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Effective interactions in a quantum Bose-Bose mixture
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We generalize the Beliaev diagrammatic theory of an interacting spinless Bose-Einstein condensate to the case
of a binary mixture. We derive a set of coupled Dyson equations and find analytically the Green’s functions of
the system. The elementary excitation spectrum consists of two branches, one of which takes the characteristic
parabolic form ω ∝ p2 in the limit of a spin-independent interaction. We observe renormalization of the magnon
mass and the spin-wave velocity due to the Andreev-Bashkin entrainment effect. For a three-dimensional weakly
interacting gas the spectrum can be obtained by applying the Bogoliubov transformation to a second-quantized
Hamiltonian in which the microscopic two-body potentials in each channel are replaced by the corresponding
off-shell scattering amplitudes. The superfluid drag density can be calculated by considering a mixture of phonons
and magnons interacting via the effective potentials. We show that this problem is identical to the second-order
perturbative treatment of a Bose polaron. In two dimensions the drag contributes to the magnon dispersion already
in the first approximation. Our consideration provides a basis for systematic study of emergent phases in quantum
degenerate Bose-Bose mixtures.
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I. INTRODUCTION

The effective interaction is one of the most insightful
concepts in the theoretical many-body physics. Correlations
between the particles forming the media change the magnitude
and may even transform the shape of the microscopic two-body
interaction potential. Such modifications become especially
profound in the quantum regime. A textbook example is a
degenerate electron gas in a lattice of positively charged ions.
Renormalization of the Coulomb repulsion due to polarization
of the media yields a dipolarlike (pseudo)potential with a
cosine modulation [1]. Experimental manifestation of this
effect is known as Friedel oscillations [2].

In the case of bosons the physics is further enriched by
the presence of a condensate at absolute zero temperature.
Quantum scattering of the matter waves in the condensate can
be promoted onto the macroscopic scale, which gives birth to
new collective states of matter. Predicted in the early 1970s
the coherent crystals [3,4] with possible supersolid properties
now surface in ultracold dipolar gases [5–7]. In contrast to
the familiar Wigner crystals [8], crystallization of a Bose gas
occurs with increase of the density n and the unit cell can
accommodate a macroscopically large amount of particles.
In the mean-field picture formation of a supersolid can be
described in terms of an effective interaction potential, which
has negative Fourier components in the vicinity of some finite
momentum transfer k0, which satisfies k0 � n1/d , where d is
the dimension of the space. In the dilute limit existence of
such feature for a generic condensate characterized by dipolar
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repulsion at large interparticle distances has been proven on
the basis of the Beliaev diagrammatic approach [9,10].

The Beliaev prescription for a scalar Bose-Einstein con-
densate consists in replacement of the actual microscopic
potential by the off-shell scattering amplitude for two particles
in a vacuum [11]. Negative momentum-dependent correction
to the scattering amplitude of dipoles was shown to come
from large distances (on the order of the thermal de Broglie
distances), where the scattering is governed entirely by the
repulsive dipolar tail [10,12]. In order to make this contribution
comparable with the contact part two pathways have been
explored in ultracold atomic systems.

First, one can use the so-called pancake geometry to allow
alignment of the dipoles head-to-tail at short distances [13,14].
Initially prepared in a uniform state the system collapses into
a regular pattern of drops after a quench of the Feshbach-
resonant part of the scattering length to its background value
[5]. There is, however, no mutual coherence between the drops
and their shape is strongly elongated in the transverse direction
[15,16]. These two factors make the supersolid scenario un-
likely here. The physics of the drops appeared to be interesting
in its own right because of the role played by quantum
fluctuations in their stabilization [17–19] (see also below).

The second idea, put forward in Ref. [20], is to use ultracold
polar molecules in the bilayer geometry with tunneling [21].
The tunneling makes the two-component system effectively
behave as a two-dimensional (2D) scalar gas with vanishing
contact part of the effective interaction and controllable three-
body repulsive forces [22]. The latter ensures the stability of a
crystalline structure, which in this case indeed can be regarded
as a true supersolid state. However, experimental realization
of this model is challenging since the tunneling would open a
channel for three-body losses of the molecules [23].
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A promising contribution to the field has come from the
semiconductor physics. As has been pointed out recently [7],
the 2002 observation of a regular structure in the photolumines-
cence pattern of dipolar excitons in quantum wells (QWs) [24]
may hint toward a form of the coherent crystal. A surprising
rarity of the phenomenon has been attributed to the specifics
of the exciton-exciton interaction potential [10]. Interaction of
two excitons with opposite spins can admit a shape resonance,
which provides an efficient tool to tune the contact part of
the scattering amplitude. The dipoles cannot leave the QW
plane and stability of the system in the supersolid phase
is guaranteed by formation of bosonic dimers (biexcitons)
characterized by strong repulsion. A minimal model, which
allows one to describe the transition to the supersolid of dimers,
is a two-species dilute Bose gas with a resonant interspecies
interaction [25].

Besides, studies of two-species Bose mixtures are now
gaining momentum due to the possibility of revealing beyond-
mean-field effects in the ultradilute regime. Thus, following the
original proposal [26], quantum droplets have been realized in
atomic samples [27]. The very existence of such objects is due
to quantum fluctuations. Experimental studies and numerical
modeling of these states are guided by analytical perturbative
expansion of effective low-energy Hamiltonians [26,28,29].

These recent theoretical ideas and experimental results
indicate a need for an extension of the Beliaev approach
to a binary mixture of bosons. A challenging question is
interference of different channels in a many-body scattering
sequence. It is not obvious a priori that the interaction in a
mixed condensate can be described in terms of independent
two-particle scattering processes.

