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Previous attempts to derive the differential Jones matrix (DJM, N ) by Jones [Jones, J. Opt. Soc. Am. 38, 671
(1948)] for a twisted crystal and the integral Jones matrix (IJM, J ) by Chandrasekhar and Rao [Chandrasekhar
and Rao, Acta Crystallogr. A 24, 445 (1968)] for a cholesteric liquid crystal resulted in Jones matrices, which
are valid for the spectral range except the selective light reflection band. We argue that the limitation of their
validity is rooted in two key assumptions used in both approaches, namely, (1) local (nonrotated) DJM N0 and the
elementary IJM J 0 (to which the cholesteric is split) are those of a uniform nematic and (2) under rotation of the
coordinate system, N0 and J 0 obey the similarity transformation rule, namely, N = RN0R−1 and J = RJ 0R−1,
where R is the rotation matrix. We show that both of these assumptions are of limited applicability for a cholesteric,
being justified only for weak twist. In our approach, the DJM and IJM are derived for a cholesteric without these
assumptions. To derive the cholesteric DJM, we have established the relation between the diagonal form N0d of
N 0 and Mauguin solutions [Mauguin, Bull. Soc. Fr. Mineral. Crystallogr. N° 3, 71 (1911)] of Maxwell equations
for eigenwaves propagating in the cholesteric. Namely, the eigenvalues of N0 appear to be the wave numbers for
the two eigenwaves propagating in the sample. Then the form of N0 reconstructs from its diagonal form N0d . Our
DJM and IJM, derived for a general case of any ellipticity value of the eigenwaves, correspond to an optically
anisotropic plate possessing gyrotropy, linear birefringence, and Jones dichroism. In the limiting approximations
of circularly polarized eigenwaves and that corresponding to the Mauguin regime, the DJM and IJM reduce to
those known from the literature. We found that the form of the transformation rule for the local DJM N0 under
rotation of the coordinate system depends on the regime of light propagation, being different from the similarity
transformation rule alluded to above, but reduces to it at weak twist corresponding to the Mauguin regime.
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I. INTRODUCTION

A cholesteric is a liquid crystal, composed of elongated
chiral molecules or molecular aggregates with the orientation
of their long axes spontaneously helically twisted around
a �Z axis, which is perpendicular to them. In each plane
perpendicular to �Z, long molecular or aggregate axes tend to

align parallel to a common direction
↔
n and the molecules or

aggregates freely migrate within the plane. Because its ends

are undistinguishable,
↔
n is not a true vector and for this reason

is called the director, in the same vein as it is for a nematic. For
this reason, the notation

↔
n seems to be more appropriate for

the director than the commonly accepted notation �n. In other
words, a cholesteric is a spontaneously twisted chiral nematic

with
↔
n ⊥ �Z. The distance, at which the director makes a full

turn around the �Z axis, is called the pitch P .
The first description of optical properties for a cholesteric

is due to Mauguin [1], who solved Maxwell equations in
the framework of a model, according to which the azimuth
of the tensor of dielectric permittivity ε̂ of the cholesteric

*nastyshyn_yuriy@yahoo.com

linearly varies along the Cartesian coordinate axis �Z, which

is perpendicular to
↔
n . Later the problem was revisited by de

Vries [2], Kats [3], Oldano and co-workers [4–7], Relaix et al.
[8], and other authors. Now the problem is well presented in
textbooks [9–12].

Two different approaches have been developed in the
framework of Jones matrix method [13–20] to describe the
optical properties of a twisted crystal. Namely, Jones proposed
two types of matrices, called the integral and differential
matrices, respectively [19]. The integral Jones matrix (IJM),
which describes an optical element as a whole, does not carry
any information about the variation of optical parameters
inside the element and was proposed by Jones for optical
systems consisting of discrete optical elements. Although for
the description of optically inhomogeneous anisotropic media,
Jones specifically introduced the notion of a differential matrix,
the IJM approach can also be used for this purpose and appears
to be even more popular than the differential Jones matrix
(DJM) approach.

In the IJM approach, an anisotropic medium, in which
optical parameters vary along the light-propagation direction,
is modeled by a stack of m parallel, thin enough lamellae,
such that each elementary lamella can be considered as being
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uniform. The integral Jones matrix J of such a stack is the
product of all elementary IJMs Ji ,

J =
m∏

i=1

Ji. (1)

An attempt to describe the optical properties of a cholesteric
using Eq. (1) was made by Chandrasekhar and Rao [10,21].
A cholesteric was modeled by a stack of m spatially rotated
plates, such that the plates are parallel, uniform, and uniaxial
(read nematic) with the optic axis of each next elementary
plate being parallel to the plate plane and helically rotated by
a discrete angle around and along the �Z axis, which is parallel
to the plates normal. An inconvenience of this approach is
that in Eq. (1), J is expressed symbolically, not via analytical
functions and, thus, can be calculated only numerically. At
limiting assumption of long pitches, J can be obtained in
analytical forms [10,21,22], which appear to be in agreement
with those obtained by Mauguin [1] and later by de Vries [2] for
this regime. However, the main problem of the approach [21]
is that the obtained matrix fails to describe optical properties of
the cholesteric in the spectral region of selective reflection. In
this paper, we show that the key hypotheses according to which
(1) the elementary plate is optically equivalent to a uniform
nematic layer and (2) the transformation rule for rotation of the
IJM and DJM is used in [19,21], are of limited applicability
for cholesterics.

Another attempt to describe the optics of cholesterics with
the IJM approach using Eq. (1) was made by Yang and Mi [23],
who accounted for the reflection between adjacent slices. The
resulting IJM for an elementary lamella successfully describes
selective light reflection and appears to have four nonzero
components. The latter implies that the elementary lamella is
not a nematic. We shall return to the discussion of this issue in
Sec. IX.

A fruitful approach for the derivation of the integral Jones
matrix for a cholesteric was developed by Oldano and co-
workers [24–27]. Their approach is based on Berreman’s 4 × 4
matrix, which by proper transformations is reduced to the
2 × 2 integral Jones matrix [25,26]. Berreman’s 4 × 4 matrix
method [28] remains one of the most powerful theoretical
tools for description of light propagation in liquid crystals
with a distorted director field. However, it implies complicated
time-demanding computer calculations. The result is obtained
in a numerical form and consequently is not suitable for ana-
lytical considerations. Modification of Berreman’s approach,
which can be used for analysis via analytical functions,
was proposed in Ref. [24]. In Ref. [27], the 2 × 2 integral
Jones matrix obtained by transformation from 4 × 4 Berre-
man’s matrix is derived for the quasiadiabatic regime of light
propagation.

Transmission and reflection integral Jones matrices in
terms of eigenwaves accounting for boundary conditions
for a cholesteric were constructed by Gevorgyan [29]. This
approach is principally different from that in Ref. [21]. The
cholesteric is not modeled by a stack of elementary lamella.
The integral Jones matrix is derived based on the solutions
of Maxwell equations and, thus, adequately describes optical
properties of the cholesteric in a whole spectral range, includ-
ing selective reflection band.

