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Correlations of occupation numbers in the canonical ensemble and application to a Bose-Einstein
condensate in a one-dimensional harmonic trap
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We study statistical properties of N noninteracting identical bosons or fermions in the canonical ensemble.
We derive several general representations for the p-point correlation function of occupation numbers n1 · · · np .
We demonstrate that it can be expressed as a ratio of two p × p determinants involving the (canonical) mean
occupations n1, ..., np , which can themselves be conveniently expressed in terms of the k-body partition functions
(with k � N ). We draw some connection with the theory of symmetric functions and obtain an expression of
the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of
Bose-Einstein condensation in a one-dimensional harmonic trap, for which we get analytical results. We get the
moments of the occupation numbers and the correlation between ground-state and excited-state occupancies. In
the temperature regime dominated by quantum correlations, the distribution of the ground-state occupancy is
shown to be a truncated Gumbel law. The Gumbel law, describing extreme-value statistics, is obtained when the
temperature is much smaller than the Bose-Einstein temperature.
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I. INTRODUCTION

The theory of noninteracting identical quantum particles is a
fundamental block of the basic education in statistical physics
[1–3]. In the standard approach, calculations are performed
in the grand canonical ensemble because it provides the
clearest and most efficient tools to relate single-particle and
thermodynamic properties. One can then use the equivalence
between statistical physics ensembles in the thermodynamic
limit to get the thermodynamic observables as a function of
the relevant parameters (energy or temperature, number of
particles or chemical potential, etc). One should, however, keep
in mind that the correspondence between ensembles in the
thermodynamic limit only holds for averages of observables,
and not for their fluctuations [2,3].

Recently, remarkable progress in atomic physics of ul-
tracold atoms has raised many questions concerning many-
body effects in those systems [4]. Simpler questions related
to quantum correlations in noninteracting gases have also
been put forward, as experiments deal with extremely diluted
gases, for which the noninteracting limit is often a good
starting point. Depending on whether we deal with bosons or
fermions, the situation can be rather different. This difference
manifests itself, for example, in the presence of a harmonic
confinement, as is realized in experiments with optical traps.
For bosonic gases, although the low-temperature properties
are dominated by interactions, many basic properties such as
the energy or density profile can then be obtained within a
mean-field approximation [5]. In fermionic gases, the Pauli
principle strongly suppresses the effect of interactions at low
temperature, which makes the noninteracting description a
good starting point, from which interaction can be treated
perturbatively [6]. Due to cooling techniques by evaporation, a
trapped ultracold atomic gas only contains a moderately large
number of atoms (a few thousand to a few million), which has

led, before considering interaction effects, to reexamine the
differences between the various statistical physics ensembles
for noninteracting particles [7–16], as the microcanonical or
canonical ensembles are more relevant in this case (see review
in Ref. [5]).

A. Occupation numbers

Not only thermodynamic properties and global observables
are of interest, but, motivated by the remarkable achievement of
the “atomic microscope” [17–19], also local observables have
been studied recently (for a review see Ref. [20]). A basic
ingredient of such studies is the knowledge of the number
of particles nλ in each individual eigenstate |λ 〉. The grand
canonical mean occupation is given by the Bose-Einstein or
Fermi-Dirac distribution

nλ
g = 1

1/(xλϕ) ∓ 1
, xλ = e−βελ , (1)

where ϕ is the fugacity, {ελ} are the individual energy levels,
and β = 1/(kBT ) is the inverse temperature. · · ·g is the grand
canonical average. In this formula, the upper (−) and lower
(+) signs stand for bosons and fermions, respectively. For a
fixed number N of particles, the canonical mean occupation
numbers can be expressed in terms of the k-body canonical
partition functions with k = 1, . . . ,N . The canonical partition
function ZN (β) for N bosons or fermions can be obtained by
recursion from the formula [21–25]

ZN (β) = 1

N

N∑
k=1

(±1)k−1Z1(kβ)ZN−k(β), (2)

where Z1(β) = ∑
λ e−βελ is the canonical partition function

for one particle, and the upper (+) and lower (−) signs stand
for bosons and fermions, respectively. The canonical mean
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occupation number is then given by

nλ =
N∑

k=1

(±1)k−1 ZN−k

ZN

xk
λ, (3)

with Z0 = 1 [10,15,26]. The canonical average is simply
denoted · · ·. This expression is expected to coincide with
Eq. (1) in the thermodynamic limit, provided that the fugacity ϕ

in Eq. (1) is chosen in such a way that the condition
∑

λ nλ
g =

N is fulfilled. The power of the grand canonical ensemble
lies in the independence of individual energy-level properties
(which leads to many useful additivity properties for the
thermodynamic observables), i.e., the absence of correlations
between occupation numbers,

nλ1 · · · nλp

g = nλ1
g × · · · × nλp

g. (4)