In this paper we give a generic analytical solution of the
problem. We derive a set of coupled Dyson equations and find
the Green’s functions of the system by using a specific spinor
representation. The elementary excitation spectrum consists of
two branches, one of which takes the characteristic parabolic
form ω ∝ p2 in the limit of spin-independent interactions. To

the lowest order in the density parameter

β =
√

nRd
e , (1)

where Re is the characteristic range of the microscopic interac-
tion, the diagrams for the self-energy parts decouple into a set
of independent ladders. This yields three effective potentials
expressed via the corresponding scattering amplitudes. In the
case of three-dimensional (3D) geometry, these potentials can
be used to construct an effective Hamiltonian suitable for the
perturbative expansion. The quantum interference of the chan-
nels manifests itself in renormalization of the magnon mass
and the spin-wave velocity revealing the Andreev-Bashkin en-
trainment effect [30]. This feature escapes the standard hydro-
dynamic approach where the Fourier transform of some phe-
nomenological potential is used to describe the normal modes
in terms of small-amplitude oscillations [25,26,28,31–35]. For
a 3D weakly interacting gas the drag density can be obtained
by considering interaction of magnons with the Bogoliubov
phonon modes. We show that this problem is identical to the
second-order perturbation theory of a Bose polaron developed
in Ref. [36]. We exploit this fruitful analogy to speculate on
possible transition to a magnon crystal in the strongly interact-
ing regime. For weak interactions in two dimensions the drag
contributes to the dispersion already in the first order in β.
This reflects the enhanced role of quantum fluctuations in low
dimensions. On the basis of our findings, we expect the entrain-
ment to cause an increasing departure of the quantum correc-
tion to the energy of the mixture from the predictions [26,28].

II. MODEL

We consider a mixture of two bosonic species (σ =↑ , ↓)
occupying the volume V and characterized by the densities
nσ = Nσ/V with Nσ being the total number of particles in
each component. As usual, we assume the thermodynamic
limit Nσ → ∞ and V → ∞ with nσ being kept fixed. The
second-quantized Hamiltonian of the system reads

Ĥ =
∫ ∑

σ

h̄2

2mσ

∇�̂†
σ (x)∇�̂σ (x)dx + 1

2

∫ ∑
σ,σ ′

�̂†
σ (x1)�̂†

σ ′(x2)Vσσ ′(x1 − x2)�̂σ (x1)�̂σ ′(x2)dx1dx2

=
∑
p,σ

h̄2p2

2mσ

â†
σ,pâσ,p + 1

2V

∑
p1,p2,q,σ,σ ′

â
†
σ,p1+qâ

†
σ ′,p2−qVσσ ′(q)âσ,p1

âσ ′,p2
.

(2)

Here Vσσ ′(x1 − x2) are the two-body interaction potentials
with x being a d-dimensional coordinate and

Vσσ ′(q) =
∫

e−iqxVσσ ′(x)dx (3)

are their Fourier transforms. The field operators �̂σ (x) are
related to the corresponding boson annihilation operators by

�̂σ (x) = 1√
V

∑
p

âσ, pe
i px, (4)

and âσ, p obey [
âσ, p1

,â
†
σ ′, p2

] = δσσ ′, p1 p2
. (5)

With equal masses of different species

m↑ = m↓ = m (6)

the model (2) has been applied to study resonant pairing of
bright (dark) excitons in semiconductor heterostructures [25]
and formation of quantum droplets in a mixture of |mF = −1〉
and |mF = 0〉 hyperfine states of the F = 1 manifold of 39K
[26,27]. For the excitons one can additionally assume

V↑↑(x) = V↓↓(x). (7)

Below we adopt the simplifying assumptions (6) and (7) in
order to make our consideration more transparent. The general
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case of unequal masses and asymmetric pairwise potentials is
discussed in the Appendix.

III. GENERAL SOLUTION

A. Notations and elementary graphs

The arguments presented below are entirely based on
the hypothesis of existence of a Bose-Einstein condensate
in the ground state of the Hamiltonian (2). This is usually
justified a posteriori for a weakly interacting dilute system
(the corresponding conditions will be presented in Sec. IV). In
general, there is no condensate in the one-dimensional space
(d = 1) even at the absolute zero temperature, and applicability
of our results to this case should be discussed with care. Such
a discussion is outside the scope of this paper.

From a mathematical viewpoint, the presence of a conden-
sate results in nonzero expectation values of the operators 〈�̂σ 〉.
The condensate plays the role of a reservoir, which does not
change its state upon increase or decrease of the number of
particles Nσ by one. As a consequence, the time evolution of
the condensate wave functions is governed by the chemical
potentials μσ .

Miscibility of the system means that both spin components
occupy the same volume. The corresponding condition for a
dilute gas is given by Eq. (42) below. With the assumption
(7) the equilibrium configuration corresponds to n↑ = n↓ ≡ n.
The mixture thus can be characterized by a unique chemical
potential μ.

The formalism of Green’s functions in a Bose-Bose mixture
can be developed along the lines of the spinless theory [11].
We write the field operators in the form

�̂σ (x) = �̂ ′
σ (x) + â0,σ√

V
, (8)

where �̂ ′
σ stand for the noncondensate part and â0,σ act on the

macroscopically populated single-particle states with p = 0.
The Green’s functions are defined in terms of the nonconden-
sate parts of the operators in the Heisenberg representation

Gσσ ′(x1,x2) = −i〈T �̂ ′
σ (x1)�̂ ′†

σ ′(x2)〉, (9)

where we have introduced the four-vectors xi = (ti ,xi). For a
uniform system one has

Gσσ ′(x1,x2) = Gσσ ′(x), (10)

where x = x1 − x2. To describe absorption and emission of
the particles by the condensate we will also need the following
auxiliary quantities

iFσσ ′(x) = 〈N − 2|T �̂ ′
σ (x1)�̂ ′

σ ′(x2)|N〉, (11)

iF
†
σσ ′(x) = 〈N + 2|T �̂ ′†

σ (x1)�̂ ′†
σ ′(x2)|N〉, (12)

known as anomalous Green’s functions [37]. In what fol-
lows we will use the momentum-space representation for the
Green’s function. The corresponding transformation is given
by

G(p) =
∫

eipxG(x)d4x, (13)

where p = (ω, p) and px = ωt − px. It will also be convenient
to use the modified Hamiltonian

Ĥ ′ = Ĥ − μN̂ (14)

in setting the time dependence of the operators. For an ideal
gas we obtain

G
(0)
σσ ′(p) = δσσ ′G0(p) = δσσ ′

[
h̄ω − h̄2p2

2m
+ μ + i0

]−1

,

(15)

where μ should be regarded as a free parameter.
Each diagram contributing to the expansion of Gσσ ′ can

be composed of the eight elementary graphs shown in Fig. 1.
Wavy lines describe the emission and absorption of particles
by the condensate. In calculations they are replaced by the
factor

√
nσ,0, where nσ,0 is the σ component of the condensate

density. Dashed lines carry the factors −iVσσ ′(q). Each vertex
has a label σ showing the spin of an incoming (outgoing)
particle.