Our approach is different from those developed earlier in
Refs. [19,21,23–27,29]. Starting from the Maxwell equations,
we derive the DJM for a cholesteric. In a general case, the form
of the DJM allows for the identification of optical phenomena
contributing to light propagation in an anisotropic medium. A
2 × 2 DJM has four components, each of which can have a
real and imaginary part. These eight parameters correspond
to eight possible optical parameters: average refractive and
absorption indices, linear birefringence and linear dichroism,
circular birefringence (optical activity) and circular dichroism,
Jones birefringence and Jones dichroism [19]. The obtained
DJM is used for the derivation of the IJM for a cholesteric as
explained below.

In the framework of the DJM approach, the IJM is of the
form [19]

J = e
∫

N(z)dzJ0, (2)

where N (z) is the DJM of the medium and J0 is the IJM
describing the properties of the entrance boundary of the
medium. When considering bulk optical properties of the
medium, J0 can be replaced by the identity matrix. The matrix
exponent in Eq. (2) is a symbolic representation; it can be
represented via analytical functions if N (z) in Eq. (2) is
independent of z [19]. The latter thereby implies that for this,
the power � = ∫

N (z)dz of the exponent can be replaced by
its averaged value �̄ = N̄�z, where N̄ = 1

�z

∫ z2

z1
N (z)dz is the

DJM, averaged on the sample thickness �z = z2 − z1 between
the coordinates z1 and z2. Then the matrix exponent can be
written in analytical form in terms of hyperbolic functions of
the components of the averaged matrix [see Eq. (3.26) in [9],
Eqs. (2)–(7) in [22], or Eq. (55) below in this paper].

Jones modeled a twisted crystal by a spatially rotated
differential matrix [19], obeying the similarity transformation
rule [30],

N = R(qz)N0R
−1(qz), (3)

where

R =
(

cos(qz) − sin(qz)

sin(qz) cos(qz)

)
(4)

is the rotation matrix, R−1(qz) is the inverse of R(qz), and
q is the angular twist per unit length; according to Jones,
N0 is the differential matrix of the untwisted crystal. For the
transformation rule, given by Eq. (3), Jones [19] derived the
integral matrix of a twisted crystal in the form

J = R(qz) exp
[
N0 − qR

(π

2

)]
, (5)

where R(π/2) = [{0,−1},{1,0}] is the rotation matrix, given
by Eq. (4), at qz = π/2. For a cholesteric, q = 2π/P is
the twist wave number. If N0 is the DJM of the untwisted
cholesteric (a parent nematic), then one can show [22] that in
the limiting cases of long pitches, Eq. (5) is equivalent to the
form obtained by Chandrasekhar and Rao [10,21] from Eq. (1).
However, it turns out that for N0 = [{n‖,0}; {0,n⊥}], Eq. (5)
does not describe the phenomenon of selective light reflection
as well (n‖ and n⊥ are refractive indices measured parallel
and perpendicular to the director for the parent nematic). The
question of why both the DJM and IJM approaches [19,21] do
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not work for the cholesteric within the selective reflection band
remains open; we answer it in this paper. Common to both
approaches given in Refs. [19,21] is that the differential N0

and elementary integral Ji matrices are assumed to be those of
the uniform nontwisted parent nematic and obey the similarity
transformation rule. Below, in Sec. II, we show that the latter
assumptions are of limited validity for modeling the IJM and
DJM of a cholesteric, being correct only for P � λ.

The goal of this paper is to find analytical expressions for
IJM and DJM of a cholesteric without these assumptions. We
achieve this by relating the DJM to the Mauguin solutions [1,2]
of Maxwell equations. We show that in a general case, the
elementary integral and differential matrices of a cholesteric
are different from those for the parent nematic. The cholesteric
DJM and IJM of elementary plates, to which a cholesteric
is split in the framework of Jones matrix calculus, appear
to be different for different regimes of light propagation in
the cholesteric. To show this, in Sec. III we rewrite Maxwell
equations to the matrix form in terms of the cholesteric DJM. To
write the cholesteric DJM analytically, we find its eigenvalues
and eigenvectors (Sec. IV), from which the DJM and IJM are
then reconstructed (Sec. V). Transformation rules for DJM
and IJM under rotation of the coordinate system for the
propagation regimes of circularly polarized eigenwaves and
Mauguin regime are derived in Secs. VI and VII. The DJM
and IJM for the general case of light propagation for any light
wavelength λ are considered in Sec. VIII. Obtained results
are discussed in Sec. IX and conclusions are summarized in
Sec. X.

II. JONES MATRICES UNDER ROTATION OF
THE COORDINATE SYSTEM

Twist in a crystal can be modeled by rotation of the
coordinate system around, say, the �Z axis, which is along the
normal to the sample plate and parallel to the light-propagation
direction. In this section, we demonstrate that the dielectric
permittivity tensor ε̂ and the Jones matrices behave differently
under rotation of the coordinate system.

Let the �X axis of a nonrotated (original, superscript “0”)
coordinate system be oriented along a local axis of the
dielectric permittivity tensor ε̂0. For a liquid crystal, the
latter implies that the �X axis can be set along the local

director
↔
n . In the nonrotated coordinate system, the dielec-

tric displacement �D0 and the electric field vector �E0 of a
light wave propagating in the sample are related in a linear
fashion,

�D0 = ε0ε̂
0 �E0, (6)

where ε0 is the dielectric constant. In this paper, we deal with
transparent crystals and thus, for the undistorted crystal, ε̂0 is
a diagonal matrix. For a twisted crystal, the �X axis is helically
rotated around the �Z axis by an angle ϕ = qz, where q is
the angular twist per unit length. In the rotated coordinate
systems,

�D = ε0ε̂ �E. (7)

Under rotation of the coordinate system, the dielectric
displacement and electric field vectors of a light wave obey
the same transformation rule,

�D = R(qz) �D0, (8)

�E = R(qz) �E0. (9)

The matrix ε̂ is a tensor and thus, by definition, transforms
according to the rule

ε̂ = R(qz)ε̂0R−1(qz). (10)

Equation (10) can be obtained by substitution of Eqs. (8) and
(9) in Eq. (7), taking into account that ε̂0 is a diagonal matrix.
Two important statements follow from Eqs. (8)–(10). First,
rotation of the coordinate system by an angle ϕ = qz leads to
the rotation of vectors �D0, �E0 and the tensor ε̂0 by the same an-
gle. Second, back transformation ε̂0 = R−1(qz)ε̂R(qz) gives
the tensor of dielectric permittivity for a nontwisted crystal.
Below we show that both of these statements are not applicable
for both integral and differential Jones matrices if the rotation
angle is dependent on z.

The IJM J 0 relates the electric field vector �E0i of the
incident (superscript i) light wave at the sample plate entrance
to the corresponding vector �E0 at its exit in a linear fashion,

�E0 = J 0 �E0i . (11)

Throughout this paper, the superscript 0 corresponds to
the original (nonrotated) coordinate system, in which the X

axis is along the local nematic director
↔
n . After rotation of

the coordinate system around the �Z axis by an angle qz, the
vectors �E0 and �E0i transform into �E and ( �E0i)′ according to
Eq. (9) and thus one finds a relation between the IJMs J 0 and
J , respectively, in the original and rotated coordinate systems,

[R−1(qz)JR(qz) − J 0] �E0i = 0. (12)

Matrix equation (12) is a system of two ordinary linear equa-
tions with four unknown components Jij . The particular solu-
tion is of the form R−1(qz)JR(qz) − J 0 = 0. It corresponds
to the case when J 0 = J 0d is a diagonal matrix. Throughout
this paper, the superscript d denotes a diagonal matrix. For
such a particular (superscript p) case, from Eq. (12), one finds

Jp = R(qz)J 0dR−1(qz). (13)

However, in a general case of nondiagonal J 0, Eq. (12)
cannot be solved with respect to four unknown components
without further assumptions and, thus, there is no evidence
that in a general case under rotation of the coordinate system
the IJM transforms by the same rule as that for the dielectric
permittivity tensor ε̂, given by Eq. (10).