However, in the canonical ensemble, the constraint on the total
number of particles

∑
λ nλ = N implies nontrivial correlations

between occupation numbers, n1n2 �= n1 × n2. In the present
paper, we focus on the canonical ensemble and study these
correlations.

B. Main results

Our main results are complementary expressions for the
correlation function. To lighten notations, we consider the
correlations of the first p levels; this does not imply any
restriction on the generality of the discussion, because levels
all play an equivalent role. The first expression we obtained is
in terms of the canonical partition functions and of xλ = e−βελ

and reads

n1 · · · np = (±1)p

ZN

×
N∑

k1, . . . ,kp = 1
k1 + · · · + kp � N

(±x1)k1 · · · (±xp

)kp
ZN−k1−···−kp

.

(5)

This generalizes Eq. (3). The second expression is a represen-
tation in terms of two p × p determinants,

n1n2 · · · np = (∓1)p−1

∣∣∣∣∣∣∣∣∣

n1 x1 · · · x
p−1
1

n2 x2 · · · x
p−1
2

...
...

. . .
...

np xp · · · x
p−1
p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 · · · x
p−1
1

1 x2 · · · x
p−1
2

...
...

. . .
...

1 xp · · · x
p−1
p

∣∣∣∣∣∣∣∣∣

, (6)

where the denominator is a Vandermonde determinant. A
remarkable observation is that the p-point correlation function
can be expressed only in terms of the mean values n1, . . . ,np.
It can also be expressed in terms of q-point functions with
q < p; see Eq. (38) below. Equation (6) turns out to be valid
also in the grand canonical ensemble. A particular instance of

this general relation for p = 2,

n1n2 = ∓eβε1n1 − eβε2n2

eβε1 − eβε2
, (7)

was recently used for the study of fluctuations of certain ob-
servables for trapped noninteracting one-dimensional fermions
[27]. Equations (5) and (7) were obtained very recently in
Ref. [28] in the fermionic case.

In the case of bosons, we could express the general corre-
lation function for arbitrary integer powers r1, . . . ,rp as

n
r1
1 · · · nrp

p

= 1

ZN

N∑
k1, . . . ,kp = 1

k1 + · · · + kp � N

ak1 (r1)xk1
1 · · · akp

(rp)x
kp

p ZN−k1−···−kp
,

(8)

where

ak(r) = kr − (k − 1)r . (9)

Equation (8) generalizes Eq. (5).
We illustrate these formulas by considering the study of

Bose-Einstein condensation in a one-dimensional harmonic
trap. We obtain several simple analytical results for the oc-
cupation numbers of single-particle levels. In particular, we
have obtained the distribution Pk,N of the occupation number
nk , with k ∈ N, for N bosons in the canonical ensemble. In the
quantum regime ω � T � Nω, where ω is the trap frequency,
we have obtained the scaling form

Pk,N (n) � ω

T
Qk,z

(ωn

T

)
, (10)

where

Qk,z(ξ ) = θH(ξ )ez(k + zeξ ) exp{−kξ − zeξ }, (11)

with z = (T/ω) exp[−Nω/T ] and θH being the Heaviside
step function. This expression can be compared with the
similar distribution obtained in the grand canonical ensemble
P

g
k (n) ∝ ϕne−nβεk , which would give, after the same rescaling

as above, Q
g
k(ξ ) ∝ ϕT ξ/ωe−kξ . The case of the ground state is

of special interest: Eqs. (10) and (11) simplify as

Proba

{
n0 = N − T ln (T/ω)

ω
+ T

ω
ζ

}

∝ θH(ζ − ln z) exp{ζ − eζ }, (12)

which corresponds to a truncated Gumbel law.

