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Phases of driven two-level systems with nonlocal dissipation
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We study an array of two-level systems arranged on a lattice and illuminated by an external plane wave which
drives a dipolar transition between the two energy levels. In this setup, the two-level systems are coupled by
dipolar interactions and subject to nonlocal dissipation, and so behave as an open many-body quantum system.
We investigate the long-time dynamics of the system at the mean-field level and use this to determine a phase
diagram as a function of external drive and detuning. We find a multitude of phases including antiferromagnetism,
spin density waves, oscillations, and phase bistabilities. We investigate these phases in more detail and explain
how nonlocal dissipation plays a role in the long-time dynamics. Furthermore, we discuss what features would
survive in the full quantum description.
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I. INTRODUCTION

A recurring problem in physics concerns the interaction of
an electromagnetic wave with a medium formed from an array
of polarizable particles. If these particles are two-level quantum
systems driven close to resonance, then collective effects can
arise due to the strong resonant dipole-dipole interactions,
provided the average interparticle spacing is smaller than the
dipolar transition wavelength. These collective effects give
significant deviations in the behavior of the medium compared
to one formed of noninteracting scatterers. Key differences
include the emergence of Lamb shifts, where interactions
modify the two-level transition energies [1,2], and the forma-
tion of super- and subradiant modes, where the dipole-dipole
interactions enhance or suppress the decay of excitations [3,4].
Understanding how these collective effects alter the response
of a medium is still an ongoing topic of research.

A natural place to study strong dipole-dipole interactions
is in cold atom systems, where a high level of control of the
interaction strength and atom spacing is possible. Much work
has already been carried out on the theoretical understanding
of light scattering through cold atom gases [5–10], with some
of these effects being realized experimentally [11,12]. Most
work focuses on the low-light-intensity limit, where interac-
tions between excitations is negligible and the full quantum
model simplifies to a problem of classical scatterers. In these
models, the collective effects can be exploited, especially when
the atoms are arranged periodically on a lattice, leading to
effects such as electromagnetically induced transparency in-
terferences [13,14], long-time excitation storage in subradiant
modes [15], and enhanced optical cross sections [16].

However, much less work has been done beyond low
intensities and has been largely limited to small system sizes
[17–20]. In the case where two atomic transitions are isolated,
the problem of light scattering from a cold atomic gas can be
mapped to a driven-dissipative spin-1/2 system. At moderate
to high intensity drive, these spin systems show novel phases
such as optical bistability, antiferromagnetic (AFM) and spin
density wave (SDW) order, and even oscillations (OSC), where

the spins oscillate well into the long-time limit [21–23]. Such
systems are also realizable in coupled cavities [24–26].

Here, we study the properties of a driven cold atomic
ensemble beyond the regime of low intensity by employing
a numerical mean-field analysis of a large number of two-level
systems on a lattice. We establish the open-system phase
diagram in a 1D geometry and find examples of all the phases
mentioned above. We also explain how these phases arise due
to interactions and the presence of nonlocal dissipation, which
causes super- and subradiant decay. Previous work has given
evidence of bistabilities for uniform mean-field states when
examining small systems [19]. In this paper we investigate
larger systems with a different dipole orientation. Our work
shows the emergence of spatial and temporal phases that were
not evident in other studies.

The paper is organized as follows. In Sec. II we set up
our model. In Sec. III we establish the mean-field phase
diagram with quantum checks in Sec. IV. Finally, in Sec. V
we discuss our results and possible experimental realizations
before drawing conclusions in Sec. VI.

II. MODEL

We consider a large number,N , of two-level systems fixed in
position in a deep one-dimensional (1D) optical lattice to form
a 1D array (see Fig. 1). The two-level systems are illuminated
with a uniform plane wave and coupled to one another by
resonant dipole-dipole interactions. The system is also coupled
to the electromagnetic field in free space, which acts as a
Markovian environment and allows the dipoles to decay. The
resultant master equation is given by [27,28]

˙̂ρN (t) = − i

h̄

⎡
⎣Ĥsys +

N∑
i �=l

h̄Vil σ̂
+
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2
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2469-9926/2018/97(5)/053616(9) 053616-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.053616&domain=pdf&date_stamp=2018-05-23
https://doi.org/10.1103/PhysRevA.97.053616


