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Many-body expansion dynamics of a Bose-Fermi mixture confined in an optical lattice
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We unravel the correlated nonequilibrium dynamics of a mass balanced Bose-Fermi mixture in a one-
dimensional optical lattice upon quenching an imposed harmonic trap from strong to weak confinement. Regarding
the system’s ground state, the competition between the inter- and intraspecies interaction strength gives rise to
the immiscible and miscible phases characterized by negligible and complete overlap of the constituting atomic
clouds, respectively. The resulting dynamical response depends strongly on the initial phase and consists of an
expansion of each cloud and an interwell tunneling dynamics. For varying quench amplitude and referring to a
fixed phase, a multitude of response regimes is unveiled, being richer within the immiscible phase, which are
described by distinct expansion strengths and tunneling channels.
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I. INTRODUCTION

Recent experimental advances in ultracold atomic gases of-
fer the opportunity to realize mixtures of bosons and fermions
with the aid of sympathetic cooling [1–5]. These mixtures serve
as prototypical examples in which the interacting particles obey
different statistics [6,7]. For instance and in sharp contrast to
bosons, s-wave interactions among spin-polarized fermions
are prevented due to the Pauli exclusion principle. The complex
interplay of Bose-Bose and Bose-Fermi interactions led to
numerous theoretical studies of Bose-Fermi (BF) mixtures
such as their phase separation process [8,9], stability conditions
[10,11], and collective excitations [12,13].

Moreover, BF mixtures confined in optical lattices unveiled
a variety of intriguing quantum phases including, among
others, exotic Mott-insulator and superfluid phases [14–17],
charge-density waves [17,18], supersolid phases [19,20], and
polaronlike quasiparticles [18,21]. A commonly used model
to describe the properties of such mixtures, e.g., pairing of
fermions with bosons or bosonic holes for attractive and
repulsive interspecies interactions, respectively [17,22], is
the lowest-band BF Hubbard model [23,24]. A celebrated
problem that has been intensively studied concerns the effect
of the fermions on the mobility of the bosons. Heavier or
lighter fermions mediate long-range interactions between the
bosons or act as impurities, inducing a shift of the bosonic
superfluid-to-Mott transition [25] caused by the contribution of
energetically higher than the lowest-band states. This behavior
indicated that more involved approximations than the lowest-
band BF Hubbard model need to be considered for an adequate
explanation of the superfluid-to-Mott transition [26–28].

Despite the importance of the system’s static properties,
a particularly interesting but largely unexplored research di-
rection in BF mixtures is to investigate their nonequilibrium
quantum dynamics by employing a quantum quench [29,30].
Referring to lattice systems, the simplest scenario to explore
is the expansion dynamics of the trapped atomic cloud after
quenching the frequency of an imposed harmonic oscillator.

Such studies have already been performed mainly for bosonic
ensembles unraveling the dependence of the expansion on
the interatomic interactions. For instance, it has been shown
that the expansion is enhanced for noninteracting or hard-
core bosons [31], while for low filling systems, a global
breathing mode is induced [32]. Detailing the dynamics on the
microscopic level, a resonant dynamical response has been re-
vealed which is related to avoided crossings in the many-body
(MB) eigenspectrum [33]. A peculiar phenomenon, called
quasicondensation, arises during the expansion of hard-core
bosons enforcing a temperature-dependent long-range order
in the system [34–38]. Moreover, the expansion velocities of
fermionic and bosonic Mott insulators have been found to be
the same irrespectively of the interaction strength [39]. How-
ever, a systematic study of the expansion dynamics in particle-
imbalanced BF mixtures still lacks. In such a scenario, it would
be particularly interesting to examine how interspecies corre-
lations, which reflect the initial phase of the system [40–44],
modify the expansion dynamics of the mixture. Another
intriguing prospect is to investigate, when residing within
a specific phase, whether different response regimes can be
triggered upon varying the quench amplitude. To address these
intriguing questions, we employ the multilayer multiconfigu-
rational time-dependent Hartree method for atomic mixtures
(ML-MCTDHX) [45,46], which is a multiorbital treatment
that enables us to capture the important inter- and intraspecies
correlation effects.

We investigate a BF mixture confined in a one-dimensional
optical lattice with an imposed harmonic trap. Operating
within the weak-interaction regime, we show that the interplay
of the intra- and interspecies interactions leads to different
ground-state phases regarding the degree of miscibility in the
mixture, namely, to the miscible and the immiscible phases
where the bosonic and the fermionic single-particle densities
are completely and zero overlapping, respectively. To trigger
the dynamics, the BF mixture is initialized within a certain
phase and a quench from strong to weak confinement is
performed. Each individual phase exhibits a characteristic
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response composed of an overall expansion of both atomic
clouds and an interwell tunneling dynamics. Referring to the
immiscible phase, a resonantlike response of both components
occurs at moderate quench amplitudes, which is reminiscent
of the single-component case [33]. A variety of distinct re-
sponse regimes is realized for decreasing confinement strength.
Bosons perform a breathing dynamics or solely expand, while
fermions tunnel between the outer wells, located at the edges of
the bosonic cloud, or exhibit a delocalized behavior over the
entire lattice. To gain further insight into the MB expansion
dynamics, the contribution of the higher-lying orbitals is
analyzed and their crucial role in the course of the evolution
is showcased. Inspecting the dynamics of each species on
both the one- and the two-body level, we observe that during
the evolution, the predominantly occupied wells are one-body
incoherent and mainly two-body anticorrelated with each
other; while within each well, a correlated behavior, for bosons,
and an anticorrelated one, for fermions, occurs. Furthermore,
it is shown that the immiscible phase gives rise to a richer
response when compared to the miscible phase for varying
quench amplitude. Finally, it is found that for increasing height
of the potential barrier, the expansion dynamics of the BF
mixture is suppressed, while for mass imbalanced mixtures,
the heavier component is essentially unperturbed.

This work is organized as follows. In Sec. II, we intro-
duce our setup, the employed MB wave-function ansatz, and
the basic observables of interest. Section III presents the
ground-state properties of our system. In Secs. IV and V,
we focus on the quench-induced expansion dynamics of the
BF mixture within the immiscible and the miscible correlated
phases, respectively. We summarize our findings and present
an outlook in Sec. VI. Appendix A presents the correlation
dynamics during the expansion of the BF mixture within the
immiscible phase, and in Appendix B we show the impact
of several system parameters on the expansion dynamics.
Appendix C contains a discussion regarding the convergence
of our numerical ML-MCTDHX simulations.