B. Dyson equations

Though the interaction of two particles in a vacuum con-
serves the particle spin, the latter can be effectively changed
after scattering off the condensate. As one can see from Fig. 1,

FIG. 1. Possible types of the elementary graphs. Solid lines correspond to the bare Green’s function G(0). Wavy lines describe emission and
absorption of particles by the condensate. Dashed line stands for the interaction. The interaction conserves the spin of the particles, denoted
by σ .
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FIG. 2. Dyson equations. The Greens’s functions (bold lines with arrows) couple to each other via the self-energies (circles). For each pair
of spin indices σσ ′ there are three types of self-energies characterized by different numbers of incoming (the left index in the bottom row) and
outgoing (the right index) lines.

already in the first order of perturbation theory there is a finite
probability amplitude to find the particle in a state with a
different σ . Formally, this results in appearance of the matrix
elements Gσσ ′ with σ = σ ′ for the Green’s function of an
interacting system. An accurate consideration of the higher-
order terms shows, that the resulting picture of many-body
scattering processes can be recast in the graphical form shown
in Fig. 2. The Green’s functions (bold lines with arrows)
couple to each other via the self-energies (circles) obtained
by summation of possible irreducible parts. There are three
types of these parts for each pair of spin indices σσ ′ differing
by the number of incoming and outgoing continuous lines.
By analogy with Ref. [11], we denote the resulting potentials
by �σσ ′

11 , �σσ ′
20 , and �σσ ′

02 . The graphical form in Fig. 2
then can be translated into the following system of Dyson

equations:

Gσσ ′(p) = G
(0)
σσ ′(p) +

∑
σ ′′

G0(p)�σσ ′′
11 Gσ ′′σ ′(p)

+
∑
σ ′′

G0(p)�σσ ′′
20 F

†
σ ′′σ ′(p), (16a)

F
†
σσ ′(p) =

∑
σ ′′

G0(−p)�σσ ′′
02 (p)Gσ ′′σ ′(p)

+
∑
σ ′′

G0(−p)�σσ ′′
11 (−p)F †

σ ′′σ ′(p). (16b)

By noticing that the equations with different σ ′ decouple
from each other, we can write the system (16) in the useful
form

⎡
⎢⎢⎢⎢⎢⎣

G−1
0 (p) − �

↑↑
11 (p) −�

↑↓
11 (p) −�

↑↑
20 (p) −�

↑↓
20 (p)

−�
↓↑
11 (p) G−1

0 (p) − �
↓↓
11 (p) −�

↓↑
20 (p) −�

↓↓
20 (p)

−�
↑↑
02 (p) −�

↑↓
02 (p) G−1

0 (−p) − �
↑↑
11 (−p) −�

↑↓
11 (−p)

−�
↓↑
02 (p) −�

↓↓
02 (p) −�

↓↑
11 (−p) G−1

0 (−p) − �
↓↓
11 (−p)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

G↑↑(p)

G↓↑(p)

F
†
↑↑(p)

F
†
↓↑(p)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦. (17)

Furthermore, by virtue of (7), one has �
↑↑
11 (p) = �

↓↓
11 (p). Note also that �σσ ′′

02 (p) = �σσ ′′
20 (p), because the relevant diagrams

differ only by the direction of the wavy lines. This allows us to write Eq. (17) in the spinor form[
G−1

1 (p)σ̂0 − �
↑↓
11 (p)σ̂1 −�

↑↑
20 (p)σ̂0 − �

↑↓
20 (p)σ̂1

−�
↑↑
20 (p)σ̂0 − �

↑↓
20 (p)σ̂1 G1

−1(−p)σ̂0 − �
↑↓
11 (−p)σ̂1

][
ϕ

χ

]
=

[
α

0

]
, (18)

where

G−1
1 (p) = G−1

0 (p) − �
↑↑
11 (p) (19)

and

σ̂0 =
[

1 0
0 1

]
, σ̂1 =

[
0 1
1 0

]
, α =

[
1
0

]
. (20)

The system (18) then can be solved by using the identity

a2 − b2 = (aσ̂0 − bσ̂1)(aσ̂0 + bσ̂1).

We first use the second row in (18) to express χ via ϕ, and then substitute it into the first row. We find that all Green’s functions
have the denominator D1(p)D2(p), where

D1(p) = [
G−1

1 (p) − �
↑↓
11 (p)

][
G−1

1 (−p) − �
↑↓
11 (−p)

] − [�↑↑
20 (p) + �

↑↓
20 (p)]2, (21)

D2(p) = [
G−1

1 (p) + �
↑↓
11 (p)

][
G−1

1 (−p) + �
↑↓
11 (−p)

] − [�↑↑
20 (p) − �

↑↓
20 (p)]2. (22)
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FIG. 3. First-order diagrams in the expansion of the self-energies �σσ ′
11 (p) and �σσ ′

02 (p), defining the chemical potential and the spectrum
of elementary excitations according to Eq. (24) and Eq. (26), respectively.

In terms of these quantities the solution of Eq. (17) can be
written as

Gσσ ′ = 1

2

(
G−1

1 (−p) − �
↑↓
11 (−p)

D1(p)
± G−1

1 (−p) + �
↑↓
11 (−p)

D2(p)

)
,

(23a)

F
†
σσ ′ = 1

2

(
�

↑↑
20 (p) + �

↑↓
20 (p)

D1(p)
± �

↑↑
20 (p) − �

↑↓
20 (p)

D2(p)

)
, (23b)

where “+” should be used for σ = σ ′ and “−” for σ = σ ′.
With the result (23) one can readily express the chemical

potential of the system in terms of the self-energies. We notice
that in the long-wavelength limit the noncondensate part of
the field operator can be written as �̂ ′

σ ≈ i
√

n0σ �̂σ , where
the operator �̂σ is the phase of the condensate. Hence, one
has F

†
↑↑ ≈ −G↑↑. On the other hand, as a consequence of

the symmetry breaking we may expect two gapless Goldstone
modes in the elementary excitation spectrum, which implies
the condition D1(0)D2(0) = 0. By noticing also that �↑↓

20 (0) =
�

↑↓
11 (0), we obtain

μ = �
↑↑
11 (0) − �

↑↑
20 (0). (24)

The result (24) provides the dependence of the chemical
potential on the density n0 of the condensate components, and
together with the well-known formula [38]

n = n0 + i

(2π )d+1
lim

t→−0

∫
G↑↑(p)e−iωtdp (25)

allows one to calculate μ as a function of the total density n,
which includes the above-condensate particles.