C. Outline

The outline of the article is as follows: in Sec. II, we
recall the connection between our problem and the theory of
symmetric functions, which will allow us to introduce some
useful tools. Our main results expressing correlations between
occupation numbers, Eqs. (5) and (6), are derived in Sec. III.
Finally, in Sec. IV, we illustrate our results on the problem
of Bose-Einstein condensation in a one-dimensional harmonic
trap.
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II. SYMMETRIC FUNCTIONS

The connection between the problem of identical particles
and the theory of symmetric functions has been discussed
in Refs. [22,29]. In Ref. [24], Schmidt and Schnack have
pointed out that the relation (2) for fermions, which is attributed
to Landsberg [21] in many articles, is nothing else but the
well-known Newton identity. In this section, we introduce
some useful notation. As a simple illustration, we recover the
relations (2). For a recent reference on the mathematical theory
of symmetric functions, see the monograph [30].

A. Families of symmetric polynomials

A function φ in M variables x1, x2, . . . ,xM is said to
be symmetric if φ(xσ (1), . . . ,xσ (M)) = φ(x1, . . . ,xM ) for any
permutation σ of the M indices. We now introduce three useful
families of symmetric polynomials.

The elementary symmetric polynomials are defined as

eN (x1, . . . ,xM ) =
∑

λ1<λ2<···<λN

xλ1xλ2 · · · xλN
, (13)

with e0 = 1 and ek = 0 for k > M . For example,
e1(x1, . . . ,xM ) = x1 + x2 + · · · + xM and e2(x1, . . . ,xM ) =
x1x2 + x1x3 + · · · . Their generating function is given by

�F(ϕ) =
M∑

N=0

eNϕN =
M∏

λ=1

(1 + ϕxλ). (14)

The complete homogeneous symmetric polynomials are
defined as

hN (x1, . . . ,xM ) =
∑

λ1�λ2�···�λN

xλ1xλ2 · · · xλN
, (15)

with h0 = 1. For example, h3(x1,x2,x3) = (x3
1 + x3

2 + x3
3 ) +

(x2
1x2 + x2

1x3 + · · · ) + (x1x2x3). Their generating function is
given by

�B(ϕ) =
∞∑

N=0

hNϕN =
M∏

λ=1

(1 − ϕxλ)−1. (16)

Note that, contrary to the sum in the definition of �F(ϕ), the
sum here extends to infinity, as hN �= 0 for N > M .

The power sum polynomials are defined as

pk(x1, . . . ,xM ) =
M∑

λ=1

xk
λ for k � 1. (17)

Their generating function is given by

P (ϕ) =
∞∑

k=1

pkϕ
k−1 =

M∑
λ=1

xλ

1 − ϕxλ

(18)

(for convenience the definition is slightly different from those
of the previous generating functions because we did not
introduce a p0).

Correspondence with the problem of identical particles. Let
us consider N particles in M energy levels (possibly infinite).
Setting xλ = e−βελ as in Eq. (1), one readily sees that the
canonical partition function for bosons ZB

N (β) coincides with
hN , while the canonical partition function for fermions ZF

N (β)

coincides with eN . Moreover, one obviously has p1 = h1 =
e1, andpk(x1, . . . ,xM ) = e1(xk

1 , . . . ,xk
M ) = h1(xk

1 , . . . ,xk
M ), so

that the single-particle canonical partition function at inverse
temperature kβ, which is ZB

1 (kβ) or ZF
1 (kβ), coincides with

pk . One can thus establish the following dictionary between
the mathematician’s and the physicist’s notations :

xλ −→ e−βελ ,

eN −→ ZF
N (β),

hN −→ ZB
N (β),

pk −→ ZB
1 (kβ) = ZF

1 (kβ).

The generating functions �B(ϕ) and �F(ϕ) coincide with the
grand canonical partition functions for bosons and fermions,
respectively.

B. Newton identity

There exist various identities relating the generating func-
tions �B(ϕ), �F(ϕ), and P (ϕ). Expanding these identities in
powers of ϕ provides some relations between the three families
of symmetric polynomials defined above. For instance, the
duality relation

�B(ϕ)�F(−ϕ) = 1, (19)

readily obtained from Eqs. (14) and (16), allows us to express
the ek in terms of the hk , or conversely.