II. THEORETICAL FRAMEWORK

A. Setup and many-body ansatz

We consider a BF mixture consisting of NF spin-polarized
fermions and NB bosons each of mass M . This system can be to
a good approximation realized by considering, e.g., a mixture
of isotopes of 7Li and 6Li [47] or 171Yb and 172Yb [48,49]. The
mixture is confined in a one-dimensional optical lattice with an
imposed harmonic confinement of frequency ω, and the MB
Hamiltonian reads

H =
NF +NB∑

i=1

[
− h̄2

2M

∂2

∂x2
i

+ M

2
ω2x2

i + V0 sin2(kxi)

]

+ gFB

NF∑
i=1

NB∑
j=1

δ
(
xF

i − xB
j

)+gBB

∑
1�i�j�NB

δ
(
xB

i − xB
j

)
.

(1)

The lattice potential is characterized by its depth V0 and
periodicity l = π (with k = π/l). Within the ultracold
s-wave scattering limit, the inter- and intraspecies interac-

tions are adequately modeled by contact interactions scaling
with the effective one-dimensional coupling strength gσσ ′ ,
where σ,σ ′ = B,F for bosons or fermions, respectively.
The effective one-dimensional coupling strength [50] g1D

σσ ′ =
2h̄2as

σσ ′
μa2

⊥
[1 − |ζ (1/2)|as

σσ ′/
√

2a⊥]
−1

, where ζ denotes the Rie-
mann zeta function and μ is the corresponding reduced mass.
The transversal length scale is a⊥ = √

h̄/μω⊥, and ω⊥ is the
frequency of the transversal confinement, while as

σσ ′ denotes
the free-space s-wave scattering length within or between the
two species. gσσ ′ is tunable by as

σσ ′ via Feshbach resonances
[51,52] or by means of ω⊥ [50,53]. S-wave scattering is
prohibited for spinless fermions due to their antisymmetry
[6,7] and thus they are considered to be noninteracting among
each other. The MB Hamiltonian is rescaled in units of the
recoil energy ER = h̄2k2

2M
. Then, the corresponding length, time,

frequency, and interaction strength scales are given in units of
k−1, ω−1

R = h̄E−1
R , ωR , and 2ERk−1, respectively. To limit the

spatial extension of our system, we impose hard-wall boundary
conditions at x± = ± 19

2 π . For convenience, we also shall set
h̄ = M = k = 1 and therefore all quantities below are given
in dimensionless units.

Our system is initially prepared in the ground state of the
MB Hamiltonian where the harmonic trap frequency is ω =
0.1 and the lattice depth V0 = 3. Due to the imposed harmonic
trap, initially the mixture experiences a localization tendency
towards the central wells which is stronger for decreasing gBB .
To induce the dynamics, we instantaneously change at t = 0
the trapping frequency ω to lower values and let the system
evolve in time. Note that reducing ω predominantly favors
the tunneling of both components to the outer wells as the
corresponding energy offset between distinct wells becomes
smaller. In this way, after the quench, the mixture is prone to
expand.

To solve the underlying MB Schrödinger equation, we
employ ML-MCTDHX [45,46]. The latter, in contrast to the
mean-field (MF) approximation, relies on expanding the MB
wave function in a time-dependent and variationally optimized
basis, enabling us to take into account inter- and intraspecies
correlations. To include interspecies correlations, we first intro-
duce M distinct species functions for each component, namely,
�σ

k (�xσ ; t), where �xσ = (xσ
1 , . . . ,xσ

Nσ
) denote the spatial (σ =

F,B)-species coordinates and Nσ is the number of σ -species
atoms. Then, the MB wave function �MB can be expressed
according to the truncated Schmidt decomposition [54] of
rank M ,

�MB(�xF ,�xB ; t) =
M∑

k=1

√
λk(t)�F

k (�xF ; t)�B
k (�xB ; t), (2)

where the Schmidt coefficients λk(t) are referred to as the
natural species populations of the kth species function. The
system is entangled [55] or interspecies correlated when at
least two distinct λk(t) are nonzero and therefore the MB state
cannot be expressed as a direct product of two states. In this en-
tangled case, a particular fermionic configuration �F

k (�xF ; t) is
accompanied by a particular bosonic configuration �B

k (�xB ; t),
and vice versa. As a consequence, measuring one of the species
states, e.g., �F

k′ , collapses the wave function of the other species
to �B

k′ , thus manifesting the bipartite entanglement [56,57].
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Moreover, in order to account for interparticle correlations,
each of the species functions �σ

k (�xσ ; t) is expanded using the
determinants or permanents of mσ distinct time-dependent
fermionic or bosonic single-particle functions (SPFs),
ϕ1, . . . ,ϕmσ , respectively,

�σ
k (�xσ ; t) =

∑
n1, . . . ,nmσ∑

ni = N

ck,(n1,...,nmσ )(t)
Nσ !∑
i=1

sign(Pi)
ζPi

×
⎡
⎣ n1∏

j=1

ϕ1(xj ; t) · · ·
nmσ∏
j=1

ϕmσ (xj ; t)

⎤
⎦. (3)

Here, ζ = 0,1 for the case of bosons and fermions, respec-
tively, and sign(Pi) denotes the sign of the corresponding
permutation. P is the permutation operator exchanging the
particle configuration within the SPFs. ck,(n1,...,nmσ )(t) are the
time-dependent expansion coefficients of a particular determi-
nant for fermions or permanent for bosons, and ni(t) denotes
the occupation number of the SPF ϕi(�x; t). Note that the
bosonic subsystem is termed intraspecies correlated if more
than one eigenvalue is substantially occupied, otherwise it is
said to be fully coherent [58,59]. In the same manner, the
fermionic species possesses beyond Hartree-Fock intraspecies
correlations if more than NF eigenvalues occur. Employing the
Dirac-Frenkel variational principle [60,61] for the MB ansatz
[see Eqs. (2) and (3)] yields the ML-MCTDHX equations of
motion [45]. These consist of M2 linear differential equations
of motion for the coefficients λi(t), which are coupled to a set
of

(
M[NB+mB−1

mB−1

)+(
mF

NF ]

)
nonlinear integrodifferential equations

for the species functions and mF + mB integrodifferential
equations for the SPFs. Finally, it is also worth mentioning that
ML-MCTDHX can operate in different approximation orders,
e.g., it reduces to the MF Gross-Pitaevskii equation in the case
of M = mF = mB = 1.

B. Observables of interest

Let us next briefly introduce the main observables that will
be used for the interpretation of the expansion dynamics on
both the one- and two-body level. To measure the collective
expansion and contraction dynamics [31,33] of the σ -species
atomic cloud, we rely on the position variance,

�2
x,σ (t) = 〈�MB(t)| x̂2

σ |�MB(t)〉 − 〈�MB(t)| x̂σ |�MB(t)〉2 .