C. Elementary excitation spectrum

According to the general theorem [38] the spectrum of
elementary excitations of the system can be obtained from the
poles of the Green’s functions. By solving D1( p,ω)D2( p,ω) =
0 with respect to ω we find two branches for the excitations of
the particle type (we will omit the hole excitations for brevity):

h̄ω( p) =
√

[h̄2p2/2m + �
↑↑
s (p) ± �

↑↓
s (p) − μ]2 − [�↑↑

20 (p) ± �
↑↓
20 (p)]2 + �↑↑

a (p) ± �↑↓
a (p) (26)

where we have introduced

�σσ ′
s,a (p) = �σσ ′

11 (p) ± �σσ ′
11 (−p)

2
. (27)

Strictly speaking, Eq. (26) is a transcendental equation onω. As
we will see, to a good accuracy one can neglect the dependence
of the self-energies on ω in the dilute regime. Thus, in three
dimensions it is common to model the system by a hypothetical
weakly interacting gas characterized by Vσσ ′(q) = gσσ ′ for
qRe � 1 with Re being the interaction radius. One can then
approximate the self-energies by few first-order diagrams
shown in Fig. 3. We find �

↑↑
11 = n(2g↑↑ + g↑↓), �

↑↓
11 = ng↑↓,

�
↑↑
20 = ng↑↑, �

↑↓
20 = ng↑↓, which, upon substitution into (26)

yields the well-known result

h̄ω( p) =
√(

h̄2p2

2m

)2

+ h̄2p2

m
n(g↑↑ ± g↑↓) (28a)

μ = n(g↑↑ + g↑↓) (28b)

for the spectrum and the chemical potential of the system.
Relation of the constants g↑↑ and g↑↓ to the characteristics of
the original model will be discussed below.

To conclude this part, let us point out an important symmetry
property of the formula (26). In the long-wavelength limit p →
0 we can use the Gavoret-Nozieres type of arguments [39] to
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FIG. 4. Graphical equation for the effective inetraction in the dilute regime.

obtain the following relations:

�↑↑
s (p) − �↑↓

s (p) − �
↑↑
20 (p) + �

↑↓
20 (p) − μ = h̄2p2

2m

(
n′

n0
− ρ↑↓

mn0

)
(29a)

�↑↑
s (p) − �↑↓

s (p) + �
↑↑
20 (p) − �

↑↓
20 (p) − μ = 2(�↑↑

20 (p) − �
↑↓
20 (p)) + h̄2p2

2m

(
n′

n0
− ρ↑↓

mn0

)
, (29b)

where n′ = n − n0 is the quantum depletion of the condensate
and ρ↑↓ is the so-called superfluid drag due to Andreev-
Bashkin effect [30,40]. For spin-independent interactions one
has �

↑↑
20 (p) = �

↑↓
20 (p) and �

↑↑
a (p) = �

↑↓
a (p), and, by virtue

of (29), the lower branch in Eq. (26) takes the form

h̄ωm( p) = h̄2p2

2m∗
, (30)

where

m∗ = n0

n

m

1 − ρ↑↓/mn
(31)

is the effective mass.
An energy spectrum quadratic in p is what one would expect

on general grounds for an arbitrary multicomponent superfluid
[41]. The dispersion of the type (30) describes the excitations
analogous to the spin waves in a Heisenberg ferromagnet [42].

In the asymmetric case �
↑↑
20 (p) > �

↑↓
20 (p) one finds

h̄ωm( p) = h̄cmp with

c2
m = (nm − ρ↑↓)

m2

[�↑↑
20 (p) − �

↑↓
20 (p)]

n0
(32)

being the spin-wave velocity. For the model potential
Vσσ ′(q) = gσσ ′ considered above the result (32) matches the
hydrodynamic formula of Ref. [43]. One can see that the
entrainment slows the propagation of magnons.

IV. DILUTE REGIME

By analogy with the spinless theory [11,44], estimation
of the integrals over the internal momenta in the graphs for
�’s shows, that to the lowest order in β only the ladders
should be retained. These obey the diagrammatic rule shown
schematically in Fig. 4. One can readily recognize the structure
typical for the scattering problem of two particles in vacuum.
Indeed, by introducing the relative p1 − p2 = 2k, p3 − p4 =
2k′ and total p1 + p2 = p3 + p4 = P = (�,P) momenta and
taking advantage of the fact that Vσσ ′(q) does not depend on

frequency, one can recast Fig. 4 in the form

Tσσ ′(k′,k; z) = 1

(2π )d
Vσσ ′(k′ − k) + 1

(2π )d

×
∫

Vσσ ′(k′ − k′′)
z − Ek′′

Tσσ ′(k′′,k; z)dk′′, (33)

where Ek′′ = h̄2k′′2/m and

z = � − P 2

4m
+ 2μ + i0. (34)

This allows one to identify the quantity

Tσσ ′(k′,k; z) ≡ 1

(2π )d
�(p1,p2; p3,p4)

with the matrix elements of the Tσσ ′ operator of the quantum
scattering theory [45]. Furthermore, the Tσσ ′ operator can be
expressed in terms of the off-shell scattering amplitude defined
by

fσσ ′(k′,k) = −(2π )2 m

2h̄2 Tσσ ′(k′,k; Ek + i0). (35)

The corresponding relation reads

Tσσ ′(k′,k; z)

= − 1

(2π )2

2h̄2

m

[
f ∗

σσ ′(k,k′) − 1

(2π )2

2h̄2

m

∫
fσσ ′(k′,q)