Concerning the DJM, Jones had shown that for a constant
rotation angle, the DJM transforms in the same way as its
corresponding IJM [19]. However, as we show below, this is
not true if the rotation angle is z dependent, even for J 0 = J 0d

being diagonal. In the rotated coordinate system for a particular
(superscript p) case of the diagonal J 0 = J 0d , the DJM Np is
related to its corresponding IJM Jp by the equation [19]

Np = dJp

dz
(Jp)−1. (14)
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Substituting Eq. (13) into (14), one finds

Np = R(qz)N0R−1(qz)

+ q
{
R

(π

2

)
− R(qz)J 0dR

(π

2

)
(J 0d )−1R−1(qz)

}
,

(15)

which shows that under rotation of the coordinate system, the
DJM N0 transforms differently from its corresponding IJM
J 0d [compare to Eq. (13)]. As a result, the reverse rotation
R−1(qz)NpR(qz) does not transform the matrix Np back to
the original matrix N0 of untwisted crystal. This is different
from the transformation of the tensor ε̂0 [Eq. (10)].

We, therefore, are led to conclude that under rotation of
the coordinate system, the IJM and DJM transform differently
with respect to each other and to ε̂. On one hand, if one
assumes that the DJM transforms according to Eq. (3), then
the IJM transforms according to Eq. (5). On the other hand,
if one assumes that the IJM transforms according to Eq. (13),
then its corresponding DJM transforms according to Eq. (15),
from which it is seen that at q �= 0, the reverse transformation
R−1(qz)NpR(qz) does not result in the matrix of untwisted
crystal.

The consideration given above in this section shows that
neither the form of differential matrix N0 nor its transformation
law can be hypothesized in the way as it can be done for the
dielectric permittivity tensor. We derive the form of the differ-
ential matrix N0 for a cholesteric from Maxwell equations in
the framework of the model of spatially rotated dielectric tensor
and then find the transformation law for the DJM under rotation
of the coordinate system. It turns out that the transformation
law for the DJM under rotation of the coordinate system is
different not only from those for ε̂ and J , but also for different
regimes of the light propagation through the cholesteric.

III. MATRIX MAXWELL EQUATION FOR A
CHOLESTERIC IN TERMS OF DJM

Maxwell equations for propagation of an electromagnetic
wave through a flat transparent optically anisotropic plate
along the plate normal can be written in the matrix form as
follows [2]:

1

c2
ε̂XY ∂2 �EXY (z,t)

∂t2
= ∂2 �EXY (z,t)

∂z2
, (16)

where ε̂XY is the 2 × 2 tensor of dielectric permittivity for the
cholesteric in the XY plane of the Cartesian coordinate system
with the Z axis chosen parallel to the sample plate normal
which is along the light wave vector and along the helical axis
of the cholesteric; the XY plane is parallel to the plane of a
cholesteric layer; and the X axis is arbitrarily oriented with

respect to the local director
↔
n . Assuming that the frequency of

the wave does not change during the propagation through the
crystal, the matrix Maxwell equation (16) reduces to the form

ε̂XY �EXY (z) = −λ̄2 d2 �EXY (z)

dz2
, (17)

with

λ̄ = λ

2π
, �EXY (z) =

[
Ex(z)

Ey(z)

]
. (18)

To solve Eq. (17), it is convenient to transform it to the
internal local Cartesian coordinate system (�η, �ξ , �Z), for which
the �Z axis remains along the light wave vector, the �η axis is

parallel, and the �ξ axis is perpendicular to the local director
↔
n

in each cholesteric layer such that

ε̂XY = R(qz)ε̂0R−1(qz), �EXY = R(qz) �E0, (19)

where the dielectric tensor ε̂0 is of the form

ε̂0 =
[
ε‖ 0

0 ε⊥

]
, (20)

with ε‖, ε⊥ being the values of dielectric permittivity measured
for the light wave polarizations, respectively, parallel and
perpendicular to the local director. Below, values defined in the
internal coordinate system will be called the local values. Local
values ε‖, ε⊥ describe the corresponding dielectric permittivity
components of the parent nematic. The electric field vector in
the local coordinate system is of the form

�E0 =
[
Eη

Eξ

]
, (21)

where Eη, Eξ are projections of the electric field vector on the
corresponding axes. Then the matrix equation (17) transforms
in the local coordinate system to the form

d2 �E0(z)

dz2
+ 2qR

(π

2

)d �E0

dz
+

(
ε̂0

λ̄2 − q2I

)
�E0 = 0, (22)

where R(π/2) = [{0,−1},{1,0}] is the rotation matrix, given
by Eq. (4), at qz = π/2. According to Jones [19], the following
relation is valid for �E0:

d �E0

dz
= N0 �E0, (23)

where N0 is the the DJM in the local coordinate system (local
DJM) of a cholesteric, which implies its independence of z

and, thereby, dN0/dz = 0. It should be noticed that here N0

is an unknown matrix, which is not restricted by the form of
Eq. (3). Substituting Eq. (23) in Eq. (22), one finds the Maxwell
equation written in the local coordinate system in terms of the
cholesteric DJM,{

(N0)2 + 2qR
(π

2

)
N0 + 1

λ̄2 ε̂ − q2I

}
�E0 = 0. (24)

Equation (24) has a nontrivial solution with �E0 �= 0, when

det

∥∥∥∥(N0)2 + 2qR
(π

2

)
N0 + 1

λ̄2 ε̂ − q2I

∥∥∥∥ = 0. (25)

In a general case, Eq. (25) contains four unknown compo-
nents of N0 and cannot be solved without further assumptions.
As we show below, N0 can be reconstructed from its eigen-
values and eigenvectors with the assumption of an elliptically
polarized light wave propagating in the sample.

IV. EIGENVALUES AND EIGENVECTORS FOR N0

In a general case, the electric field of a light wave
propagating in an anisotropic medium can be written in
the form

�E0 = �Ae−i n0

λ̄
z, (26)
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where �A = [Aη,iAξ ]Tr is the Jones vector of an elliptically
polarized wave in the local coordinate system and n0 is the
local refractive index; the superscript Tr denotes the transpose
operation such that �A is a vector column. Substituting Eq. (26)
in Eq. (23), we find

N0 �E0 = −i
n0

λ̄
�E0. (27)

It is seen from Eq. (27) that by definition, −i n0

λ̄
and �E0

are, respectively, eigenvalues and eigenvectors of the DJM.
Substituting Eqs. (26) and (27) in Eq. (25), one finds

(n0)4 − 2(ε̄ + λ̄2q2)(n0)2 + (ε‖ − λ̄2q2)(ε⊥ − λ̄2q2) = 0,

(28)

where ε̄ = (ε‖ + ε⊥)/2 is the average dielectric permittivity of
the parent nematic. Solutions of Eq. (28) are of the form

(n0
±)2 = n̄2 + �n2

4
+

(
λ

P

)2

±
√

n̄2�n2 + 4

(
n̄2 + �n2

4

)(
λ

P

)2

, (29)

where

ε̄ = ε‖ + ε⊥
2

= n̄2 + �n2

4
, n̄ = n‖ + n⊥

2
=

√
ε‖ + √

ε⊥
2

,

�ε = ε‖ − ε⊥ = 2n̄�n, �n = n‖ − n⊥ = √
ε‖ − √

ε⊥.