C. D. PARMEE AND N. R. COOPER PHYSICAL REVIEW A 97, 053616 (2018)

FIG. 1. A schematic of a 1D array of atoms under external drive.
The electric field, shown by the purple arrow, is oriented parallel
to the x axis and controls the orientation of the dipoles shown in
red. The lattice spacing is denoted by a. The boxed image shows
the microscopic picture of two-level systems interacting via photon
exchange and dissipation, where the external drive controls the value
of the Rabi coupling, �.

where the square brackets represent a commutator, curly
brackets represent the anticommutator, and σ̂±

l = σ̂ x
l ± iσ̂

y

l ,
where σ̂ α

l are the Pauli matrices on site l with α = x,y, or z.
The on-site Hamiltonian is given by Ĥsys = h̄�/2

∑N
i σ̂ x

i −
h̄�/2

∑N
i σ̂ z

i , where � = ω − ω0 is the detuning from the
two-level transition energy ω0, and � = 2d · E/h̄ is the Rabi
coupling determined by the dipole moment vector d and the
electric field vector E. We consider an experimental setup
where the wave vector of the drive k is perpendicular to
the lattice and the electric field parallel to the lattice so that
E = E0 x̂e−iky . The dipole interactions and decay terms are
then given by

Vil = −3�

2

(
sin κril

(κril)2
+ cos κril

(κril)3

)
,

�il = 3�

(
−cos κril

(κril)2
+ sin κril

(κril)3

)
, (2)

where the single-atom decay rate is given by � =
|d|2κ3/3πε0h̄ and ril = |ri − rl|, where ri are the positions
of atom i on the lattice. Note that �ii = �, so there is local as
well as nonlocal dissipation in the system.

The parameter κa = 2πa/λ is the ratio of the two-level
transition wavelength λ to the lattice spacing a and is important
in determining the nature of the interactions and loss. If we
consider κa ≈ 0, with a fixed, then the system becomes closed,
reducing to a quantum XY model with dipolar coupling and
negligible dissipation. If we instead consider κa ≈ 0, with κ

fixed, then the interaction strength diverges and dissipation
becomes all-to-all with �il = �. In the opposite limit where
κa � 2π , the interactions become negligible and the dissipa-
tion becomes local (however, we will later find that κa � 1.2 to
observe interesting results). Throughout the rest of this paper,
we work with κa = 0.7, which is well within these limits
and allows us to see the effects of nonlocal interactions and
dissipation. We also work in units where h̄ = 1.

Analyzing the behavior for a large number of spins becomes
intractable in the full quantum regime as the Hilbert space
grows as 2N . To proceed, we make the Gutzwiller mean-field
approximation, ρ̂N ≈ ⊗ρ̂i , which results in ignoring quantum
entanglement across lattice sites. Then, by taking the trace of
Eq. (1) over all the sites except a given site l, we obtain the
equations of motion as
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where Sα
l = 1

2 Tr(σ̂ α
l ρ̂N ) are the spin expectation values. We

have solved the dynamics of the nonlinear equations (3) and
found the steady-state solutions in the long-time limit.

III. MEAN-FIELD PHASE DIAGRAM

By classifying the steady states of Eqs. (3), we can plot a
phase diagram as a function of detuning and Rabi coupling.
The phase diagram is shown in Fig. 2. To calculate the phase
diagram, we find and analyze the linear stability of all the
uniform and antiferromagnetic solutions of Eqs. (3), which
determines most boundaries in the phase diagram as well as
regions of bistability. To support our stability analysis, we
evolve the full dynamics of Eqs. (3) to the long-time limit (up
to t� = 350) to confirm the uniform and antiferromagnetic
phases and also to determine the resultant phase when the
uniform or antiferromagnetic phases become unstable. This
allows us to define the boundaries between SDW and OSC
phases and to check that the wave vector causing instability of
the uniform solutions q has the same periodicity as the SDW
phases that emerge in the full dynamics. Finally, whenever the
instability wave vector is of the form qa = 2π/n, where n is
a integer with 1 < n � 10, we also simulate the dynamics in
a sublattice ansatz, which involves reducing Eqs. (3) to n sites
which repeat periodically throughout the full lattice.

For the time evolution, we simulate system sizes of up
to 200 spins with periodic boundary conditions and use an
initial condition of (Sx,Sy,Sz) = (0,0, − 1/2), which is most
experimentally relevant as it represents all the atoms in the their
ground state. Throughout the text, (Sx,Sy,Sz) = (0,0, − 1/2)
will also define our use of the term “ground state.” We do,
however, consider other initial conditions in certain regimes to
check for bistability.