× f ∗
σσ ′(k,q)

(
1

Eq − Ek′ + i0
+ 1

z − Eq

)
dq

]
. (36)

The self-energies are defined by the special matrix elements of
the T operator obtained by letting two out of the four particles
belong to the condensate:

�σσ ′
11 (±p) = (2π )dn0

[
Tσσ ′(∓ p/2, ± p/2; z±)

+ δσσ ′
∑
σ ′′

Tσσ ′′(± p/2, ± p/2; z±)

]
(37)

�σσ ′
20 (p) = (2π )dn0Tσσ ′(0, p; 2μ + i0),
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where

z± = ±h̄ω − h̄2p2

4m
+ 2μ + i0. (38)

The chemical potential satisfies the transcendental equation

μ = (2π )dn0[T↑↑(0,0; 2μ + i0) + T↑↓(0,0; 2μ + i0)]. (39)

Assuming slow dependence of Tσσ ′ on μ and n0 ≈ n one can
write

Emix =
∫

μdN = (2π )dN2(T↑↑ + T↑↓)

4V
, (40)

where we have used the shortcut T↑↑ ≡ T↑↑(0,0; 2μ + i0). On
the other hand, for a phase-separated configuration one has

Esepar = (2π )dN2T↑↑
2V

. (41)

Comparing the two energies we findT↑↓ < T↑↑ as the condition
of miscibility. More generally,

T 2
↑↓ < T↑↑T↓↓, (42)

which applies also to the spin-imbalanced configurations n↑ =
n↓ (see Appendix B). Further conclusions depend on the
dimensionality of the problem.

A. 3D gas

In the 3D geometry to the first order in β one can neglect the
integral term in Eq. (36). Taking into account the invariance
of the on-shell scattering amplitude with respect to the time
reversal, we obtain

�σσ ′
a (p) = 0

�↑↑
s (p) ± �↑↓

s (p) = −8πh̄2n0

m
[f +

↑↑( p/2, p/2)

+ f ±
↑↓( p/2, p/2)]

�σσ ′
20 (p) = −4πh̄2n0

m
fσσ ′(0, p)

μ = −4πh̄2n0

m
[f↑↑(0,0) + f↑↓(0,0)], (43)

where we have defined

f ±
σσ ′(k′,k) = 1

2 [fσσ ′(k′,k) ± fσσ ′(−k′,k)]. (44)

At small momenta the leading contribution to the scattering
is in the s-wave scattering channel, and the s-wave scattering
amplitude is known to approach the constant value [45]

fσσ ′(k′,k) = −aσσ ′ , (45)

known as the s-wave scattering length. Substitution of (45)
into (43) yields the elementary excitation spectrum and the
chemical potential of the type (28) with

gσσ ′ = 4πh̄2aσσ ′

m
. (46)

The same result can be obtained by solving linearized
equations of motion for the small-amplitude oscillations of
the classical fields �σ obtained from the Hamiltonian (2)
where one substitutes gσσ ′ in lieu of Vσσ ′(q). Such treatment of
the low-energy excitations is quite common [26,31,32] and is
sometimes extended to momentum-dependent phenomenolog-
ical potentials gσσ ′(q) as well [25,33–35]. Below we present
the result of our theory, which escapes this simplified approach.

Consider again the lower branch of the spectrum (26) and
assume the interaction potential to be not dependent on the
particle’s spin, so that f↑↑(k′,k) = f↑↓(k′,k) ≡ f (k′,k). By
using the relations (43) we obtain

h̄ωm( p) = h̄2p2

2m
− 8πh̄2n0

m
[f ( p/2, p/2) − f (0,0)]. (47)

The second term in the above equation for the magnon
dispersion does not appear if one uses a standard hydrody-
namic approach. Indeed, mere Fourier-expansion of the small-
amplitude oscillations of the order parameter would yield the
equation having the structure of (28). For identical inter- and
intraspecies interactions the density-dependent term vanishes
and one gets h̄ωm( p) ≡ h̄2p2/2m. In the weakly interacting
limit na3 � 1, the result (47) can be reproduced if instead one
applies the canonical Bogoliubov transformation to an ersatz
Hamiltonian (see Appendix A)

Ĥ∗ =
∑
p,σ

h̄2p2

2m
â†

σ,pâσ,p + 1

2V

∑
k,p,q,σ,σ ′

â
†
σ,k+pâ

†
σ ′,k−pgσσ ′( p,q)âσ,k+q âσ ′,k−q, (48)

where

gσσ ′( p,q) ≡ −4πh̄2

m
fσσ ′( p,q) (49)

are the properly defined effective potentials.
It would be wrong to identify the low-momentum expansion

of the tail in Eq. (47) with the drag density, as this expansion
yields a subleading order with respect to the quantum deple-
tion n′ ∼ √

na3, which enters the formula (31). The leading
correction to the magnon mass comes from the second-order
approximation in β. For a weakly interacting gas the result
can be obtained by considering interaction of magnons with
the Bogoliubov phonon modes. The bare propagators in this

picture take the form

Gσσ ′(p) = 1
2 [Gph(p) ± Gm(p)]

F
†
σσ ′(p) = 1

2F
†
ph(p),

with

Gph(p) = u2
p

h̄ω − h̄ωph( p) + i0
− υ2

p

h̄ω + h̄ωph( p) − i0

F
†
ph(p) = u pυ p

[h̄ω − h̄ωph( p) + i0][h̄ω + h̄ωph( p) − i0]

(50)
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FIG. 5. Second-order graphs for the magnon self-energy due to
interaction with phonons. Bold black and empty lines are used for the
phonon (50) and magnon (51) Green’s functions, respectively. Wavy
lines carry the factor

√
n0. The picture is fully analogous to the second-

order perturbative treatment of an impurity in a one-component Bose-
Einstein condensate (Bose polaron) done in [36].