(4)

Here, x̂σ = ∫
D

dxxσ �̂†
σ (x)�̂σ (x) and x̂2

σ = ∫
D

dxx2
σ �̂†

σ (x)
�̂σ (x) are one-body operators, with �̂σ (x) denoting the σ -
species field operator, and D is the spatial extent of the
lattice. We remark that the aforementioned position variance,
evaluated over the entire lattice, essentially quantifies a global
breathing mode composed of interwell tunneling and intrawell
breathing modes, offering in this way a measure for the
system’s dynamical response.

To elaborate on the intensity of the resulting dynamical
response for the σ species, we define the time-averaged

position variance,

�̄2
x,σ = 1

T

∫ T

0

[
�2

x,σ (t) − �2
x,σ (0)

]
, (5)

which describes the mean deviation of the system from its
initial (ground) state. �2

x,σ (0) refers to the position variance
of the σ species for the initial state at t = 0, while T is the
considered finite evolution time in which �̄2

x,σ has converged
to a certain value.

The one-body reduced density matrix of the σ

species, ρ(1),σ (x,x ′; t) = 〈�MB(t)| �†
σ (x ′)�σ (x) |�MB(t)〉,

provides the probability to find a σ -species particle
simultaneously at positions x and x ′ at a certain time instant
t , while ρ(1),σ (x; t) ≡ ρ(1),σ (x,x ′ = x; t) is the σ -species
single-particle density [62]. The eigenfunctions of the
σ -species one-body density matrix, ρ(1),σ (x,x ′), are the
so-called σ -species natural orbitals, φσ

i (x; t), which are
normalized to their corresponding eigenvalues,

nσ
i (t) =

∫
dx

∣∣φσ
i (x; t)

∣∣2
. (6)

nσ
i (t) are known as the natural populations of

the σ species [58,59]. Finally, the diagonal two-
body reduced density matrix ρ(2),σσ ′

(x,x ′; t) =
〈�MB(t)| �†

σ ′(x ′)�†
σ (x)�σ (x)�σ ′(x ′) |�MB(t)〉 refers to

the probability of finding two atoms located at positions x and
x ′ at time t .

III. INITIAL-STATE CHARACTERIZATION

Depending on the ratio between the interspecies (gFB) and
intraspecies (gBB) interaction strength, the BF mixture forms
two phases characterized by the miscibility of the bosonic
and fermionic clouds [8,63–65]. Here, we typically restrict
ourselves to weak inter- and intraspecies interactions and con-
sider a BF mixture consisting of NB = 20 bosons and NF = 2
spin-polarized fermions confined in a 19-well optical lattice.
Tuning gFB

gBB
, we identify different ground-state configurations,

namely, the miscible and the immiscible correlated phases
(see below). We remark that by operating within the afore-
mentioned weak-interaction regime and besides realizing the
above phases, we showcase that the inclusion of correlations
is of substantial importance in order to accurately describe the
expansion dynamics of the BF mixture. Effects of stronger
interaction strengths, such as the Tonks-Girardeau regime,
might be of great importance but lie beyond our scope.

For gBB > gFB and for gBB = 1.0 and gFB = 0.05, we
realize the miscible phase where the single-particle densities
of bosons and fermions are overlapping; see Fig. 1(a). In
particular, the bosonic and fermionic single-particle densities
in the three central wells overlap completely, while the outer
wells are mainly populated by bosons. The broadening of
the bosonic one-body density distribution is anticipated due
to the strong gBB . The aforementioned miscibility character
of ρ(1),σ (x), favoring certain spatial regions, leads to the
characterization of the phase as miscible. On the two-body
level, the corresponding ρ(2),BB (x,x ′) [see inset (a1) of Fig. 1]
demonstrates that two bosons are likely to populate most of
the available wells, while two fermions [see ρ(2),FF (x,x ′) in
the inset (a2) of Fig. 1] cannot reside in the same well but
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FIG. 1. Fermionic (red line) and bosonic (blue line) ground-
state one-body densities for (a) gBB = 1.0, gFB = 0.05 (miscible
phase) and (b) gBB = 0.05, gFB = 0.2 (immiscible phase). Insets
(a1) and (a2) show the two-body reduced density matrix of the
bosons and fermions, respectively, for the miscible phase. Insets
(b1) and (b2) show the same quantities as (a1) and (b2), but for the
immiscible phase. Insets (a3) and (b3) depict the interspecies two-
particle reduced density matrix in the miscible and immiscible regime,
respectively.

are rather delocalized over the three central wells. Finally, the
elongated shape of ρ(2),FB (x,x ′) [see inset (a3) of Fig. 1] further
indicates the miscibility of the two components within the three
central wells and their vanishing overlap in the outer lattice
wells.

Turning to the regime of gFB > gBB , namely, for gBB =
0.05 and gFB = 0.2, we enter the immiscible phase charac-
terized by almost perfectly separated fermionic and bosonic
single-particle densities; see Fig. 1(b). As shown, ρ(1),B (x) 	=
0 for the three central wells (i.e., x ∈ [−3π/2,3π/2]) and
therefore one boson is delocalized in this region. However,
ρ(1),F (x) 	= 0 only for the nearest neighbors of the three central
wells, namely, x ∈ [3π/2,5π/2] and x ∈ [−5π/2, − 3π/2].
The latter indicates that each fermion is localized in one of these
neighboring wells. The above observations are also supported
by the intraspecies two-body reduced density matrices [44].
Indeed, ρ(2),BB (x,x ′) 	= 0 [see inset (b1) of Fig. 1] for the
three central wells, implying that it is likely for two bosons to
reside within this spatial region. However, ρ(2),FF (x,x ′) 	= 0
[see inset (b2) of Fig. 1] only for the antidiagonal elements
that refer to the nearest neighbors (−5π/2 < x < −3π/2 and
3π/2 < x < 5π/2) of the three central wells. Therefore, each
fermion populates only one of these wells. The diagonals of
ρ(2),FB (x,x) depicted in the inset (b3) of Fig. 1 are almost
zero, reflecting in this way the phase-separated character of
the state.

(a1)

(b1) (b2)

(a2)

(a3)

(a4)

FIG. 2. (a) Bosonic and (b) fermionic mean variance �̄2
x,σ in the

immiscible phase for varying postquench harmonic trap frequency
ωf . (a1)–(a4) Position variance �x,B (t) as a function of time within
the characteristic four different bosonic response regimes. (b1),(b2)
�x,F (t) within the characteristic two distinct fermionic response
regimes. Initially the system is in the ground state of NB = 20
bosons and NF = 2 fermions with gBB = 0.05, gFB = 0.2, which
are confined in a 19-well lattice potential with an imposed harmonic
trap of frequency ω = 0.1.