Our analysis shows that many different long-time phases
occur in the system. The simplest of these are spatially uniform
phases. At low Rabi coupling, for all detuning values, the
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FIG. 2. Steady-state phase diagram of the system at long times.
We find a variety of phases, including AFM, SDW, and OSC. Regions
with two labeled phases represent bistability between those two
phases. Thin lines represent second-order transitions and thick lines
enclose regions of bistability within which a first-order transition will
occur as Rabi coupling is increased. The dashed line represents an
arbitrary crossover between the U1 and U2 phases at Sz = −1/4, such
that we call the region with Sz < −1/4 the U1 phase and that with
−1/4 < Sz < 0 the U2 phase.

system lies close to the ground state with Sz → −1/2 as
�/� → 0, which we denote as the U1 phase. At high Rabi
coupling, the system lies in a state with a small value of Sz,
where Sz → 0 as �/� � 1. We denote this as the U2 phase.
Both of these uniform phases are solutions of the full quantum
system [29] in the limit of low/high Rabi coupling, respectively.

At |�/�| � 1, the U1 phase smoothly crosses over into
the U2 phase as the Rabi coupling is increased. However, when
|�/�| � 1 we find phase a sharp first-order transition between
the U1 and U2 phases, which occurs within a region of U1-U2

bistability.
The uniform phase behavior is analogous to a liquid-gas

phase diagram where the U1 phase can be considered the
high density liquid phase and the U2 phase as low density
gaseous phase. The first-order transition at |�/�| � 1 and
smooth crossover at |�/�| � 1 are then similar to the liquid-
gas transitions where detuning and Rabi coupling take the
role of pressure and temperature, respectively. In Fig. 2,
for |�/�| � 1, we define an arbitrary crossover between
the U1 and U2 phases by the condition Sz = −1/4, so one
can consider the U1 phase to be defined as Sz < −1/4 and
the U2 phase as −1/4 < Sz < 0. When the magnitudes of
detuning and Rabi coupling are comparable to the interaction
between nearest-neighbor sites (|V12/�| = 5.32), we also find
additional nontrivial phases, which we now discuss in more
detail.

A. Negative detuning

For �/� < 0, the uniform phase becomes unstable to
perturbations with wave vectors in the range 0 < qa < π . This
breaks the translational invariance of the system, and results
in the formation of spin-density wave (SDW) phases, where
the spin orientation smoothly changes across the lattice with
a period set by the instability wave vector [see Fig. 3(b)]. The
magnitude of the instability wave vector, and hence period of
the SDW, varies with detuning and Rabi coupling, moving from
minimal values of around 2π/10 at strong negative detuning
to larger values of around 2π/4 near zero detuning.

As well as the U1-U2 bistability mentioned earlier, we find
SDW-U2 bistability, where a first-order transition will occur
between the SDW and U2 phases. Where this transition occurs
and what phase the system ends up within the bistability
region depends on the initial conditions. Regimes of bistability
have been found in other systems [19,21–24] and have been
observed experimentally in hot vapor gases [30].

Within certain ranges of detuning and Rabi coupling, the
SDW phase can develop into an oscillatory (S-OSC) phase
which persists into the long-time limit and breaks both spa-
tial symmetry and time-translational symmetry. Oscillations,
commonly referred to as limit cycles, have been reported
in similar studies [21,22,24]. In contrast to the studies in
[21,22,24], we find that our limit cycles are noisy and appear
chaotic, which indicates they are unstable to perturbations.
We also find that while the SDW and U2 can be bistable,
no such bistability appears to exist between the S-OSC and
U2, which is possibly a consequence of the unstable nature of
the oscillations. Because no such bistability exists, there is an
immediate first-order transition between the S-OSC and the U2

phase as Rabi coupling is increased.

B. Positive detuning

For �/� > 0, we again find the U1 phase becomes unstable
to perturbations, forming a SDW. However, whereas for nega-
tive detuning the U1 phase only became unstable to one or two
perturbations at a time, now the U1 phase becomes unstable
to a range of wave vectors as Rabi coupling is increased. The
wave vector that causes the largest instability (indicated by
the largest positive eigenvalue in the linear stability analysis)
determines the period of the resultant SDW. The wave vectors
still vary with detuning and Rabi coupling but are larger than for
negative detuning, with values in the range 2π/3 � qa � π .
At qa = π , the SDW becomes a canted AFM phase. We find
that in certain regimes there are additional AFM phases that
can be bistable with the SDW phase.

