−1
0 = h̄ω + ε0 and we

define

Gss ′ (E)|E=h̄ω+ε0 ≡ Gss ′ (ω) (B6)

and consider the Fourier components as functions of the
frequency of the incident photon. Then the S-matrix elements
(B2) can be expressed as

Si ′i = δi ′i − 8πiω

Lh̄c
n0d

2
0

∑
s ′,s

sin(k′ − ks ′ )L
2

k′ − ks ′

× sin(k − ks)L
2

k − ks

Gs ′s(ω), (B7)

where k = ω/c and k′ = ±ω/c.
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By substituting (B4) and applying transforms (B5) to
Eq. (3.19), considered in a one-dimensional configuration, we
arrive at the system of algebraic equations[

ω − ω̃0 + h̄k2
s

2mA

+ 4π

3h̄
n0d

2
0 + i

2

√
ε(ω)γ

]
Gss ′ (ω)

−
∑
s ′′

�
(c)
ss ′′ (ω)Gs ′′s ′ (ω) = δss ′ , (B8)

where ω̃0 = (En − ε0)/h̄ = (En − E0 − μc)/h̄ ≡ ω0 − μc/h̄

with the same En for all upper state Zeeman sublevels. We
approximated ε(ω + μc/h̄) ≈ ε(ω) [see Eq. (3.17) and the
related comment].

The matrix of the self-energy part is given by

�(c)
ss (ω) = 4π

h̄
n0d

2
0

ω2

ω2 − c2k2
s

− 4πi

h̄
n0d

2
0

ω

cL

ω2

c2 + k2
s(

ω2

c2 − k2
s

)2

[
1 − exp

(
i
ω

c
L

)]
(B9)

for s ′′ = s and

�
(c)
ss ′′ (ω) = −(−)s−s ′′ 4πi

h̄
n0d

2
0

ω

cL

ω2

c2 + ksks ′′(
ω2

c2 − k2
s

)(
ω2

c2 − k2
s ′′

)
×

[
1 − exp

(
i
ω

c
L

)]
(B10)

for s ′′ �= s. For a sample of infinite length L → ∞ Eqs. (B6)
and (B8)–(B10) reproduce the transverse component of the
polariton propagator in an infinite uniform medium [see
Eq. (3.23)] and in this case the scattering process manifests
itself mainly via the incoherent channels.

For the sample of finite length the system (B8) consists of
an infinite number of equations. Nevertheless, it can be numer-
ically solved with cutoff by a limited number of the involved
equations. By increasing this number the iterative process be-
comes internally converging and approaches the exact solution.
The performed calculation scheme can be straightforwardly
generalized if the order parameter is nonuniform and de-
scribed by trigonometric functions such as �(z) ∼ cos(πz/L)
and�(z) ∼ eiκ1z cos(πz/L) + eiκ2z cos(πz/L), which we have
considered in our numerical simulations.
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