(30)

Correspondingly, the amplitudes of the eigenvectors of the
DJM N0 are of the form

�A0
± =

[
1

if±

]
, (31)

where

f± = A
η
±

A
ξ
±

= (n⊥)2 − (
n0

±
)2 − λ̄2q2

2n0±qλ̄
. (32)

It has to be noticed that apart from notations, the solutions
given by Eq. (29) are identical to those obtained by Mauguin [1]
and later rediscovered by de Vries [2] from the Maxwell equa-
tions, given by Eq. (16). In our approach, we have rewritten
Eq. (17) in terms of the DJM [Eq. (24)]. Using the assumption
of an elliptically polarized wave [Eq. (26)] and employing
Eq. (27), which relates the DJM to its eigenvalues, we have
obtained the same solution [Eq. (29)] for the refractive index
of the cholesteric as that obtained by Mauguin [1] and de Vries
[2]. The latter confirms the compatibility of the conception of
differential Jones matrices with Maxwell equations.

V. DJM FOR A CHOLESTERIC IN THE LOCAL
COORDINATE SYSTEM

Substituting Eqs. (31) and (32) in Eq. (27), we find eigen-
vectors of the matrix N0:

�E0
± =

[
A

η
±

iA
ξ
±

]
exp

(
−i

n0
±
λ̄

z

)
. (33)

The matrix N0 can be reconstructed from its eigenvalues and
eigenvectors as follows:

N0 = T 0f N0d (T 0f )−1, (34)

where

N0d = − i

λ̄

[
n0

+ 0

0 n0
−

]
(35)

is the diagonal form of the DJM N0 , composed of its eigen-
values, given by Eq. (29), and

T 0f =
[

1 1

if+ if−

]
(36)

is the transform matrix, composed of eigenvectors. From
Eq. (34), we find the DJM for a cholesteric in the form

N0f = −1

λ̄

⎡
⎣ i

n0
+f−−n0

−f+
f−−f+

,
n0

−−n0
+

f−−f+
n0

−−n0
+

f−−f+
f+f−, i

n0
−f−−n0

+f+
f−−f+

⎤
⎦. (37)

To check whether Eqs. (29) and (31) satisfy Eq. (27) for
eigenvalues and eigenvectors of the matrix N0, we substitute
Eqs. (31) and (37) in the left part of Eq. (27) and obtain the right
part of Eq. (27), which confirms that Eqs. (29) and (31) define
the eigenvalues and eigenvectors of the differential matrix of
a cholesteric.

Equation (37) can be rewritten in the form of the sum
of symmetrical and antisymmetrical parts, which shows the
physical sense of the matrix components,

N0f =
[− i

λ̄
(n̄0 + LB), JD + OA

JD − OA, − i
λ̄

(n̄0 − LB)

]
, (38)

where n̄0 = (n0
+ + n0

−)/2 = iλ̄(N0f

11 + N
0f

22 )/2 is the average

refractive index for the two eigenwaves, LB = iλ̄(N0f

11 −
N

0f

22 )/2 = n̄0(ε⊥ − λ̄2q2 − n0
+n0

−)/(ε⊥ − λ̄2q2 + n0
+n0

−) is the

linear birefringence, JD = (N0f

12 + N
0f

21 )/2 = −qLB/n̄0 is
the Jones dichroism, and OA = (N0f

12 − N
0f

21 )/2 = q is the
optical activity.

Equation (38) is a general form of the cholesteric DJM
in the local coordinate system. For some extreme values of
the ellipticities f± of the eigenwaves, the matrix N0f can
be reduced to simpler forms. There are two extreme regimes
of the propagation of the electromagnetic light waves in a
cholesteric, which correspond to the conditions of small linear
birefringence at high twist and of small twist at high enough
linear birefringence, respectively [3,9,11,12].

VI. REGIME OF CIRCULARLY POLARIZED
EIGENWAVES

A. Local DJM for circularly polarized eigenwaves

At �ε 
 qλ̄, which corresponds to low linear birefringence
�n at small pitch P , from Eq. (32) one finds f± → ∓1, which
corresponds to circularly (superscript c below) polarized waves
of opposite handedness. Such a regime realizes in cholesterics
with the submicron pitch. For f± → ∓1, the transform matrix
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T 0f , given by Eq. (36), takes the form

T 0c = [ �E0+,x ; �E0−,x] =
[

1; 1
−i; i

]
, (39)

where the superscript x indicates that the x component of the
eigenvector is normalized to 1 and the sign + or − indicates
which of the two eigenvalues n0

+ or n0
− corresponds to the

eigenvector. The transform matrix T 0c is composed of the two
eigenvectors: �E0+,x = [1, − i]Tr and �E0−,x = [1,i]Tr, where
the superscript Tr denotes the transpose operation and indicates
that the components, in the square brackets, form a vector
column.

In principle, the number of eigenvectors is infinite since their
components are related through each other, such that one of the
components can be any number. Then, the number of possible
transform matrices is also infinite. To resolve this issue, one
normalizes the components of eigenvectors by setting one of
the two components equal to 1. For example, the components
of the eigenvectors �E0+,x = [1, − i]Tr and �E0−,x = [1,i]Tr,
which are columns of the matrix T 0c in Eq. (39), are related
by the equations

E0±
y

E0±
x

= ∓i, (40)

in which E0±
x = 1. However, in the same vein, one can set

E0±
y = 1 and, from the same Eq. (40), one has �E0±,y =

[±i,1]Tr, where, respectively, the superscript y indicates that
now the y component is normalized to 1. Therefore, with the
two possibilities for normalization, we have four eigenvec-
tors: �E0+,x = [1,−i]Tr, �E0−,x = [1,i]Tr, �E0+,y = [i,1]Tr, and
�E0−,y = [−i,1]Tr, and thus one can construct four transform
matrices in the case of circularly polarized eigenwaves,

T 0c,+x,−x = [ �E0+,x ; �E0−,x]

=
[

1; 1
−i; i

]
, det[T 0c,+x,−x] = 2i, (41)

T 0c,+x,−y = [ �E0+,x ; �E0−,y]

=
[

1; −i

−i; 1

]
, det[T 0c,+x,−y] = 2, (42)

T 0c,+y,−x = [ �E0+,y ; �E0−,x]

=
[
i; 1
1; −i

]
, det[T 0c,+y,−x] = 0, (43)

T 0c,+y,−y = [ �E0+,y ; �E0−,y]

=
[
i; −i

1; 1

]
, det[T 0c,+y,−y] = 2i. (44)

The matrix T 0c from Eq. (39) is among the above four
matrices, being denoted by T 0c,+x,−x [Eq. (41)]. Since the
matrix T 0c,+y,−x [Eq. (43)] is singular, it cannot be used as a
transform matrix. By substituting any of the three nonsingular
transform matrices given by Eqs. (41), (42), and (44) into
Eq. (34), one obtains the same form of the cholesteric local

DJM for the regime of circularly polarized eigenwaves,

N0c =
[
− i

λ̄
n̄0, − 1

λ̄
�n0

2
1
λ̄

�n0

2 , − i
λ̄
n̄0

]
. (45)

It is seen from Eq. (45) that in this regime locally a
cholesteric slice acts on a propagating light wave as an optically
isotropic medium with the average local refractive index n̄0 and
optical activity 1

λ̄
�n0

2 , where �n0 = n0
+ − n0

−.