Another identity that can be easily obtained from the
expressions of the previous section is

P (ϕ) = d

dϕ
ln �B(ϕ) = − d

dϕ
ln �F(−ϕ); (20)

that is,

− d

dϕ
�F(−ϕ) = P (ϕ)�F(−ϕ) (21)

and

d

dϕ
�B(ϕ) = P (ϕ)�B(ϕ). (22)

Expanding explicitly Eq. (21) in powers of ϕ yields

M∑
N=1

N (−ϕ)N−1eN =
∞∑

k=1

pkϕ
k−1

M∑
j=0

(−ϕ)j ej . (23)

Identification of terms in ϕN−1 in the right-hand side (r.h.s.)
gives the relation

eN = 1

N

N∑
k=1

(−1)k−1pkeN−k. (24)

This is precisely Eq. (2) for fermions, according to the above
dictionary. The relation (24) was derived by Isaac Newton in
his book, published in 1666 (see Ref. [31], p. 519). It is known
as the Newton identity [30]. Several instances of the relation,
for N = 1, 2, 3, and 4, were obtained earlier by Albert Girard in
1629 (see Ref. [32] page F2, i.e., page ∼50 of the manuscript,
where the elementary polynomial ek is called “kth meslé”).

053615-3



GIRAUD, GRABSCH, AND TEXIER PHYSICAL REVIEW A 97, 053615 (2018)

Similarly, expanding Eq. (22) in powers of ϕ gives
∞∑

N=1

NϕN−1hN =
∞∑

k=1

pkϕ
k−1

∞∑
j=0

ϕjhj , (25)

leading to the relation

hN = 1

N

N∑
k=1

pkhN−k. (26)

This corresponds to Eq. (2) for bosons.
The theory of symmetric functions also provides a determi-

nantal representation of elementary symmetric polynomials in
terms of power sum polynomials (p. 28 of Ref. [30]) as

eN = 1

N !

∣∣∣∣∣∣∣∣∣∣

p1 1 0 · · · 0
p2 p1 2 0
...

...
. . .

. . .
...

pN−1 pN−2 N − 1
pN pN−1 pN−2 · · · p1

∣∣∣∣∣∣∣∣∣∣
. (27)

This provides an explicit expression of the N -body partition
function ZF

N (β) in terms of the one-particle partition func-
tion Z1(kβ). The homogeneous polynomials hN can also be
expressed by the r.h.s. of Eq. (27), but with the determinant
replaced by a permanent [22]. Alternatively, they can be
expressed in terms of a determinant [30] as

hN = 1

N !

∣∣∣∣∣∣∣∣∣∣

p1 −1 0 · · · 0
p2 p1 −2 0
...

...
. . .

. . .
...

pN−1 pN−2 −N + 1
pN pN−1 pN−2 · · · p1

∣∣∣∣∣∣∣∣∣∣
, (28)

which provides an expression of ZB
N (β) in terms of Z1(kβ).

III. CORRELATION FUNCTIONS

The tools developed in the previous section allow us to
easily derive Eqs. (5) and (6), as we now show.

A. Canonical and grand canonical ensembles

We consider N identical particles in M (possibly infi-
nite) energy levels. The occupation number of the individual
eigenstate |λ 〉 of energy ελ is denoted by nλ. Thus we have
nλ ∈ {0, 1} for fermions and nλ ∈ N for bosons. A basis of
Fock space is given by the many-body states | {nλ} 〉, which are
fully specified by the knowledge of all occupation numbers.
We can express the canonical (Gibbs) distribution at inverse
temperature β as

Pc
N ({nλ}) =

∏
λ x

nλ

λ

ZN

δN,
∑

λ nλ
, xλ = e−βελ , (29)

which gives the probability of occupying the quantum state
| {nλ} 〉. Here ZN is the N -body canonical partition function,
and the Kronecker symbol constrains the number of particles
to be N . On the other hand, the grand canonical distribution is
controlled by the fugacity ϕ and reads

Pg({nλ}; ϕ) =
∏

λ (xλϕ)nλ

�(ϕ)
, (30)

with �(ϕ) = ∏
λ(1 ∓ ϕxλ)∓1 the grand canonical partition

function given by Eq. (14) or (16). For bosons, the convergence
of the series is ensured by the condition ϕx0 < 1, where ε0 is
the individual ground state (x0 = e−βε0 ).