IV. QUENCH DYNAMICS IN THE IMMISCIBLE PHASE

Focusing on the immiscible phase, we study the expansion
dynamics induced by a quench of the harmonic-oscillator
frequency to smaller values. To gain an overview of the
system’s mean dynamical response, we resort to the σ -species
time-averaged position variance �̄2

x,σ [see also Eq. (5)], which
essentially measures the expansion strength of the atomic
cloud. Figures 2(a) and 2(b) present �̄2

x,B and �̄2
x,F , respec-

tively, with varying final trap frequency ωf . It is observed that
the expansion strength strongly depends on ωf and exhibits
a maximum value in the vicinity of ωf = 0.0175. Therefore,
both the bosonic and the fermionic cloud do not show their
strongest expansion when completely releasing the harmonic
trap, i.e., at ωf = 0, but rather at moderate quench ampli-
tudes. For either ωf < 0.0175 or ωf > 0.0175, an essentially
monotonic decrease of �̄2

x,σ occurs (see also below for a more
detailed description of the dynamics). Alterations of the overall
dynamical response can be achieved by tuning the height of
the potential barrier or the mass ratio of the two species (see
Appendix B). The above-mentioned resonantlike behavior is
reminiscent of the expansion dynamics of single-component
bosons trapped in a composite lattice and subjected to a quench
of the imposed harmonic trap from strong to weak confinement
[33]. In this latter case, a resonant response of the system for
intermediate quench amplitudes occurs and it is related to the
avoided crossings in the MB eigenspectrum with varying ωf .
The occurrence of the resonantlike response of the BF mixture
suggests that also in the present case, such avoided crossings
could be responsible for the appearance of the maximum at
ωf = 0.0175. However, due to the large particle numbers
considered herein, a direct calculation of the corresponding
MB eigenspectrum is not possible.

To elaborate in more detail on the characteristics of the
dynamical response, we invoke the position variance �2

x,σ (t)
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FIG. 3. The one-body density evolution within the MF approach is presented in (a1) bosons and (a2) fermions after a quench to ωf = 0.0475.
(b1),(b2) and (d1),(d2) present the same quantities as above, but for a quench to ωf = 0.0175 and ωf = 0.0, respectively. One-body density
evolution within the MB approach for (a3) bosons and (a4) fermions after a quench to ωf = 0.0475. (b3), (b4) and (c3), (c4) present the same
quantities as (a3) and (a4), but for a quench to ωf = 0.0175 and ωf = 0.0, respectively. (d1)–(d3) The one-body density, in the course of the
dynamics, of the first, second, resummed third, and fourth bosonic orbitals of (c3). (d4)–(d6) The resummed one-body density evolution of the
first and second, third and fourth, and fifth to eighth fermionic orbitals of (c4). The system is initialized in the ground state of NB = 20 bosons
and NF = 2 fermions with gBB = 0.05, gFB = 0.2 and is confined in a 19-well lattice potential with an imposed harmonic trap of frequency
ω = 0.1.

[see Eq. (4)] and the single-particle density ρ(1),σ (x,t) of the
σ species during the evolution [31]. Recall that by quenching
the harmonic-oscillator frequency to lower values, we mainly
trigger the tunneling dynamics towards the outer lattice wells as
their corresponding energy offset is reduced. Focusing on the
bosonic species, we can identify four distinct response regimes,
each one exhibiting a characteristic expansion; see Figs. 2(a1)–
2(a4). Within the first regime located at 0.0775 � ωf � 0.1,
the bosonic cloud undergoes a regular periodic expansion
and contraction dynamics [see the oscillatory behavior of
�2

x,B(t) in Fig. 2(a1)], which is identified as a global breathing
mode [32,33]. The oscillation amplitude (frequency) of�2

x,B (t)
increases (decreases) for smaller ωf ’s lying within this region.
In the second response regime (0.0525 � ωf < 0.0755), the
cloud initially expands within a short evolution time (t < 50)
and then performs irregular oscillations possessing multiple
frequencies [Figs. 2(a2) and 3(a3)]. The third response regime
(0.015 � ωf � 0.05) is characterized by an initial expansion
of the bosons until a maximum value is reached. Then the

ensemble undergoes a contraction and followup expansion
[Figs. 2(a3) and 3(b3)]. For ωf < 0.015, defining the fourth
regime, the atoms strictly expand in an approximately linear
manner [Figs. 2(a4) and 3(c4)], reaching a maximum value
at very long evolution times t > 600 (not shown here). Their
expansion velocity and amplitude are significantly reduced
when compared to the third response regime, resulting in this
way in the smaller expansion strength shown in Fig. 2(a).

Turning to the fermionic subsystem, we can realize two
different response regimes; see Figs. 2(b1) and 2(b2). The
first occurs within the same range of ωf ’s as the correspond-
ing bosonic one and �2

x,F (t) performs regular oscillations
[Fig. 2(b1)]. The second one appears for ωf < 0.0775, thus
covering the range of quench amplitudes that leads to the
second, third, and fourth bosonic response regimes. Here,
�2

x,F (t) increases monotonically for a short evolution time,
reaching a maximum around which it oscillates with a small
amplitude. To further visualize the dynamics of the mixture,
we inspect ρ(1),F (x,t). It is observed that for ωf > 0.03, the
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FIG. 4. (a) Bosonic and (b) fermionic mean variance �̄2
x,σ of a BF mixture in the miscible phase for varying postquench harmonic trap

frequency ωf . Evolution of the one-body density within the MF approach for the constituting (c1) bosons and (c2) fermions following a quench
to ωf = 0.0675. (d1),(d2) The same as above, but for ωf = 0.025. One-body density evolution within the MB approach for the (c3) bosons and
(c4) fermions following a quench to ωf = 0.0675. (d3),(d4) The same as above, but for ωf = 0.025. The system is initialized in the ground
state of NB = 20 bosons and NF = 2 fermions with gBB = 1, gFB = 0.05, which is confined in a 19-well lattice potential with an imposed
harmonic trap of frequency ω = 0.1.

bosons mainly bunch within the three central wells, forming
a material barrier [66,67] that prevents the fermions from
tunneling into the inner central wells; see, e.g., Fig. 3(a4).
Then the fermions perform tunneling oscillations between the
two outer nearest-neighboring wells located at −9π/2 < x <

−5π/2 and 5π/2 < x < 9π/2. On the contrary, for ωf <

0.03, the bosons undergo a strong expansion over the whole
extent of the lattice, thus allowing the fermions to diffuse via
tunneling [Figs. 3(b4) and 3(c4)].