B. Transformation of the DJM under
rotation of the coordinate system

Equations (37) and (45) give the cholesteric DJM in the
local coordinate system attached to the director. Our next step
is to find the cholesteric DJM in the rotated coordinate system.
Under rotation of the coordinate system by an angle qz, each of
the two eigenvectors �E0

± transform according to the rule given
by Eq. (9), such that

�E± = R(qz) �E0
±. (46)

It is worth noticing that the rotation matrix R(qz) can be
represented in the form

R(qz) = T 0cRd (qz)(T 0c)−1, (47)

where

Rd (qz) =
[
e−iqz, 0

0, eiqz

]
(48)

is the diagonal form of the R(qz) matrix, composed of the
eigenvalues e±iqz, and the matrix T 0c given by Eqs. (39) and
(41) is the transform matrix, composed of the eigenvectors, for
the rotation matrix. By substituting Eqs.(46)–(48) in Eq. (23)
and performing simple matrix manipulations, one finds, for the
electric field vector in the rotated coordinate system,

d �E
dz

= T 0cN0q(T 0c)−1 �E, (49)

where

N0q = − i

λ̄

[
n0

+ + q, 0

0, n0
− − q

]
. (50)

It is seen from the form of Eq. (49) that the matrix factor

Nc = T 0cN0q(T 0c)−1 (51)

in the right-hand side of Eq. (49) is simply the DJM of a
cholesteric in the rotated coordinate system and, respectively,
N0q , given by Eq. (50), is its diagonal form. Therefore, we are
led to conclude that under rotation of the coordinate system by
an angle qz, the cholesteric DJM, whose eigenvectors describe
circularly polarized waves of opposite handedness, transforms
by adding ±q to its eigenvalues. This conclusion recovers
the commonly accepted suggestion [3,9–12] according to
which the solution of Maxwell equation (16) in the rotated
coordinate system should be of the form �E± ∼ e− i

λ
(n0

±±q)z (see,
for example, Eq. (6.22) in Ref. [9]).

The matrix multiplication in Eq. (51) gives the DJM of a
cholesteric in the regime of circularly polarized eigenwaves in
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the form

Nc =
[

− i
λ̄
n̄0, − 1

λ̄
�n0

2 − q

1
λ̄

�n0

2 + q, − i
λ̄
n̄0

]
. (52)

The off-diagonal components,

Nc
21 = −Nc

12 = 1

λ̄

�n0

2
+ q = OA, (53)

are antisymmetric and thus describe only the optical activity
(OA) of the cholesteric. It should be noticed that in previous
works, the OA for a cholesteric was derived from the form
of the eigenwaves. De Vries [2] obtained Eq. (53) using a
suggestion that the rotation of the light polarization is an
average of two contributions, namely, rotation due to the phase
difference for the two eigenwaves in the local coordinate
system and rotation of the coordinate system. In Refs. [3,9–12],
the Maxwell equations (16) are solved in the rotated coordinate
system and thus rotation of the light polarization is calculated
simply as a phase difference for the two eigenwaves. In our

approach, we obtain the same form of OA directly from
the form of the cholesteric DJM, namely, the OA of the
cholesteric is the antisymmetric parts of the DJM off-diagonal
components. Equation (53) indeed shows that the off-diagonal
components Nc

21 = −Nc
12 are the result of the sum of the light

polarization rotation in the internal coordinate system and
the rotation of the coordinate system, thereby confirming the
suggestion by de Vries [2], alluded to above.

C. Cholesteric IJM for circularly polarized eigenwaves

The IJM for a cholesteric in the regime of circularly polar-
ized eigenwaves can be obtained from its DJM by substituting
Eq. (52) in Eq. (2), with J0 taken to be the identity matrix,

J c = e
∫

Ncdz. (54)

The DJM given by Eq. (52) is independent of z and thus the
IJM given by Eq. (54) can be expressed analytically [19,22]:

J c = e
1
2 (Nc

11 +Nc
22)z

[
cosh D

2 + (Nc
11 −Nc

22)z
D

sinh D
2 , 2 Nc

12
D

sinh D
2

2 Nc
21

D
sinh D

2 , cosh D
2 − (Nc

11 − Nc
22)z

D
sinh D

2

]
, (55)

where D = z
√

(Nc
11 − Nc

22)2 + 4Nc
12N

c
21.

From Eq. (52), one finds

Nc
11 + Nc

22

2
= − i

λ̄
n̄0, Nc

11 − Nc
22 = 0,

D = z

√
−4

(
1

λ̄

�n0

2
+ q

)2

= 2i

(
1

λ̄

�n0

2
+ q

)
z,

(56)

and thus the IJM of a cholesteric in the regime of circularly
polarized eigenwaves is of the form

J c = e−i n̄0

λ̄
z

[
cos

{(
1
λ̄

�n0

2 + q
)
z
}
, − sin

{(
1
λ̄

�n0

2 + q
)
z
}

sin
{(

1
λ̄

�n0

2 + q
)
z
}
, cos

{(
1
λ̄

�n0

2 + q
)
z
}

]

= e−i n̄0

λ̄
zR

(
1

λ̄

�n0

2
+ q

)
. (57)

The matrix in Eq. (57) is the rotation matrix R(χ ) with
the rotation angle χ = ( 1

λ̄
�n0

2 + q)z, from which the optical
activity is of the form

OA = dχ

dz
= 1

λ̄

�n0

2
+ q, (58)

which is equivalent to Eq. (53), obtained from the form of
the DJM. A linearly polarized wave �Ei = [1,0]Tr, which is
normally incident (superscript i) on a cholesteric with its
helical axis along the cell normal, transforms by the matrix
J c [Eq. (57)] into the exiting wave,

�E = J c �Ei =
[
J c

11

J c
21

]
= e−i n̄0

λ̄
z

[
cos

{(
1
λ̄

�n0

2 + q
)
z
}

sin
{(

1
λ̄

�n0

2 + q
)
z
}
]
. (59)

From Eq. (59), one finds that the exiting wave is linearly
polarized and its azimuth is defined as tan χ = J c

21
J c

11
⇒ χ =

( 1
λ̄

�n0

2 + q)z, which leads to the optical activity in the form
given by Eq. (58) and which is the same as that given by
Eq. (53), obtained from the form of the DJM.