and

Gm(p) = 1

h̄ω − h̄2p2/2m
(51)

being the phonon and the magnon Green’s functions, respec-
tively. Here

u p =
√

h̄2p2/2m + 2ng

h̄ωph( p)
+ 1

υ p = −
√

h̄2p2/2m + 2ng

h̄ωph( p)
− 1

(52)

are the Bogoliubov coefficients for the phonon part. At this
level of approximation we neglect the dependence of the
effective potentials on the momenta [Eq. (45) for the scattering
lengths with a↑↑ = a↑↓ ≡ a and g ≡ 4πh̄2a/m] and take
n = n0. Retaining the terms cubic and quartic in âσ, p with
p = 0 in the Hamiltonian (48) and substituting

â↑, p = 1√
2

(u pb̂ p + υ pb̂
†
− p + ĉ p)

â↓, p = 1√
2

(u pb̂ p + υ pb̂
†
− p − ĉ p),

(53)

we get the magnon Hamiltonian

Ĥm =
∑

p

h̄2p2

2m
ĉ†pĉp

+ g

V

∑
k,p,q

ĉ
†
k+pĉ

†
k−pĉk+q ĉk−q + Ĥm−ph, (54)

where the last term

Ĥm−ph = g

V

√
N

2

∑
p,q

[ĉ†p+qĉq(upb̂ p + υ pb̂
†
− p) + H.c.] (55)

describes the interaction of magnons with phonons.
At zero temperature the second term in (54) does not yield

renormalization of the magnon mass. We are thus left with
the second-order contribution of (55) shown in Fig. 5. We
notice, that the same graphs appear in the perturbation theory
of a mobile impurity in a single-component condensate (Bose
polaron) [36]. The magnon now drags a cloud of phonons,
which increases its effective mass. According to the general
formula (31) the change in the mass is directly related to the
Andreev-Bashkin entrainment effect. Evaluation of the graphs

in Fig. 5 yields

ρ↑↓
mn

=
√

2

π

64

45

√
na3. (56)

The same formula for the superfluid drag density has been
obtained in the earlier works [46,47] by using hydrodynamic
approaches. Hence, our consideration establishes a link be-
tween the effect of entrainment and the physics of Bose
polarons.

Let us now follow Beliaev [11] in considering the behavior
of the magnon dispersion (47) in the high-momentum region
pa ∼ 1. By using the well-known result

f0(k) = − sin(ka)

k
e−ika (57)

for the s-wave part of f (k′,k) at the mass shell we get

h̄ωm( p) = h̄2p2

2m
+ 8πh̄2n0a

m

[
sin(pa)

pa
− 1

]
, (58)

where we have omitted the imaginary part describing the damp-
ing of quasiparticles. Very similar expression can be obtained
for the phonon (upper) branch of the dispersion. In that latter
case Beliaev noticed, that if one formally allows the parameter
na3 to approach the unity, the spectrum develops a roton
minimum. Such hypothetical state would mimic the superfluid
Helium, rotonization of the spectrum being a signature of
strong correlations and a precursor of an eventual transition to
a solid state. An alternative way to probe that kind of physics
is to use long-range interactions. Thus, for dipolar interactions
the roton structure in the spectrum can be observed in the dilute
and weakly interacting limit [6], signaling a possible transition
to a supersolid [7].

The magnon dispersion (58) does not develop a roton
minimum upon increasing na3. Rather, it flattens showing
gradual increase of the quasiparticle mass. In terms of the above
analogy with the Bose polaron, one can speak about magnon
self-localization (for the discussion of self-localization of po-
larons see Ref. [48] and references therein). In fact, cooperative
self-localization of multiple impurities has been argued to rep-
resent the nucleation process for the phase separation transition
[49]. On the other hand, one cannot exclude a possibility to
find magnetorotons [50] in a more general case of unequal
interactions, where the spin-wave dispersion becomes linear at
the end point. The resulting instability in this case could bring
the system to a new phase, a magnon crystal. Still retaining
a uniform density, the mixed condensate would separate into
an ordered array of domains characterized by alternating spin
polarization [51]. Investigation of this intriguing possibility is
the subject of ongoing work.

B. 2D gas

The s-wave scattering amplitude in two dimensions is given
by [52]

f0(Ek) = 2π

ln (Ek/Ea)
, (59)

where we have defined Ea = h̄2/ma2. For a hard-core po-
tential of the radius Re and at small momenta one has
f (k′,k) ≈ f0(k) with a = eγ Re/2, where γ ≈ 0.577 is the
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Euler-Mascheroni constant [53]. The integral term on the r.h.s
of Eq. (36) cannot be ignored, and it defines the value of the
chemical potential [the formula (39)] via the transcendental
equation

μ = −2h̄2n0

m

2π

ln pca
, (60)

where pc ≡ √
2mμ/h̄ and one assumes pca � 1. Further-

more, by using the first formula in (37) and assuming h̄ω ≈
h̄2p2/2m, we obtain

�↑↑
s (p) − �↑↓

s (p) − μ = −πh̄2n0

2m

1

ln2 pca

(
p

pc

)2

, (61)

which holds at p � pc. Upon substitution into (26) and
comparison with the formula (31) (where we must let n = n0)
this yields

ρ↑↓ = − 1

8 ln pca
mn, (62)

for the superfluid drag in two dimensions. The result agrees
with that of Ref. [54]. In contrast to the 3D case, here the
drag contributes to the magnon dispersion already in the first
order of the perturbation theory. This reflects the enhanced
role of quantum fluctuations and polaronic effects in low
dimensions.

Another important distinction from the 3D geometry is that
the tail (61) cannot be reproduced by doing the Bogoliubov
transformation of the Hamiltonian (48), in which gσσ ′( p,q) is
expressed via the 2D scattering amplitude (59). In this sense
the concept of effective interaction does not apply here. Still,
however, one can use the standard relationship [53]

g = −2h̄2

m
f0(2μ) (63)

to calculate the chemical potential (60) and the excitation
spectrum without the entrainment.

For long-range dipolar interactions the formula (63) should
be supplemented with the so-called anomalous term [52],
which to the leading order depends linearly on the transferred
momentum [12],

g( p,q) = g − 2πh̄2

m
| p − q|r∗, (64)

where r∗ is the dipolar length. For ng � h̄2/mr2
∗ the phonon

branch of the spectrum may develop a roton-maxon structure
[9]. As regards the magnon dispersion, no traces of the dipolar
tail remain since the transferred momentum is identically zero

for the forward scattering, which defines the correction to
the dispersion in this case [see Eq. (47)]. In other words,
contribution of the dipolar tail to the superfluid drag can be
neglected in the first approximation [55].