Identification of the many-body characteristics

To infer about the MB nature of the above-mentioned
response regimes, we perform a comparison with the cor-
responding quench-induced dynamics obtained within the
MF (single-orbital) approximation. In the latter case, �̄2

x,B

for varying ωf [see Fig. 2(a)] shows a qualitatively similar
behavior to the MB case. However, the MF result predicts a
displaced response maximum to larger values of ωf and the
existence of a secondary maximum at ωf = 0.0075, which is
suppressed in the presence of correlations. Comparing �̄2

x,B in
the MB and the single-orbital approximation, we can deduce
that for large quench amplitudes (ωf < 0.02), the expansion
strength is strongly suppressed in the latter case. Moreover, the
third and fourth bosonic response regimes identified within

the MB approach are greatly altered in the MF realm. For
instance, the slow monotonic expansion of the cloud in the
fourth regime [see, e.g., ρ(1),B (x,t) in Fig. 3(c3)] is substituted
by regular tunneling oscillations of the bosons in the five central
wells [Fig. 3(c1)]. Moreover, MF fails to adequately capture the
tunneling dynamics. This latter observation is clearly imprinted
in the one-body density evolution presented, e.g., in Figs. 3(b1)
and 3(b3). Additionally here, significant deviations that are
not resolvable by inspecting �̄2

x,B between the two approaches
are also present; compare, for instance, Figs. 3(a1) and 3(a3).
A careful inspection of ρ(1),B (x,t) reveals that in the MB
scenario for ωf < 0.0325, a diffusive tendency of the bosons
over the entire lattice takes place for long evolution times; see
Figs. 3(b3) and 3(c3).

Turning to the fermionic component, and in contrast to
the bosonic case, the expansion strength �̄2

x,F is enhanced in
the MF approximation [Fig. 2(b)] when compared to the MB
scenario for large quench amplitudes, namely, ωf < 0.025.
This increase of �̄2

x,F can be attributed to the suppression
of the tunneling processes towards the inner central wells
and a dominant outward spreading; see, e.g., Fig. 3(b3). For
ωf < 0.025, the MB approach predicts a strong delocalization
of the two fermions over the entire lattice for large evolution
times (t > 250) with almost all tunneling processes being
damped [see, e.g., Figs. 3(b4) and 3(c4)]. This result is in
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direct contrast to what is observed in the MF case. Here, the
fermions show an expansion that is characterized by two almost
localized density branches that mainly tunnel to the outer wells
[Fig. 3(b2)] while being almost localized close to the central
wells at all times for ωf = 0 [Fig. 3(c2)]. A further discussion
regarding the correlation dynamics of the BF mixture on both
the one- and two-body level is provided in Appendix A.

To gain a deeper understanding of the underlying micro-
scopic properties of the MB dynamics, we next inspect the
single-particle density evolution of the participating orbitals
|φσ

i (x,t)|2 after quenching to ωf = 0. Figures 3(d1)–3(d3)
present the corresponding single-particle densities of all four
bosonic orbitals. The first and predominantly contributing
orbital [Fig. 3(d1)] shows almost no expansion and a sup-
pressed tunneling dynamics within the five middle wells.
The latter behavior resembles, to a certain extent, the single-
particle density evolution within the MF approach; see also
Fig. 3(c1). On the other hand, the second [Fig. 3(d2)] as well
as the resummation of the third and fourth [Fig. 3(d3)] orbital
densities indicate an expansion of the bosonic cloud over the
entire lattice. Therefore, these contributions are responsible
for the above-described broader one-body density distribution
of the bosons along the lattice in the MB (compared to MF)
case.

To also analyze the fermionic motion, we next examine
the single-particle densities of the eight fermionic orbitals; see
Figs. 3(d4)–3(d6). Recall here that due to the Pauli exclusion
principle, each orbital can be occupied by only one fermion
and therefore the corresponding MF approximation requires
the utilization of two orbitals. The resummed density of the first
two fermionic orbitals [Fig. 3(d4)] for t < 120 presents the evo-
lution of two almost localized single-particle density branches
located at x → [3π/2,5π/2] and x → [−5π/2, − 3π/2], re-
spectively. Notice here the resemblance to the corresponding
MF density [Fig. 3(c2)] for t < 120. However, for longer
evolution times, these density branches move towards the inner
central lattice wells. In contrast to the above, the resummed
single-particle densities of every two consecutively occupied
orbitals [Figs. 3(d5) and 3(d6)] exhibit a delocalization along
the system. Therefore, the diffusive behavior of the fermions
during the MB expansion is mainly caused by the presence of
these higher-lying orbitals.

V. QUENCH DYNAMICS IN THE MISCIBLE PHASE

To identify the impact of the initial phase on the expansion
dynamics, we next examine the response of a BF mixture,
which initially resides within the miscible phase (with gBB = 1
and gFB = 0.05; see also Sec. III), following a quench of
the imposed harmonic trap from strong to weak confinement
ωf . The corresponding expansion strength of the σ -species
cloud measured via �̄2

x,σ for varying ωf is presented in
Figs. 4(a) and 4(b). �̄2

x,B increases within the interval 0.065 <

ωf < 0.1 for decreasing ωf and then exhibits a decreasing
behavior up to ωf = 0.0625, below which it shows a slightly
increasing tendency up to ωf = 0. To visualize the emergent
bosonic response, we resort to the one-body density evolution
ρ(1),B (x,t). The dynamical expansion of the bosonic cloud is
mainly suppressed for almost every ωf [e.g., see, Fig. 4(d3)],
except for 0.065 < ωf < 0.072, a region in which it becomes

non-negligible [Fig. 4(c2)]. Instead of an expansion, the bosons
tunnel between the initially (at t = 0) occupied wells and reach
an almost steady-state configuration for long evolution times
[Figs. 4(c2) and 4(d3)]. Despite the aforementioned triggered
tunneling modes, the bosonic density reveals a maximal
occupation of the three central wells during the dynamics
[Figs. 4(c2) and 4(d3)]. To identify the effect of correlations
on the bosonic expansion, we compare these findings to the
MF approximation. The mean expansion strength �̄2

x,B is
similar to what MB theory predicts, but overall shifted to larger
values [Fig. 4(a)]. This shift is caused by the absence of the
density bunching [e.g., see Figs. 4(c1) and 4(d1)] within the
three middle wells that occurs in the MB scenario, leading
in turn to the smaller �̄2

x,B observed. Notice also here the
highly fluctuating behavior of �̄2

x,B around ωf = 0.06, which
suggests the presence of several response resonances that are
absent in the MB case. Furthermore, in the MF dynamics, an
enhanced interwell tunneling is observed when compared to
the MB case that remains robust during the evolution [see
Figs. 4(c1), 4(c2) and 4(d1), 4(d3)].