VII. MAUGUIN REGIME

In the previous section, we have derived the cholesteric DJM
and IJM for the extreme case of small optical anisotropy at a
high twist corresponding to the condition of small Mauguin
number, Ma = (P/2λ)�n 
 1, in which the eigenwaves are
circularly polarized waves of opposite handedness. In this
section, we consider an opposite extreme case of small twist
at high enough linear birefringence, the so-called Mauguin
regime (also called the waveguide regime [9]) corresponding
to the condition Ma � 1. The latter condition is equivalent
to qλ̄ 
 �n/2 and thus at this condition from Eq. (29) one
finds n0

+ → n‖ and n0
− → n⊥; for ellipticities from Eq. (32),

one has f+ → ∞ and f− → 0, from which the eigenwaves
corresponding to these eigenvalues and the ellipticities are
�E0+ = [0; 1]Tr and �E0− = [1; 0]Tr. Therefore, the eigenwaves

in the Mauguin regime are linearly polarized waves as in a
nematic. Then, for the diagonal DJM in the Mauguin regime
(correspondingly denoted by the superscript M),

N0M = − i

λ̄

[
n⊥; 0
0; n‖

]
, (60)

the corresponding transform matrix T 0M in Eq. (34) is the
identity matrix and therefore the DJM NM of a cholesteric
in the Mauguin regime is a diagonal matrix, NM = N0M

[Eq. (60)]. Similarly as it was done for the regime of circularly
polarized waves, one can find three other normalized transform
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matrices, but they appear to be singular and thus are not suitable
for substitution in Eq. (34).

The absence of the off-diagonal components in the local
DJM [Eq. (60)] indicates that the elementary slice of a
cholesteric in the Mauguin regime is not optically active, which
is different from that in the regime of circularly polarized
waves.

Under rotation of the coordinate system, a diagonal DJM
obeys the similarity transformation rule, similar to that for
the dielectric permittivity tensor, given by Eq. (3). Then, it
is the very case which was considered by Jones [19] for a
twisted crystal. The IJM derived by Jones for a twisted crystal
whose DJM transforms according to Eq. (3) is given by Eq. (5).
Substitution of Eq. (60) in Eq. (5) gives the cholesteric IJM in
the Mauguin regime,

JM = R(qz) exp
[{

N0M − qR
(π

2

)}
z
]
. (61)

Since the matrix N0M − qR(π/2) in Eq. (61) is independent
of z, JM can be written analytically,

JM = e−i n̄
λ̄
z

[
cos(qz), − sin(qz)

sin(qz), cos(qz)

]

×
[

cos(�z) + i
λ̄

�n
2�

sin(�z), q

�
sin(�z)

− q

�
sin(�z), cos(�z) − i

λ̄
�n
2�

sin(�z)

]
,

(62)

where � =
√

( �n
4λ

)
2 + q2. Apart from the notations, Eq. (62)

is identical to the form of the IJM given by Yeh and Gu
(Eq. (4.3-10) in Ref. [31]) for a twisted nematic cell. It is
worth noticing that Yeh and Gu derived it using the approach
given by Eq. (1). Therefore, we confirm our statement made in
[22], according to which the approach of the DJM developed
by Jones for a twisted crystal in Ref. [19] is equivalent to
that obtained with IJMs by slicing a cholesteric to elementary
nematic plates [10,21,31]. Jones equation (5) is equivalent
to Eq. (4.3-10) from Ref. [31], as well as to our Eq. (62),
and appears to be applicable for weak twist, corresponding

to the Mauguin regime, but it does not work in the spectral
region of selective light reflection.

For much weaker twist such that qλ̄ → 0, while qz is still
high enough, the IJM [Eq. (62)] for a twisted nematic cell
simplifies to the form

J a = e−i n̄
λ̄
z

[
cos(qz), − sin(qz)

sin(qz), cos(qz)

][
e

i
λ̄
�nz, 0

0, e− i
λ̄
�nz

]
.

(63)

Such a form of the IJM describes the adiabatic regime (su-
perscript a in J a), which is realized in twisted nematic cells,
for which the pitch P is comparable to the cell thickness
d or larger. Indeed, for a 90◦-twisted cell of the thickness
z = d = 10 μm at the light wavelength λ = 0.5 μm, one has
qz = π/2, whereas qλ̄ = 0.05.

VIII. GENERAL CASE

Without any assumption concerning the ellipticity values
f± [Eq. (32)], the DJM of a cholesteric is defined by Eq. (37).
Taking derivative d/dz from both sides of Eq. (9) and using
Eq. (23), one can show that the cholesteric DJM N0f for any
values of f± transforms under rotation of the coordinate system
as follows:

N = R(qz)
[
N0f + qR

(π

2

)]
R−1(qz). (64)

Equation (64) shows that under rotation of the coordinate
system, the matrix N0f , derived in the local coordinate system,
does not transform according to the similarity transformation
rule, given by Eq. (3). Instead, this law is valid for the matrix
N0f q = N0f + qR( π

2 ). According to Jones [19], if a DJM
(here the matrix N0f q) transforms according to the law, given
by Eq. (3), then its IJM transforms according to Eq. (5).
Therefore, the IJM of a cholesteric for any f± is of the form

J = R(qz)J 0f , (65)

where

J 0f = e[N0f ]z = e− i
λ̄
n̄0z�J 0f , (66)

with

�J 0f =
[

cos(�z) − i LB
λ̄�

sin(�z), JD+OA
λ̄�

sin(�z)
JD−OA

λ̄�
sin(�z), cos(�z) + i LB

λ̄�
sin(�z)

]
. (67)

From Eq. (65), one finds the cholesteric IJM in the form

J = e−i n̄0

λ̄
z

[
�J

0f

11 cos(qz) − �J
0f

21 sin(qz), �J
0f

12 cos(qz) − �J
0f

22 sin(qz)

�J
0f

21 cos(qz) + �J
0f

11 sin(qz), �J
0f

22 cos(qz) + �J
0f

12 sin(qz)

]
. (68)

If a linearly polarized light wave normally incidences on a crystalline slab, the azimuth χ of the polarization ellipse long axis
for the exiting light wave is determined by the following expression [32]:

tan 2χ = r + r∗

1 − |r|2 , (69)

where

r = J21

J11
= �J

0f

21 cos(qz) + �J
0f

11 sin(qz)

�J
0f

11 cos(qz) − �J
0f

21 sin(qz)
, (70)

053804-8



DIFFERENTIAL AND INTEGRAL JONES MATRICES FOR … PHYSICAL REVIEW A 97, 053804 (2018)

and r∗ is the complex conjugate of r . Substituting Eq. (70) in
Eq. (69), after some trigonometric transformations, we find

χ = θ + qz, (71)

where θ is defined through the relation

tan 2θ = Re
{
J

0f

11

}
Re

{
J

0f

21

} + Im
{
J

0f

11

}
Im

{
J

0f

21

}
∣∣J 0f

11

∣∣2 − ∣∣J 0f

21

∣∣2 . (72)

From Eq. (71), one finds optical activity in the form

OA = dχ

dz
= dθ

dz
+ q. (73)

The analytic expression for dθ
dz

, obtained from Eq. (72),
appears to be lengthy and we do not present it here. There
are no principal difficulties to derive it, though one has to
keep in mind that the forms of the real and imaginary parts
of the matrix components J

0f

11 , J
0f

21 as well as their moduli

|J 0f

11 | =
√

(Re{Jij })2 + (Im{Jij })2 are different outside and
inside the spectral region Pn⊥ < λ < Pn‖ of selective light
reflection, where the refractive index n0

− [Eq. (29)] for one of
the eigenwaves becomes imaginary.