As for negative detuning, we find another oscillatory phase
develops across a large range of Rabi coupling and detuning. At
low Rabi coupling, noisy oscillations emerge from the SDW,
forming an S-OSC phase, while at high Rabi coupling, the
oscillations have a clear antiferromagnetic order (denoted A-
OSC). At intermediate values of Rabi coupling, the oscillations
take on a frustrated antiferromagnetic order due to the mixing
of SDW and AFM solutions. This is also accompanied by
regions of SDW-(A-OSC) bistability or small regions of (S-
OSC)-(A-OSC) bistability. We do not show the boundaries
between these regions but instead denote this mixture of phases
as M-OSC for mixed oscillation. The boundary of the M-OSC
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FIG. 3. Examples of the spin dynamics for �/� = 1.75 for a series of sites i, i + 1, i + 2, etc. in the 1D chain. The value, S =√
S2

x + S2
y + S2

z , is the spin magnitude. At low Rabi coupling, there is a spatially uniform U1 phase where the spins lie close to the ground state.

As the Rabi coupling increases, a SDW phase with qa = 2π/4 develops, then an oscillatory phase, and then an AFM phase. Finally, at high
Rabi coupling we have the U2 phase where the spins lie in a mixed state and the spin magnitude decreases.

region is defined by where the AFM phase becomes unstable
or where the SDW phase disappears.

Oscillations for positive detuning with an antiferromagnetic
nature have already been observed in a similar model with
local dissipation [24], including a frustrated AFM phase which
seems related to our M-OSC phase. However, the S-OSC
region appears to be new and also our results show a much
larger region of AFM oscillation, with oscillations that contain
many beat frequencies. Figure 3(c) shows an example of the
AFM oscillation.

In Fig. 4, we show examples of most of the phase transitions
occurring within the phase diagram by simulating the full
dynamics in the same parameter range as in Fig. 3. To study
the phase transitions, we calculate the order parameter

σ = 1

N

N∑
i

(S̄ − Si)
2, (4)

where Si = (Sx
i ,S

y

i ,Sz
i )/S, S =

√
(Sx

i )2 + (Sy

i )2 + (Sz
i )2, and

S̄ = ∑N
j Sj /N is the average spin. We also calculate the order

parameter

T = 1

Nτ

N∑
i

∫ τ

0
(Si(tf ) − Si(tf + t))2dt, (5)

where τ = 200/� and tf = 700/�, which is well into the
long-time limit. The order parameter σ takes nonzero values
when the phase breaks translational symmetry, such as in the
SDW phase, and T takes nonzero values when the phase breaks
time-translational symmetry, such as in the OSC phase.

We see from Fig. 4 that the SDW phase emerges via a
second-order transition from the U1 phase and then becomes
unstable via another second-order transition to form an S-
OSC phase. The S-OSC phase then undergoes a first-order
transition to the A-OSC phase within the M-OSC region,
leading to a sharp jump in σ and a discontinuity in T . As
the Rabi coupling increases, the frustration in the A-OSC
phase decreases, which leads to an increase in the temporal
order parameter. Eventually, the OSC phase transitions to the
AFM phase, which then disappears via another second-order
transition to theU2 phase. Note that the order parameters shown
here will not show a transition crossing into the M-OSC region,
because the M-OSC boundary is determined by when the AFM
solution becomes unstable as determined by the linear stability
analysis.

C. Explanation of features

Many aspects of the phase diagram presented here are found
also for a nearest-neighbor XY model with local dissipation,
studied in Ref. [24]. However, there are also clear differences
that arise due to the long-range interactions and nonlocal
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FIG. 4. Evolution of the order parameters σ and T , given by
Eqs. (4) and (5), respectively, as a function of Rabi coupling for
�/� = 1.75. The SDW phase emerges via a second-order transition
from the U1 phase at �/� = 2.8. (Note the jagged structure at
low Rabi coupling is a finite size effect, owing to competing SDW
wave vectors.) The SDW then forms into an S-OSC phase and later
undergoes a first-order transition at �/� = 6.6 to the A-OSC phase
within the M-OSC region. As the Rabi coupling is increased, the
system moves to the AFM phase, where a further second-order
transition occurs between the AFM and U2 phase at �/� = 12.4.
The dashed lines indicate the crossings into the SDW, SDW/AFM,
OSC, AFM, and U2 regions, respectively.

dissipation. In particular, we find larger regimes of uniform
phase instability at low Rabi coupling, which leads to a greater
emergence of spin-density waves. To understand this differ-
ence more, we study the stability of the uniform phases for
systems with local and nonlocal dissipation. See Appendix A
for details.