In contrast to bosons, a dramatic (slight) increase of the
fermionic mean variance �̄2

x,F occurs for ωf < 0.04 (0.04 <

ωf < 0.1) [Fig. 4(b)]. This latter behavior of �̄2
x,F essentially

designates the fermionic expansion strength for distinct ωf ’s,
which can be better traced in ρ(1),F (x,t); see Figs. 4(c4) and
4(d4). Indeed, for small quench amplitudes, i.e., 0.04 < ωf <

0.1, the fermions expand only slightly [Fig. 4(c4)]. However,
for ωf > 0.04, they strongly expand, reaching the edges of
the surrounding bosonic cloud [Fig. 4(d3)] where they are
partly transmitted and partly reflected moving back towards the
central wells [Fig. 4(d4)]. The same overall phenomenology
also holds for the MF case as is evident by inspecting both
�̄2

x,F [Fig. 4(b)] and ρ(1),F (x,t) [compare Figs. 4(c2), 4(c4)
and 4(d2), 4(d4)]. This similarity can be attributed to the weak
interspecies interactions, gFB = 0.05, which in turn result in
reduced interspecies correlations within this miscible regime
of interactions.

VI. CONCLUSIONS

We have investigated the ground-state properties and, in
particular, the many-body expansion dynamics of a weakly
interacting BF mixture confined in a one-dimensional optical
lattice with a superimposed harmonic trap. Tuning the ratio
between the inter- and intraspecies interaction strengths, we
have realized distinct ground-state configurations, namely, the
miscible and immiscible phases. These phases are mainly
characterized by a complete or strongly suppressed overlap of
the bosonic and fermionic single-particle density distributions,
respectively.

To induce the dynamics, we perform a quench from strong
to weak confinement and examine the resulting dynamical
response within each of the above-mentioned phases for
varying final harmonic trap frequencies. It is observed that
each phase exhibits a characteristic response composed of
an overall expansion of both atomic clouds and an interwell
tunneling dynamics, which can be further manipulated by
adjusting the quench amplitude. Focusing on the immiscible
phase, a resonantlike response of both components occurs at
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moderate quench amplitudes, in contrast to what is expected
upon completely switching off the imposed harmonic trap.
A careful inspection of the BF mixture expansion dynamics
reveals the existence of different bosonic response regimes ac-
companied by a lesser amount of fermionic ones for decreasing
confinement strength. In particular, we find that for varying
quench amplitude, the bosons either perform a breathing
dynamics or solely expand, while the fermions tunnel between
the nearest-neighbor outer wells that are located at the edges of
the bosonic cloud or show a delocalized behavior over the entire
lattice, respectively. To identify the many-body characteristics
of the expansion dynamics, we compare our findings to the
mean-field approximation, where all particle correlations are
neglected. Here, it is shown that in the absence of correlations,
the tunneling dynamics of both components cannot be ade-
quately captured, the bosonic expansion is suppressed, and the
diffusive character of the fermions is replaced by an expansion
of two almost localized density branches to the outer wells for
large quench amplitudes. These deviations are further eluci-
dated by studying the evolution of the distinct orbitals used,
where the first one resembles the mean-field approximation
and the higher-orbital contributions are responsible for the
observed correlated dynamics. Finally, investigating the one-
and two-body coherences for each species, we observe that
during the evolution, the predominantly occupied wells are
one-body incoherent and two-body anticorrelated among each
other, while within each well a correlated behavior for bosons
and an anticorrelated one for fermions occurs.

Within the miscible phase, the dynamical response of
the BF mixture is greatly altered. The bosonic expansion is
significantly suppressed when compared to the immiscible
phase and the bosons perform interwell tunneling, reaching
an almost steady state for long evolution times. The fermions,
on the other hand, expand. When reaching the edges of the
surrounding bosonic cloud, they are partly transmitted and
partly reflected back towards the central wells. Neglecting
correlations, the bosonic tunneling dynamics is found to be
enhanced and remains undamped during the evolution, in
contrast to the many-body approach, while the fermionic
expansion adequately resembles the many-body case.

As a final attempt, we have examined the dependence of the
BF mixture expansion strength on the potential barrier height
and the mass imbalance between the two components. We find
that upon increasing the height of the potential barrier, the
expansion dynamics is suppressed, while for mass imbalanced
mixtures, the heavy (bosonic) component remains essentially
unperturbed.

There are several interesting directions that one might
pursue in future studies. A straightforward one would be to
explore the dynamics of the BF mixture setup, but now induced
by a quench from strong to weak confinement only for the
fermionic ensemble, thus leaving the bosons unaffected. In this
setting, the bosonic system may act as a filter which completely
or partly absorbs the momentum of the expanded fermions
depending on the quench amplitude. Yet another intriguing
prospect is to examine the dynamics of a dipolar BF mixture
under the quench protocol considered herein, and investigate
the distinct response regimes that appear for varying quench
amplitude or initial phase so as to explore the possibility to
induce a ballistic expansion.
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APPENDIX A: CORRELATION DYNAMICS
IN THE IMMISCIBLE PHASE

To further elaborate on the MB nature of the expansion
dynamics of the BF mixture within the immiscible phase, we
study the emergent correlation properties of the system on
both the one- and two-body level. To estimate the degree of
spatial first-order coherence during the expansion dynamics,
we employ [68]

g(1),σ (x,x ′; t) = ρ(1),σ (x,x ′; t)√
ρ(1),σ (x; t)ρ(1),σ (x ′; t)

, (A1)

where ρ(1),σ (x,x ′; t) = 〈�MB(t)| �†
σ (x ′)�σ (x) |�MB(t)〉 is

the one-body reduced density matrix of the σ species.
|g(1),σ (x,x ′; t)|2 takes values within the range [0,1], while a
spatial region with |g(1),σ (x,x ′; t)|2 = 0 [|g(1),σ (x,x ′; t)|2 = 1]
is referred to as fully incoherent (coherent).