IX. DISCUSSION

Although the two different approaches of, respectively,
integral and differential matrices were proposed by Jones in the
same cycle of papers [13–20], written in a relatively close time
period, they have received different attention in the literature.
The integral Jones matrices (IJMs) originally developed for
systems with discrete optical elements are intensively and
successfully exploited for these purposes (see [33] for review).
IJMs are also used for the modeling of spatially modulated
optical media and appear to be even more popular than the
differential Jones matrices (DJMs), especially introduced by
Jones for this purpose. Reports on successful application of
the DJM method are scarce [22,34]. Below we argue that there
are some problems in basing assumptions of IJM and DJM
approaches, which might explain why both approaches [19,21]
do not work in the spectral regime of selective reflection for
cholesterics.

Two key hypotheses as a rule are used in Jones’ calculus
when applied to nonuniform optical media. First, in the IJM
approach, it is assumed that a nonuniform optical medium
can be modeled by a stack of thin enough slices such that
each slice can be considered as being optically equivalent to
the medium in its undistorted (parent) state, which is further
referred to as the assumption of parent state. However, from
the point of view of crystallographic symmetry, the assumption
of parent state for an elementary slice of a distorted medium
is questionable. Indeed, once the medium is distorted, its
crystallographic symmetry (described by the point group)
lowers and becomes different from that of its parent state,
even locally. The difference in symmetry implies differences
in physical properties. Intuitively, one expects that for weak
distortions, these differences might be vanishing, whereas
for stronger distortions, they cannot be neglected even for a
reasonably thin elementary slice. Strong enough distortions
might lead to the situation when the response of the medium

to the electric field of the light wave depends not only on
the electric field in a given point of the medium, but also on
the space derivatives of the field. These are effects of spatial
dispersion [35,36].

In application to a cholesteric, the assumption of parent
state implies that the elementary slices, to which the medium
is split in the IJM approach [21] and the local DJM (in the DJM
approach [19]), are assumed to be those of a uniform nematic.
Point group symmetry of the cholesteric is ∞2, whereas for
the undistorted nematic it is ∞/mm. Once the nematic director
field is twisted, the symmetry of the sample lowers to that
of the cholesteric, which leads to optical properties similar to
those of the cholesteric, including optical activity. The forms of
the DJM and IJM, derived above for different regimes, indicate
that differences in optical properties of the elementary slice of
the twisted nematic or cholesteric in comparison with those of
the undistorted nematic are negligible for weak twist but show
up when the twist becomes strong enough. The assumption of
parent state appears to be valid only for long-pitch cholesterics
in the Mauguin regime. For short-pitch cholesterics out of the
Mauguin regime, the elementary IJM and the local DJM appear
to be different from those for a uniform nematic. We find
that in a general case, the local DJM and, consequently, the
elementary IJM correspond to an elementary plate possessing
optical activity (also called gyrotropy), linear birefringence,
and Jones dichroism;, see Eq. (38). In the extreme approxima-
tion of circularly polarized eigenwaves corresponding to high
values of the ratio λ/P � 1 (high twist), linear birefringence
and Jones dichroism vanish such that the cholesteric in this
regime becomes an optically isotropic gyrotropic medium. In
the opposite extreme approximation λ/P 
 1 (low twist), the
eigenwaves are linearly polarized and the elementary slice is
equivalent to a uniform nematic layer. With the assumption of
parent state in the IJM and DJM approaches, a specific optical
effect in the spectral range of selective light reflection appears
to be excluded from consideration. We argue below that by
applying the assumption of parent state to the cholesteric,
one neglects the contribution of spatial dispersion to the local
refractive index.

It is worth noticing that the DJM of the cholesteric in the
Mauguin regime is a diagonal matrix N0M [Eq. (60)], with
zero antisymmetric off-diagonal components responsible for
optical activity. Optical activity per se is an effect of spatial
dispersion [35,36] and, thus, is expected to be strong for strong
enough twist of the director field and should vanish for weak
twist. This is what we find for the DJMs of short- and long-pitch
cholesterics. The absence of the antisymmetric off-diagonal
components, responsible for optical activity in the DJM
[Eq. (60)], for a long-pitch cholesteric (or mechanically twisted
nematics) in the Mauguin regime indicates that the spatial
dispersion in this regime is weak. Though the antisymmetric
DJM components are zero in the Mauguin regime, there is a
giant rotation of the light polarization coming from the form of
the corresponding IJM [Eq. (61)], which appears to be a matrix
product of the rotation matrix R(qz) by the matrix exponent
of N0M − qR(π/2) and, thus, implies rotation of the light
polarization. The absence of the off-diagonal components,
responsible for optical activity in the local DJM N0M , but the
presence of antisymmetric components in its corresponding
IJM indicates that there are two different sources of the rotation
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of the light polarization. Namely, it can be a result either of
nonzero antisymmetric off-diagonal DJM components, which
by their physical sense describe OA, or of the nonzero off-
diagonal IJM components, at zero off-diagonal antisymmetric
DJM components. The latter statement is even better illustrated
for the adiabatic regime, in which both the DJM and the
exponent matrix in Eq. (63) are those of a uniform nematic with
zero off-diagonal components. However, in the corresponding
IJM [Eq. (63)], the diagonal exponent matrix is multiplied by
the rotation matrix R(qz), which is the origin of the rotation
of the light polarization. To distinguish between these two
origins of the light polarization rotation, we propose to call the
rotation of light polarization coming from antisymmetric off-
diagonal components of the local DJM as differential optical
activity, whereas the light polarization rotation coming from
the off-diagonal components of the IJM at zero differential
optical activity should be classified as the integral optical
activity. In the presence of both differential and integral optical
activity contributions, it can be termed the mixed optical
activity.

Therefore, the optical activity of the cholesteric (or twisted
nematic) in the Mauguin regime is purely of integral origin.
Optical activity of the elementary slice in the regime of
circularly polarized eigenwaves in the local coordinate system
is of the differential origin. In a general case, the optical activity
of the cholesteric is of mixed character.

By its origin, the differential optical activity is the effect of
spatial dispersion. Applying the assumption of parent state to
the elementary slice in the IJM approach or to the DJM, one
neglects the effects of spatial dispersion, which are important
for short-pitch cholesterics. A parameter controlling the impor-
tance of spatial dispersion for the cholesteric is the ratio λ/P .
At λ 
 P , from Eq. (29) one finds that the refractive indices
of the eigenwaves, propagating in the cholesteric, approach
the values of the refractive indices of the parent nematic,
namely, n0

±| λ
P

→0 → n‖/⊥. At short enough cholesteric pitch,
the refractive indices of the eigenwaves depend on the pitch,
indicating that the spatial dispersion contribution becomes
important.