Figure 5 shows the instability of the uniform state for a
system with local and nonlocal dissipation, with the black
line showing the region where three uniform solutions exist.
Within this region, we show the instability of only one uniform
solution (the U1 phase), as one solution is always stable (the

FIG. 5. Plot of the instability wave vector of the uniform solution
for systems with (a) local dissipation and (b) nonlocal dissipation.
The color represents the magnitude of the wave vector as a multiple
of π , and the black line encloses the region where multiple uniform
solutions exist. We can clearly see that the system with nonlocal
dissipation has a larger range of instability than the system with local
dissipation at lower Rabi coupling. Note that the “finned” structure at
low Rabi coupling is a finite-size effect.

U2 phase) and the other unnamed phase is always unstable
to perturbations with wave vector qa = 0. We see that both
systems share similarities, such as the region of multiple
uniform solutions occurring at negative detuning and the same
overall shape of the instability-U2 crossover. The asymmetry
of the phase-diagram structure across the detuning range is due
to the interactions, which results in a mean-field shift of the
two-level transition energy. Both bistability and the smallest
increase in Rabi coupling needed to move from U1 to U2 occurs
when the detuning begins to compensate for the energy shift
from the interactions, bringing the drive back on resonance
again. This is perhaps easiest to see from Eqs. (3), where
in the uniform picture dSx/y/dt ≈ ±(� + 2Sz

∑N
i �=0 Vi0)Sy/x

with
∑N

i �=0 Vi0/� = −12.4. Considering that −1/2 � Sz � 0,
we see resonance occurs when �/� � 0. Specifically for the
Sz = −1/4 contour in the phase diagram, resonance occurs at
�/� = −6.2, which is approximately where the lowest Rabi
coupling is needed to cross the contour.

In both systems, we find also that SDW and AFM phases can
form, with a similar arrangement of instability wave vectors for
positive and negative detuning. However, for the system with
nonlocal dissipation, the SDW/AFM regions are larger and
extend to lower Rabi coupling. To explain this, we elaborate
on the linear stability analysis of the uniform phases. By
linearizing Eqs. (3) about a uniform steady state, we find the
resultant matrix equation to be given by

d

dt

⎛
⎝δSz

δSy

δSx

⎞
⎠ =

⎛
⎝

−� � + f (q) g(q)
−� + h −�̃(q)/2 �̃(q)

I −�̃(q) −�̃(q)/2

⎞
⎠

⎛
⎝δSz

δSy

δSx

⎞
⎠,

(6)

where f (q) = −2Sy(ε�(0) + ε�(q)) + 2Sx(εV (q) − εV (0)),
h = 2Syε�(0) + 2SxεV (0), g(q) = −2Sx(ε�(q) + ε�(0)) +
2Sy(εV (0) − εV (q)), and I = −2SyεV (0) + 2Sxε�(0).
The functions εV (q) = ∑N

l �=0 Vl0 exp(iqrl0) and ε�(q) =∑N
l �=0 �l0 exp(iqrl0) are the dispersion relations, with

εV (0)/� = −12.4 and ε�(0)/� = 5.7 for the system,
and q being the momentum fluctuation. Note that the q used
here is the same q used to classify the SDW phases earlier in
the text.

From Eq. (6), we see that the interactions modify the
detuning, resulting in �̃(q) = � + 2SzεV (q). We also see that
while the nonlocal dissipation alters the off-diagonal elements
of the matrix, the crucial difference is the fluctuations in Sx/y

have an effective damping, �̃(q)/2 = �/2 − Szε�(q). This
effective damping is a direct consequence of the nonlocal
dissipation and cannot occur in a system with local dissipation,
where the Sx/y fluctuations would always experience a fixed
decay rate of �/2.

In Fig. 6, we plot �̃(q) and �̃(q) as functions of wave vector
q for different values of Sz. Focussing on �̃(q), we see that it
quickly drops to minimal values for qa � 2π/10, which means
the Sx/y fluctuations experience a subradiant decay rate. By
having a reduced dissipation, fluctuations can grow at much
lower Rabi coupling compared to the local dissipation model,
resulting in instabilities and the formation of SDW phases. The
fact that high momentum fluctuations are subradiant can be
understood as a result of destructive interference between the
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FIG. 6. Effective damping and detuning of the Sx/y fluctuations
for different values of Sz. While modification of the detuning by
interactions occurs for any system with interactions, the modification
of the decay rate is a consequence of nonlocal dissipation. We see that
the effective damping quickly becomes subradiant for higher values
of qa but eventually becomes equal to the onsite decay as Sz increases.

dipoles, which begin to oscillate out of phase, inhibiting photon
emission and therefore trapping excitations in the system.
As the Rabi coupling is increased, Sz will decrease in value
and �̃(q) eventually tends to �. This results in the similarity
between the local and nonlocal dissipation instability plots at
higher Rabi coupling, as the effects of nonlocal dissipation
become negligible.