Figures 5(a1)–5(a4) and 5(c1)–5(c4) present g(1),B(x,x ′; t)
andg(1),F (x,x ′; t), respectively, for distinct time instants during
evolution after quenching the system to ωf = 0. Referring
to the bosonic component, we observe that at t = 0 (ground
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FIG. 5. (a1)–(a4) One-body coherence function g(1),B (x,x ′; t)
shown for different time instants (see legends) during the expansion
dynamics within the immiscible phase (gBB = 0.05, gFB = 0.2).
(c1)–(c4) The same as above, but for g(1),F (x,x ′; t). (b1)–(b4) Snap-
shots of the corresponding two-body bosonic coherence function
g(2),BB (x1,x

′
2; t). (d1)–(d4) The same as before, but for g(2),FF (x1,x

′
2; t)

of the fermionic component. The BF mixture consists of NB = 20
bosons and NF = 2 fermions confined in a 19-well optical lattice
with an imposed harmonic trap with initial frequency ω = 0.1.
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state), the ensemble is almost perfectly one-body coherent
as g(1),B(x,x ′; t) ≈ 1 everywhere [Fig. 5(a1)]. However, upon
quenching, this situation changes drastically and a substantial
loss of coherence in the off-diagonal elements of g(1),B(x,x ′; t)
occurs throughout the dynamics; see Figs. 5(a2)–5(a4). The
latter implies that the quench operation and loss of coherence
go hand in hand. In particular, we can identify three different
spatial regions [see, for instance, Fig. 5(a3)] in which the
coherence is mainly preserved. The first one contains the
three central wells (x,x ′ ∈ [−3π/2,3π/2]), while the other
two regions, not fixed throughout the dynamics, lie in the outer
wells (e.g., at t = 120, they are located at x,x ′ ∈ [3π/2,9π/2]
and x,x ′ ∈ [−3π/2, − 9π/2], respectively). Furthermore, the
aforementioned regions coincide with the areas where the
different orbital densities contribute significantly to the MB
density [Figs. 3(d1)–3(d3)]. Indeed, as time evolves, the first
region exhibits a contraction [Fig. 5(a3)] and an expansion
[Fig. 5(a4)], resembling the tunneling oscillations in the first
orbital [Fig. 3(d1)]. The second and third regions travel towards
the outer wells [Fig. 5(a4)] in the course of the dynamics,
reflecting the expansion of the second, third, and fourth orbital
densities [Figs. 3(d2) and 3(d3)]. Finally, a significant loss of
coherence takes place [g(1),B(x,x ′; t) ≈ 0.2] between each two
of the above-mentioned regions.

To infer about the degree of spatial second-order coherence,
we study the normalized two-body correlation function [62],

g(2),σσ ′
(x,x ′; t) = ρ(2),σσ ′

(x,x ′; t)
ρ(1),σ (x; t)ρ(1),σ ′ (x ′; t)

, (A2)

where ρ(2),σσ ′
(x,x ′; t) = 〈�MB(t)| �†

σ ′(x ′)�†
σ (x)�σ (x)�σ ′

(x ′) |�MB(t)〉 is the diagonal two-body reduced density
matrix. When referring to the same (different) species, i.e.,
σ = σ ′ (σ 	= σ ′), g(2),σσ ′

(x,x ′; t) accounts for the intraspecies
(interspecies) two-body correlations. A perfectly condensed
MB state corresponds to g(2),σσ ′

(x,x ′; t) = 1 and is termed
fully second-order coherent or uncorrelated. However, if
g(2),σσ ′

(x,x ′; t) takes values larger (smaller) than unity, the
state is said to be correlated (anticorrelated) [62,69].

In Figs. 5(b1)–5(b4) and 5(d1)–5(d4), we show g(2),BB

(x,x ′; t) and g(2),FF (x,x ′; t) for different evolution times when
quenching the system to ωf = 0. The bosonic subsystem is
initially (t = 0) mainly characterized by weak two-body anti-
correlations, i.e., g(2),BB(x,x ′; t) < 1 [Fig. 5(b1)]. The quench
gives rise to new correlation structures; see Figs. 5(b2)–5(b4).
For instance, a bunching tendency occurs in the diagonal
elements, i.e., g(2),BB(x,x ′; t) > 1, indicating that it is probable
for two bosons to reside within the same well during the
dynamics. Most importantly, we observe that each of the
above-described second and third regions of almost perfect
one-body coherence (e.g., see, x,x ′ ∈ [3π/2,9π/2] and x,x ′ ∈
[−3π/2, − 9π/2], respectively, at t = 120) are two-body
correlated, while they are mainly anticorrelated between each
other [e.g., see Fig. 5(b3)]. Overall, the off-diagonal elements
of the g(2),BB (x,x ′; t) tend to values smaller than unity, indi-
cating long-range anticorrelations in the system. Comparing
g(1),B(x,x ′; t) and g(2),BB(x,x ′; t), we can infer that when
g(2),BB(x,x ′; t) > 1 [g(2),BB(x,x ′; t) < 1], the corresponding
g(1),B(x,x ′; t) ≈ 1 [g(1),B(x,x ′; t) � 0.5].
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FIG. 6. (a1),(b1) Bosonic and (a2),(b2) fermionic mean variance
�̄2

x,σ corresponding to different system parameters for varying
postquench frequency ωf . �̄2

x,σ (ωf ) for (a1),(a2) distinct potential
barrier heights V0 in units of ER , and for (b1),(b2) different mass ratios
of the individual components. In all cases, the BF mixture consists
of NB = 20 bosons, NF = 2 fermions, and is confined in a 19-well
potential with an imposed harmonic trap of initial frequency ω = 0.1.
The system is initialized in its ground state with gBB = 0.05 and
gFB = 0.2.

In contrast to the bosons, initially (t = 0) each fermion
is localized either in the left (−20 < x < 0) or in the
right (0 < x < 20) part of the lattice [see, also, Fig. 1(c)].
Indeed, g(1),F (x,x ′; t) ≈ 1 and g(2),FF (x,x ′; t = 0) < 1
[g(1),F (x,x ′; t = 0) = 0 and g(2),FF (x,x ′; t = 0) ≈ 1] within
(between) the left and right part; see Figs. 5(c1) and 5(d1),
respectively. For later times (t > 0), a significant loss
of one-body coherence takes place manifested by the
almost zero off-diagonal elements in g(1),F (x,x ′; t) ≈ 0
throughout the evolution [Figs. 5(c2)–5(c4)]. On the two-body
level, we observe the rise of long-range correlations
between the parity symmetric expanded parts, e.g.,
g(2),FF (x = 7π/2,x ′ = −7π/2; t) ≈ 1.3 in Figs. 5(d2)
and 5(d3), which transform into anticorrelations for long
propagation times [Fig. 5(d4)]. Finally, an anticorrelated
behavior occurs within the same part (i.e., right with
x,x ′ ∈ [0,6π ] or left with x,x ′ ∈ [−6π,0] in Fig. 5) of
the lattice throughout the evolution; see, for instance,
g(2),FF (x = 2π,x ′ = 2π ; t) in Figs. 5(d2)–5(d4).