Finally, it is worth pointing out that the condition of weak
interactions in two dimensions is automatically fulfilled in the
range of validity of the formula (59), i.e., Ek � Ea . A different
situation takes place in the vicinity of a shape resonance [25].
Extension of our approach to this case is a subject for future
research.

V. CONCLUSIONS

Our consideration generalizes the Beliaev diagrammatic
theory to the case of a binary mixture of Bose-Einstein
condensates. The elementary excitation spectrum consists of
two gapless modes, one of which takes the parabolic form (30)
in the limit where the inter- and intraspecies interactions are the
same. We observe renormalization of the magnon mass due to
the superfluid drag effect, which contributes to the expansion of
the kinetic energy of the system at small momenta. In the dilute
regime the diagrams for the self-energy parts decouple into a
set of independent ladders. This yields three effective potentials
expressed via the corresponding scattering amplitudes. For
weak interactions in three dimensions these potentials can
be used to construct the effective Hamiltonian (48) suitable
for the perturbative expansion. The drag contributes to the
magnon dispersion in the second order of the perturbation
theory and can be calculated by dressing the magnons with the
Bogoliubov phonon modes. The problem shares fruitful analo-
gies with the physics of Bose polarons. Thus, an interesting
direction for the future work is the search for magnetorotons
and self-localized magnon crystals in long-range interacting
systems with specially designed microscopic potentials. In two
dimensions we find renormalization of the magnon mass in
the first approximation in β. This reflects the enhancement of
quantum flcutuations in low dimensions. We thus expect the
drag effect to play an important role in quantum-mechanical
stabilization of a collapsing 2D Bose-Bose mixture already in
the limit of weak interactions.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

Consider the Hamiltonian (48) and assume the effective interaction potential to be not dependent on the particle’s spin and
weak, i.e., na3 � 1. Following the standard procedure, we replace the operators â0,σ and â

†
0,σ with c numbers: â0,σ = √

N0. The
occupation numbers for the states with finite momenta are assumed to be small. By retaining only quadratic terms in â p,σ and
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â
†
p,σ with p = 0 we get

Ĥ∗ =
∑
p,σ

ε0
pâ

†
p,σ â p,σ + n0

2

∑
p

(g(0, p)(â p,σ â− p,σ + â p,σ â− p,σ ′ + â− p,σ â p,σ ′ + â p,σ ′ â− p,σ ′) + H.c.)

+ n0

2

∑
p

g

(
p
2

,
p
2

)
(4â†

p,σ â p,σ + 4â
†
p,σ ′ â p,σ ′) + n0

2

∑
p

g

(
p
2

,
− p
2

)
(2â†

p,σ â p,σ ′ + 2â
†
p,σ ′ â p,σ + 2â†

p,σ â p,σ + 2â
†
p,σ ′ â p,σ ′)

− g(0,0)
∑

p

(4Nâ†
p,σ â p,σ + 4Nâ

†
p,σ ′ â p.σ ′),

Denoting for simplicity â p,σ = â p, â p,σ ′ = b̂ p and ε′
p = ε0

p + 2n0g( p
2 ,

p
2 ) + n0g( p

2 ,
− p
2 ) − 2n0g(0,0) we rewrite the above

equation in the form

Ĥ∗ =
∑

p

[
ε′

p(â†
pâ p + b̂†pb̂ p) + n0

2
(g(0, p)(â pâ− p + â pb̂− p + â− pb̂ p + b̂ pb̂− p) + H.c.) + n0g

(
p
2

,
− p
2

)
(â†

pb̂ p + b̂†pâ p)
]
.

Consider a unitary transformation U with real coefficients and assume λi(p),βi(p) to be even functions of p.

Uâ pU
† = λ1(p)â p + λ2(p)â†

− p + β1(p)b̂ p + β2(p)b̂†p

Ub̂ pU
† = λ3(p)â p + λ4(p)â†

− p + β3(p)b̂ p + β4(p)b̂†p.

U †â pU and U †b̂ pU can be understood as quasiparticle annihilation operators. We search for U that diagonalizes the
Hamiltonian, so that UĤ∗U † = ∑

p (ω(1)
p â

†
pâ p + ω

(2)
p b̂

†
pb̂ p) + E0, where ω

(1,2)
p are the excitation energies.

Using the relations U [Ĥ∗,â
†
p]U † = [UĤ∗U †,Uâ

†
pU

†], U [Ĥ∗,b̂
†
p]U † = [UĤ∗U †,Ub̂

†
pU

†], we get the linear system

ε′
p(λ1â

†
p + λ2â− p + β1b̂

†
p + β2b̂− p) + n0

2
g(0, p)((λ1 + λ3)â− p + (λ2 + λ4)â†

p + (β1 + β3)b̂− p + (β2 + β4)b̂†p)

+ n0g

(
p
2

,
− p
2

)
(λ3â

†
p + λ4â− p + β3b̂

†
p + β4b̂− p) = ω(1)

p

(
λ1â

†
p − λ2â− p

) + ω(2)
p

(
β1b̂

†
p − β2b̂− p

)
ε′

p(λ3â
†
p + λ4â− p + β3b̂

†
p + β4b̂− p) + n0

2
g(0, p)((λ1 + λ3)â− p + (λ2 + λ4)â†

p + (β1 + β3)b̂− p + (β2 + β4)b̂†p)

+ n0g

(
p
2

,
− p
2

)
(λ1â

†
p + λ2â− p + β1b̂

†
p + β2b̂− p) = ω(1)

p

(
λ3â

†
p − λ4â− p

) + ω(2)
p

(
β3b̂

†
p − β4b̂− p

)
.

The dispersion law can be obtained by equating the determinant to zero. We find

ω(1)
p = ε0

p + 2n0

[
g

(
p
2

,
p
2

)
− g(0,0)

]
(A1)

in agreement with the formula (47) and

ω(2)
p =

√
(ε0

p)2 + 4n0ε0
p

[
g

(
p
2

,
− p
2

)
+ g

(
p
2

,
p
2

)
− g(0,0)

]
+ 4n2

0

[(
g

(
p
2

,
− p
2

)
+ g

(
p
2

,
p
2

)
− g(0,0)

)2

− g(0, p)2

]
,

(A2)
which has the typical linear form at p → 0 and describes the excitation of phonons. Manifestation of the entrainment in this latter
branch is a subject for future research.