One might argue that the assumption of parent state, accord-
ing to which the cholesteric is sliced to nematic elementary
slabs, is successfully used in Ref. [23], which correctly de-
scribes selective light reflection in the IJM approach. However,
to achieve this, one accounts for multiple reflection between
adjacent slices. The electric field of the transmitted (reflected)
light appears to be dependent on the field of reflected (trans-
mitted) light and on the field in the adjacent slab. This is simply
the account for spatial dispersion of the medium. The resulting
IJM of an elementary slab contains four nonequal components.
The presence of nonequal off-diagonal components, which are
complex numbers, indicates that such a Jones matrix describes
a slab, which is not a simple nematic.

The second basic assumption, used in both IJM and DJM
approaches, concerns the transformation rule for the rotation
of Jones matrices. In the traditional Jones matrix calculus
with the applied assumption of parent state for an elementary
slice or local DJM, the modulation of optical properties of
a cholesteric is modeled by the z dependence of the rota-
tion matrix, R(qz). Namely, in previous works [19,21], it
was assumed that under rotation of the coordinate system,

respectively, the DJM and IJM transform by the similarity rule
[Eqs. (3) and (13)], which was applied in Refs. [1,2] to the
tensor of dielectric permittivity [Eq. (10)]. We have shown
in the previous section that this second assumption is also
of limited applicability for a cholesteric. The local DJM and,
consequently, the IJM obey the transformation rule, given by
Eqs. (3) and (13) only in the Mauguin regime. In a general case,
under rotation of the coordinate system, the DJM transforms
according to Eq. (64) and its corresponding IJM transforms by
Eq. (65).

Analysis performed in previous sections shows that in a
general case, the IJM of the elementary slice and the DJM
cannot be assumed to be those of the undistorted nematic.
Their forms were derived from Maxwell equations. We have
shown that the Mauguin solutions of Maxwell equations for the
refractive indices n0

+ and n0
− [Eq. (29)] of the eigenwaves give

the eigenvalues of the DJM and the electric field vectors of the
eigenwaves are its eigenvectors [Eq. (33)]. The eigenvalues of
the DJM give the two nonzero components N0d

11 = − i
λ̄
n0

+ and
N0d

22 = − i
λ̄
n0

− of the diagonal form of the DJM [Eq (35)]. The
full form N0f [Eqs. (37) and (38)] of the DJM is reconstructed
from its diagonal form N0d [Eq. (35)] using the transform
matrix T 0f [Eq. (36)] formed of its eigenvectors [Eq. (31)]. As
a result, in a general case, the DJM for a cholesteric appears
to not be a matrix of a nematic plate.

It should be noticed that the Jones matrix calculus deals with
the polarization of the light wave propagating in a medium. The
direction of the light propagation is not considered with this
method, but can be described in a framework of the so-called
ray tracing matrix (RTM) approach [37,38].

X. CONCLUSION

The IJM and DJM approaches to the modeling of cholesteric
liquid crystals, available in the literature [19,21], lead to
results which are of limited applicability. They do not de-
scribe the optical properties of the cholesteric in the selective
reflection spectral region. We find that this is a result of
limited applicability of the basic assumptions used in these
approaches. First, it is traditionally assumed that the IJM
J 0 of an elementary slice and the local DJM N0 of the
cholesteric correspond to a uniform (parent) nematic plate
(assumption of parent state). According to the second as-
sumption, the IJM or DJM in the rotated coordinate system
is obtained simply by rotation of the nematic matrices J 0

or N0. We have shown that both of these assumptions are
valid only for weak twist in the Mauguin regime and argue
that the assumption of parent state excludes from consid-
eration the spatial dispersion contribution to the refractive
indices.

We have derived the DJM and IJM for a cholesteric liquid
crystal without these assumptions. Our DJM and IJM, derived
for the general case of any ellipticity value f± of the eigen-
waves, correspond to an optically anisotropic plate possessing
gyrotropy, linear birefringence, and Jones dichroism. In the
limiting approximations of circularly polarized waves and that
corresponding to the Mauguin regime, the DJM and IJM reduce
to those known from the literature. In the approximation of the
Mauguin regime, the eigenwaves become linearly polarized;
the transform matrix T 0f reduces to the identity matrix; Jones
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dichroism and optical activity vanish such that the local DJM
becomes diagonal and corresponds to a nondistorted nematic
plate. In the adiabatic regime, both the DJM and the exponent
matrix are diagonal and correspond to those of the uniform
nematic.

To derive the cholesteric DJM, we established the rela-
tion between the diagonal form N0d in the local coordinate
system to the Mauguin solutions of Maxwell equations for
refractive indices n0

+ and n0
− [Eq. (29)]. We have shown

that the eigenvalues N0d
11 and N0d

22 of the local DJM are the
wave numbers − i

λ̄
n0

+ and − i
λ̄
n0

− for the two eigenwaves
propagating in the sample. Then the full form N0f of the
local cholesteric DJM reconstructs from its diagonal form
N0d . We found that the DJM in the rotated coordinate system
is not simply the matrix, obtained by rotation of the local
DJM N0f .

The cholesteric IJM is derived from its corresponding DJM
for a general case and for two extreme approximations of the
circularly polarized waves and the Mauguin regime. Rotation
of the light polarization derived from the IJM for the two
approximation regimes is in agreement with those obtained
in this paper from the forms of corresponding DJMs as well
as with those known from the literature. Our results show that
the IJM of an elementary slice, to which the cholesteric is
split in the IJM approach in a general case, is a gyrotropic
plate, possessing linear birefringence and Jones dichroism. It
reduces to the IJM of an undistorted nematic plate only in
the approximation of the Mauguin regime corresponding to
weak twist of the director field. Though the antisymmetric
components in the DJM [Eq. (60)], corresponding to the
Mauguin regime, including adiabatic regime, are zero, rotation
of the light polarization comes from the IJM, in which the
diagonal exponent matrix is multiplied by the rotation matrix
R(qz) [Eq. (63)].

In the opposite extreme approximation of circularly polar-
ized eigenwaves propagating in short-pitch cholesterics with
low linear birefringence of the parent nematic, the IJM reduces
to the rotation matrix J c ∼ R( 1

2�n0z + qz) [Eq. (57)], which
gives rotation of the light polarization in the same form as that
obtained from the DJM and those known from the literature.

The main finding of this paper stating that the IJM of the
elementary slice in the IJM approach and the local DJM differ
from those of the undistorted nematic is explained based on the
symmetry arguments. Namely, the crystallographic symmetry
of the cholesteric (point group ∞2) or mechanically twisted
nematic is different from the symmetry of the undistorted
nematic (point group ∞/mm). The difference in the symmetry
implies differences in physical properties. For this reason, the
IJM of the elementary slice and the DJM for a cholesteric
in a general case are different from those for the undistorted
nematic, but reduce to the elementary IJM and local DJM of
a nematic slice at weak twist in the Mauguin and adiabatic
regimes.

We believe that the DJM and IJM derived in this paper,
which account for the spatial dispersion, can be used for
modeling of the optical properties of distorted cholesterics,
subjected to an external field. We predict that our elementary
IJM and local DJM are suitable for modeling of the twist
grain boundary (TGB) [39–44] and nematic twist-bend (Ntb)
[45–48] phases as well as for the heliconical state [49–53] of
cholesterics with low K33 elastic modulus under an external
field.
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