APPENDIX B: CONTROL OF THE
EXPANSION DYNAMICS

Having analyzed in detail the expansion dynamics of the BF
mixture within the immiscible and miscible correlated phases,
let us discuss how the overall dynamics can be altered by
adjusting certain initial system parameters.

First we study the effect of the potential barrier height V0

on the expansion dynamics of an ensemble that resides in the
immiscible phase; see Figs. 6(a1) and 6(a2). As can be seen, the
corresponding expansion strength measured via �̄2

x,σ for both
fermions and bosons becomes larger for smaller V0 values.
The latter is a consequence of the fact that interwell as well
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as overbarrier tunneling is more favorable for reduced barrier
heights [70–74]. Note also here that the resonant expansion
located at moderate quench amplitudes (see ωf = 0.0175)
occurs only for V0 = 3. In contrast, for V0 = 6, �̄2

x,σ is almost
constant for all ωf , indicating a negligible response, while
at V0 = 1, �̄2

x,σ exhibits an almost monotonic increase for
decreasing ωf . This observation suggests that for fixed ωf

as well as inter- and intraspecies interactions, the expansion
strength can be manipulated by tuning the potential barrier
height.

Another way to control the expansion dynamics is to
consider a mass imbalanced BF mixture that is experimentally
realizable by using, e.g., isotopes of 40K and 89Rb [52,75],
which possess approximately a mass ratio of 1:2. The sys-
tem is in this case initialized in the ground state of the
lattice with gFB = 0.2 and gBB = 0.05. Therefore, it resides
in the immiscible phase (see also Sec. III) where the two
components are phase separated. The degree of this phase
separation increases for larger bosonic masses (results not
shown here). Comparing a mass balanced (MB = MF ) with
a mass imbalanced (MB = 2MF ) system, we observe that the
bosonic mass strongly influences both the fermionic and the
bosonic dynamics; see Figs. 6(b1) and 6(b2). For MB = 2MF ,
the bosons are essentially unperturbed for all ωf , while the
fermionic expansion becomes significant for small ωf . The
enhancement of �̄2

x,F can be explained as follows. First,
the tunneling probability to the inner wells is suppressed due to
the constantly high bosonic one-body density within the three
central wells, which essentially forms an additional material
barrier [66,67]. Furthermore, the fermionic cloud can expand
ballistically, as the interspecies scattering processes in the outer
wells are negligible since the bosonic distribution in these wells
is nearly zero.

In summary, we can infer that the fermions exhibit a more
pronounced expansion as compared to the bosons. This can
be attributed to the fact that the fermions are noninteracting
and, as such, they are exposed to less scattering processes
when compared to bosons [31]. Moreover, tuning several of
the system’s parameters allows for a control of the system’s
expansion dynamics in a systematic fashion.

APPENDIX C: CONVERGENCE
OF MANY-BODY SIMULATIONS

In this appendix, we provide a brief overview of our
numerical methodology and elaborate on the convergence
of our results. ML-MCTDHX [45] is a variational method
for solving the time-dependent MB Schrödinger equation
of Bose-Bose [65,76], Fermi-Fermi [77,78], and Bose-Fermi
mixtures. The MB wave function is expanded with respect
to a time-dependent variationally optimized MB basis, which
enables us to capture the important correlation effects using
a computationally feasible basis size. In this way, we are
able to more efficiently span the relevant, for the system
under consideration, subspace of the Hilbert space at each
time instant with a reduced number of basis states when
compared to expansions relying on a time-independent basis.
Finally, the multilayer ansatz for the total wave function allows
us to account for intra- and interspecies correlations when
simulating the dynamics of bipartite systems.
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FIG. 7. Evolution of the (a) fermionic and (b) bosonic variance
�2

x,σ (t) within the immiscible phase (gFB = 0.2 and gBB = 0.05)
for different numerical configurations (M; mF ; mB ) (see legend)
following a quench to ωf = 0.175.

Within our simulations, we employ a primitive basis con-
sisting of a sine discrete variable representation including
475 grid points. The Hilbert space truncation, i.e., the order
of the used approximation, is indicated by the considered
numerical configuration space C = (M; mF ; mB). Here, M =
MF = MB (mF , mB) denote the number of species (single-
particle) functions for each of the species. To maintain the
accurate performance of the numerical integration for the
ML-MCTDHX equations of motion, we further ensured that
|〈�|�〉 − 1| < 10−10 and |〈ϕi |ϕj 〉 − δij | < 10−10 for the total
wave function and the single-particle functions, respectively.

Next, let us comment on the convergence of our results upon
varying the numerical configuration space C = (M; mF ; mB).
To conclude about the reliability of our simulations, we
increase the number of species functions and single-particle
functions, thus observing a systematic convergence of our
results. We remark that all MB calculations presented in the
main text rely on the configuration C = (10; 8; 4). To be more
concrete, in the following, we demonstrate the convergence
procedure for the position variance �2

x,σ (t) of the σ species
within the immiscible phase (gFB = 0.2 and gBB = 0.05)
for a varying number of species or single-particle functions.
Figure 7(a) [Fig. 7(b)] presents �2

x,F (t) [�2
x,B(t)] following

a quench of the imposed harmonic-oscillator frequency from
ω = 0.1 to ωf = 0.0175. For reasons of completeness, we
remark that this quench amplitude refers to a strong response
region of the system; see, also, Fig. 2. Regarding the number
of the used species functions M , we observe an adequate
convergence of both the fermionic and bosonic variance. In
particular, comparing the C = (10; 8; 3) and C = (15; 8; 3) ap-
proximations, �2

x,F (t) shows a maximal deviation of the order
of 10% for large propagation times t > 250, while �2

x,B (t)
is almost insensitive as the corresponding relative difference
is less than 1.5% throughout the evolution. Increasing the
number of the fermionic single-particle functions mF , the
maximum deviation observed in �2

x,F (t) [�2
x,B(t)] between

the C = (15; 8; 3) and C = (15; 10; 3) approximations is of
the order of 4% [<1%]. Turning to the number of bosonic
single-particle functions mB , the relative difference in �2

x,F (t)
[�2

x,B(t)] between the configurations C = (10; 8; 3) and
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C = (10; 8; 4) becomes, at most, 11% [4%] for large evolution
times t > 230. Finally, we remark that the same analysis has
been performed for the convergence within the miscible regime

(gBB = 1.0, gFB = 0.05) for increasing both the number of
species M as well as the single-particle functions mF and mB

(not shown here).
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