APPENDIX B: GENERAL CASE OF UNEQUAL MASSES, DENSITIES, AND INTERACTION POTENTIALS

In this section we consider a general situation: we have two types of bosons, a and b with different masses ma and mb,
correspondingly. Thus, we have two different bare Green’s functions

G−1
a (ω,p) = ω − p2

2ma

+ μa + i0, (B1)

G−1
b (ω,p) = ω − p2

2mb

+ μb + i0. (B2)

Although now we have two different kind of particles the basic idea of the theory is the same. It is easy to show that the
main contributions to the self-energy parts stem from the ladder diagrams shown in Fig. 4, other contributions are small in the
gas parameter. For simplicity we consider particle scattering amplitudes as momenta independent; corresponding renormalized
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interaction vertexes are gaa,gab,gbb. We denote condensates densities as na and nb. So we have the following system of Dyson
equations: ⎡

⎢⎢⎣
G−1

a (p) − �aa
11 −(nanb)1/2gab −nagaa −(nanb)1/2gab

−(nanb)1/2gab G−1
b (p) − �bb

11 −(nanb)1/2gab −nbgbb

nagaa −(nanb)1/2gab G−1
a (−p) − �aa

11 −(nanb)1/2gab

−(nanb)1/2gab −nbgbb −(nanb)1/2gab G−1
b (−p) − �bb

11

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Gaa(p)
Gba(p)
F

†
aa(p)

F
†
ba(p)

⎤
⎥⎥⎦ =

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦, (B3)

where

�aa
11 = 2nagaa + nbgab, (B4)

�bb
11 = 2nbgbb + nagab, (B5)

and the same with a change of all indexes a ↔ b. First one should find the chemical potentials μa and μb. We put p = 0 into (B3)
and solve it. After cumbersome calculations we find a solution that provides poles in Green’s functions at p = 0 and satisfies the
condition F

†
aa ≈ −Gaa and F

†
bb ≈ −Gbb:

μa = nagaa + nbgab, (B6)

μb = nbgbb + nagab. (B7)

This equations generalize the corresponding equations for chemical potential in the main text. Now we can find Green’s functions,
all of them have the same denominator

D(ω,p) = ω4 − [
ε2
a(p) + 2nagaaεa(p) + ε2

b(p) + 2nbgbbεb(p)
]
ω2

+ εa(p)εb(p)
[
εa(p)εb(p) + 2nbgbbεa(p) + 2nagaaεb(p) − 4nanb

(
g2

ab − gaagbb

)]
.

(B8)

Using this formula we can find quasiparticles spectra in the system. One has a positive root if g2
ab < gaagbb, which corresponds

to the miscibility condition (42). After some calculations we get

ω2(p) = 1
2

[
ε2
a(p) + 2nagaaεa(p) + ε2

b(p) + 2nbgbbεb(p)

±
√(

ε2
a(p) + 2nagaaεa(p) − ε2

b(p) − 2nbgbbεb(p)
)2 + 16nanbg

2
abεa(p)εb(p)

]
. (B9)

One can see that if gab = 0 then we get a usual phonon spectra for a and b particles, if we consider symmetric case then we get
spectra given in the main text.

The Green’s functions have the following form:

Gaa(ω,p) = [
ω3 + (εa(p) + nagaa)ω2 − εb(p)(εb(p) + 2nbgbb)ω

− εb(p)
(
εb(p)[εa(p) + nagaa] + 2

[
gbbεa(p) − nag

2
ab + nagaagbb

]
nb

)]/
D(ω,p), (B10)

Gba(ω,p) = gab

√
nanb(ω + εa(p))(ω + εb(p))

D(ω,p)
, (B11)

F †aa(ω,p) = naεb(p)
[
gaaεb(p) − 2nbg

2
ab + 2nbgaagbb

] − nagaaω
2

D(ω,p)
, (B12)

F
†
ba(ω,p) = gab

√
nanb(ω + εa(p))(εb(p) − ω)

D(ω,p)
, (B13)

other Green’s functions can be obtained by changing a ↔ b.

APPENDIX C: EXPERIMENTAL DETECTION OF
MAGNONS

The spin-wave dispersion can be extracted from the mea-
surements of the dynamic structure factor

Sm(q,ω) = 1

n

∫
〈n̂↑(r,t)n̂↓(0,0)〉e−(iqr−ωt)d rdt (C1)

as detailed in Ref. [56]. Difficulties may arise in the case of the
parabolic dependence (30) since the spectrum takes this form
at the miscibility transition point, where the condensates tend

to separate. What could be more easily observed in this case is
a change in the static structure factor

Sm(q) = 〈n̂↑,q n̂↓,−q〉
N

, (C2)

where n̂σ,q = ∫
n̂σ (r)e−iqrd r . Within the Bogoliubov ap-

proach one has n̂σ,q = √
N (â†

σ,−q + âσ,q). By substituting the
Bogoliubov transformation Eq. (53) for the operators âσ,q and
taking advantage of the fact that at T = 0 one has 〈b̂q b̂

†
q〉 = 1
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we find at q → 0

Sm(q) = 1

4

√
h̄2p2

mn

√
ga − √

gs√
gags

, (C3)

where gs,a = g↑↑ ± g↑↓. One can see that the static structure
factor diverges like ∼1/

√
ga as g↑↑ → g↑↓.

To study renormalization of the magnon mass due to the en-
trainment one can employ the experimental scheme discussed

in Ref. [57]. In this experiment a standing wave of magnons
is imprinted onto the condensate by illuminating the atoms
with two equal-frequency circularly polarized light beams
and modulating their intensity at the frequency corresponding
to a Raman transfer between Zeeman levels. The dispersion
relation then can be obtained by analyzing the dynamics of the
resulting spin distribution. Interestingly, the authors ascertain
a tiny increase of the magnon mass as compared to the bare
mass of atoms.
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