Examining the characteristic polynomial from the matrix in
Eqs. (6) gives more insight into the phase-diagram structure.
We find that stability of the uniform phase is determined by
the sign of the expression

A0 = �̃

2

[
�̃(q)

2
� + �(� − h + f (q)) − Ig(q) − f (q)h

]

+ �̃(q)[�̃(q)� − �(I + g(q)) + g(q)h − If (q)].

(7)

Full details on why this is the case is given in Appendix B.
Here we see that the expression in the first set of brackets is
multiplied by �̃(q). If �̃(q) ≈ 0, this means the sign of A0, and
hence the stability of the uniform solution, is determined by
the sign of �̃(q) and the expression �̃(q)� − �(I + g(q)) +
g(q)h − If (q). By looking at the dispersion εV (q) plotted in
Fig. 6, we can see that the sign of �̃(q) depends on the value of
the detuning and the momentum wave vector. If the detuning is
positive, then only wave vectors between 2π/4 < qa < π can
cause �̃(q) < 0 and hence instabilities, whereas if the detuning
is negative, then only wave vectors with 0 < qa < 2π/4 can
cause instabilities. This therefore explains the ordering of spin-
density waves for negative and positive detuning.

We also found the emergence of two OSC phases in the
phase diagram, one for �/� > 0 and one for �/� < 0. As
mentioned earlier, aspects of the OSC phase for �/� > 0 have
been seen in the system with local dissipation, whereas the OSC
phase for �/� < 0, which occurs on the SDW-U2 boundary,
is new and a consequence of nonlocal dissipation. We would
intuitively expect oscillations to occur on the boundaries
between two phases with different spin orientations where the
orientation of the spins is susceptible to change direction [21]
and so can be easily driven. Therefore, this new OSC phase
is linked to the emergence of the SDW phases at negative
detuning.

The oscillations within this phase appear to be noisy
and chaotic. We study the emergence and dynamics of the

oscillations in more detail by employing a sublattice ansatz.
Analyzing the stability of the sublattice solution, we determine
that the oscillations arise from Hopf bifurcations [31] in the
SDW phase, which lead to stable limit cycles. Checking the
stability of these limit cycles using classical Floquet analysis,
we find that they become unstable to perturbations with
wave vectors not allowed in the sublattice system. While the
underlying cause of this is unclear in detail, one can imagine
that if one were to drive and populate several highly subradiant
modes, then the system would behave as a closed driven XY

model with dipole couplings, which has been shown to have
unstable noisy oscillations [32].

We now focus on the OSC phases for �/� > 0, again
employing a sublattice ansatz and Floquet analysis. We find
at low Rabi coupling, the SDW phase can become unstable,
giving rise to oscillations that are mostly noisy and chaotic,
just as for the OSC phase at �/� < 0. However, there are ad-
ditional AFM phases for positive detuning that can be bistable
with the SDW and S-OSC phases, and these AFM solutions
also become unstable as the Rabi coupling is increased. This
gives rise to the M-OSC phase, where both forms of oscillation
can mix or the SDW and A-OSC phases mix. There are also
regimes of SDW-(A-OSC) bistability and (S-OSC)-(A-OSC)
bistability. As the wave vector of the SDW tends to π with
increasing Rabi coupling, eventually only the A-OSC phase
exists. Therefore we find that nonlocal dissipation gives rise to
two components for the OSC phase; first the emergence of an
S-OSC phase, which does not occur in the system with local
dissipation, and second a region of A-OSC phase, which is
much larger than in the system with local dissipation.

IV. BEYOND MEAN FIELD

Throughout our analysis, we have employed a mean-field
approximation. At very low Rabi coupling, this approximation
captures the full quantum model because the system lies
close to the ground state, with

∑N
i Sz

i ≈ −N/2 being nearly
conserved due to the Hamiltonian. Single excitations can then
be viewed classically due to the large effective spin, allowing
the system to be mapped to coupled oscillators. However, for
higher Rabi coupling where the interesting phases emerge,
quantum effects will be more significant. Mean-field theory is
expected to be valid for a higher effective coordination number
where quantum fluctuations can cancel on average. Therefore
our results in 1D are most susceptible to quantum fluctuations,
although long-range interactions help increase the effective
co-ordination number. Despite this, mean-field theory is still
expected to capture some aspects of the full quantum system.

In regimes where mean-field theory predicts bistability,
we expect a unique steady state in the full quantum regime
[33] and a smooth crossover between the U1 and U2 phases
[34] rather than a sharp transition. However, signatures of
bistability can be found in the excitation density fluctuations.
On the approach to the steady state, the excitation density,
ρee = 〈Sz〉 + 1/2, has been shown to fluctuate between the
two bistable states using quantum Monte Carlo wave-function
methods [19,24,35,36]. This fluctuating leads to bimodality
in the excitation distribution and a peak in the normalized
fluctuations, δρee = ∑N

i,j (〈Sz
i S

z
j 〉 − 〈Sz

i 〉〈Sz
j 〉)/ρee. To calcu-

late δρee, we first find the steady state by writing Eq. (1) in
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FIG. 7. The normalized excitation fluctuations for N = 10 spins
with periodic boundary conditions. The fluctuations peak at the onset
of bistability.

matrix form such that dρ/dt = Lρ and then find the eigenstate
of the Liouvillian matrix L with an eigenvalue of zero. The
corresponding eigenvector is the steady-state density matrix
[37], and from that we can calculate the excitation fluctuation.
Figure 7 shows a plot of δρee for a system of N = 10 spins
with periodic boundary conditions. We find a peak in δρee near
the onset of both bistability regions. Similar results have been
seen in [19] for the uniform bistability region.

Steady-state correlation functions should retain order corre-
sponding to the wave vector of instability, although losing long-
range order [22,24,38]. Therefore we also calculate the con-
nected correlator, 〈Sy

i S
y

j 〉c ≡ 〈Sy

i S
y

j 〉 − 〈Sy

i 〉〈Sy

j 〉, for N = 10
spins on a chain with periodic boundary conditions. In Fig. 8,
we plot 〈Sy

1 S
y

2 〉c across the entire phase diagram, although the

FIG. 8. (a) Connected correlator 〈Sy

1 S
y

2 〉c as a function of Rabi
coupling and detuning for N = 10 spins on a chain with periodic
boundary conditions. We see the correlation is negative for �/� >

0 and positive for �/� < 0. The black lines show the mean-field
phase-diagram boundaries. The insets (b) and (c) show examples of
〈Sy

1 S
y

i 〉c along the spin chain at the points indicated by the red and
blue circles in (a), respectively.

same results hold for any spin in the chain due to translational
symmetry. Our results show that the correlations do indeed
lose long-range order, but take an antiferromagnetic nature
for �/� > 0. For �/� < 0, spins become more positively
correlated with their nearest neighbors in the region where the
uniform phase persists, which agrees with the mean-field phase
diagram. Therefore our quantum checks indicate that aspects
of the mean-field theory should persist in smaller quantum
systems.

V. DISCUSSION

We have explored the phase diagram of a ensemble of
two-level systems under an external drive and with resonant
dipole-dipole interactions, finding the emergence of SDW,
AFM, OSC and bistable phases and determining how the
formation of these phases relates to nonlocal dissipation. To
realize such a system experimentally, Sr atoms can be used,
with the two-level transition between the 3P0 and 3D1(m = 0)
levels [39]. This transition has a transition wavelength of λ =
2.6 μm and would require a lattice spacing of a = 289.6 nm
to achieve κa = 0.7. Other lattice spacings and atomic species
may be used, as we expect many of our results to extend
to nearby values of κa. We do find, however, that beyond a
certain lattice spacing, the interaction between spins becomes
insignificant. A good indicator of where this cut off occurs can
be determined by looking at the region of multiple uniform
solutions, enclosed by the black line in Fig. 5. In Fig. 9, we
plot how the area of this region changes as a function of κa.
We find that as κa increases, the region of multiple solutions
decreases and eventually disappears at κa ≈ 1.2. Beyond this
limit, we expect only uniform phases to exist.

In our simulations, we evolved the system to times of
t� = 350 or greater to reach the steady state. It may be the case

FIG. 9. Area of the multiple uniform solution region (shown
enclosed by the black line in Fig. 5) as a function of lattice spacing. For
κa � 1.2, the area is nearly zero and we expect only uniform phases
to exist beyond this limit. It should be noted that at low lattice spacing,
the interaction strength diverges, causing the area of multiple uniform
solutions to artificially peak and then decrease to zero within any fixed
range of �/� and �/�. We emphasise this by showing two curves
for the ranges −�m/� � �/� � �m/� and 0 � �/� � �m/�.
At higher κa the curves overlap so the cutoff does not affect our
results. The grey line shows the choice of lattice spacing of κa = 0.7
used in this study.
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that some phases we find are metastable with a very long decay
time. Furthermore, the majority of our simulations were carried
out for an initial condition of all the spins in the ground state,
though we did use other initial conditions to examine regions
of bistability. We believe our analysis accounts for the majority
of phases that exist in the system, but there may be other
bistable/multistable phases not captured in our phase diagram
that can occur for other initial conditions. Finally, we have
only considered 1D systems under uniform driving. It would
be interesting to see what features change in higher dimensions,
different geometries, and under nonuniform driving, given the
presence of nonlocal dissipation. While our quantum results
indicated some aspects of the mean-field theory should be
observable, it would also be of interest to study the full quantum
system in more detail and quantify where the mean-field theory
approximation may fail.

VI. CONCLUSIONS

We have studied the mean-field nonlinear dynamics of a
1D chain of two-level systems coupled with dipole-dipole in-
teractions and nonlocal dissipation being driven by an external
field. We determined the phases that form in the long-time limit,
such as antiferromagnetism, spin-density waves, oscillations,
and phase bistabilities. We find that the nonlocal dissipation
plays a key role in the emergence of these phases by coupling
fluctuations in the system to different decay modes and causing
a greater formation of spin density and oscillatory phases. We
also find that some of the mean-field features persist in the full
quantum regime.
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APPENDIX A: UNIFORM SOLUTIONS

To determine the uniform phases in the systems with local
and nonlocal dissipation, we solve the equations of motion,
Eqs. (3), for a single site, which allows us to obtain the
following cubic polynomial:

4(ε�(0)2 + εV (0)2 + 2�εV (0) − �ε�(0))S2
z

+ 2(�2 + �2/4 + �2/2 + 2�εV (0) − �ε�(0))Sz

+ 8(ε�(0)2 + εV (0)2)S3
z + (�2 + �2/4) = 0. (A1)

The discriminant of a cubic given by ax3 + bx2 + cx + d

is b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd. By substituting
in for a, b, c, and d, we can determine the number of real
roots, and hence steady-state solutions, of Eq. (A1). If the

discriminant is greater than zero, there are three solutions,
while if it is less than zero, there is only one solution. Using
this, we can easily find the region of multiple uniform solutions
and how the area of this region changes as a function of lattice
spacing as plotted in Fig. 9. To look at the solutions for local
dissipation only, we set ε�(0) = 0 in Eq. (A1).

Once we have obtained the uniform solutions, we check
their stability to linear perturbations by linearizing Eqs. (3)
about the uniform steady state, which gives us matrix equation
Eq. (6) in the main text. Once again, to look at local dissipation
only, we set ε�(0) = 0 in Eq. (6).

APPENDIX B: UNIFORM PHASE STABILITY

Stability of the uniform solution comes from the eigenvalues
of the characteristic polynomial, given by A3λ

3 + A2λ
2 +

A1λ
1 + A0. We can formulate the Routh array of the character-

istic polynomial and determine stability from the coefficients
without explicit knowledge of the uniform solution [40]. The
Routh array is given by

A3 A1

A2 A0
A2A1−A0A3

A2
0

A0 0

For stability, A2, A1A2 − A0A3, and A0 all need to be
greater than zero for the solution to be stable. If A1A2 − A0A3

changes sign, then the system undergoes a Hopf bifurcation,
as we have a row of zeros with no sign change on either side
of the row. We find numerically this does not happen for the
uniform solution but does occur within the SDW/AFM phases.
From the matrix equation, Eq. (6), we can calculate the values
A0 to A3 which are given by

A3 = 1,

A2 = � + �̃(q),

A1 = �̃(q)

2

(
�̃(q)

2
+ 2�

)
+ �(� − h + f (q))

+�2 − Ig(q) − f (q)h,

A0 = �̃

2

[
�̃(q)

2
� + �(� − h + f (q)) − Ig(q) − f (q)h

]

+ �̃(q)[�̃(q)� − �(I + g(q)) + g(q)h − If (q)].

(B1)

We find that A2 and A1A2 − A0 are always greater than
zero, so stability is given by A0 only, which explains why we
analyze the expression in Eq. (7) in the main text.
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