Using these distributions, one can relate the grand canonical
average · · ·g and the canonical average · · ·(N) for N particles
(the superscript will only be introduced if needed). Indeed, if
A(·) is any function of the occupation numbers, then, from
Eqs. (29) and (30) one has

�(ϕ)A({nλ})g =
∞∑

N=0

ZNA({nλ})(N)
ϕN. (31)

B. p-point correlation functions

1. Proof of equations (5) and (6)

We now apply Eq. (31) to A({nλ}) = n1 · · · np. In the grand
canonical ensemble, the occupation numbers are independent
[see Eq. (4)], and they are given by Eq. (1). We thus get from
Eq. (31),

∞∑
N=p

ZNn1 · · · np
(N)ϕN = �(ϕ)

[1/(x1ϕ) ∓ 1] · · · [1/(xpϕ) ∓ 1]
.

(32)

The expansion of Eq. (32) and the identification of each power
of ϕ directly gives Eq. (5). Consider for example p = 1. We
have explicitly

∞∑
N=1

ZNn1
(N)ϕN = x1ϕ

∞∑
k=0

(±x1ϕ)k
∞∑

m=0

Zmϕm. (33)

Identification of the ϕN terms on both sides gives ZNn1
(N) =∑N

q=1(±1)q−1x
q

1 ZN−q , which is Eq. (3).
We now introduce the p × p determinant

∞∑
N=1

ZN

∣∣∣∣∣∣∣∣∣

n1
(N) x1 x2

1 · · · x
p−1
1

n2
(N) x2 x2

2 · · · x
p−1
2

...
...

...
. . .

...
np

(N) xp x2
p · · · x

p−1
p

∣∣∣∣∣∣∣∣∣
ϕN

=

∣∣∣∣∣∣∣∣∣

∑
N ZNn1

(N)ϕN x1 x2
1 · · · x

p−1
1∑

N ZNn2
(N)ϕN x2 x2

2 · · · x
p−1
2

...
...

...
. . .

...∑
N ZNnp

(N)ϕN xp x2
p · · · x

p−1
p

∣∣∣∣∣∣∣∣∣
. (34)

Inserting Eq. (33) in the right-hand side of this expression, we
get∣∣∣∣∣∣∣∣∣∣

x1ϕ�(ϕ)
1∓x1ϕ

x1 x2
1 · · · x

p−1
1

x2ϕ�(ϕ)
1∓x2ϕ

x2 x2
2 · · · x

p−1
2

...
...

...
. . .

...
xpϕ�(ϕ)
1∓xpϕ

xp x2
p · · · x

p−1
p

∣∣∣∣∣∣∣∣∣∣
= x1 · · · xpϕ�(ϕ)

(1 ∓ x1ϕ) · · · (1 ∓ xpϕ)
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×

∣∣∣∣∣∣∣∣∣

1 (1 ∓ x1ϕ) x1(1 ∓ x1ϕ) · · · x
p−1
1 (1 ∓ x1ϕ)

1 (1 ∓ x2ϕ) x2(1 ∓ x2ϕ) · · · x
p−1
2 (1 ∓ x2ϕ)

...
...

...
. . .

...
1 (1 ∓ xpϕ) xp(1 ∓ xpϕ) · · · x

p−1
p (1 ∓ xpϕ)

∣∣∣∣∣∣∣∣∣
.

(35)

From linear combinations of columns in the determinant we
then obtain

x1 · · · xpϕ�(ϕ)

(1 ∓ x1ϕ) · · · (1 ∓ xpϕ)
(∓ϕ)p−1

×

∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · x

p−1
1

1 x2 x2
2 · · · x

p−1
2

...
...

...
. . .

...
1 xp x2

p · · · x
p−1
p

∣∣∣∣∣∣∣∣∣

= (∓1)p−1

∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · x

p−1
1

1 x2 x2
2 · · · x

p−1
2

...
...

...
. . .

...
1 xp x2

p · · · x
p−1
p

∣∣∣∣∣∣∣∣∣
×

∞∑
N=p

ZNn1 · · · np
(N)ϕN, (36)

where we have used Eq. (32) for the last equality. Identifying
terms in ϕN in the left-hand side of Eq. (34) and in the right-
hand side of Eq. (36) demonstrates Eq. (6). To prove Eq. (6)
in the grand canonical case, it suffices to replace �(ϕ) by 1 in
the left-hand sides of Eqs. (35) and (36) and use the absence
of correlation between occupation numbers Eq. (4).

2. Generalization

The same technique allows us to generalize Eq. (6) straight-
forwardly: the p-point correlation function can be expressed
in terms of q-point correlation functions for any q < p. For
instance, for q = 2 we have

n1n2 · · · np = ∓

∣∣∣∣n1n3 . . . np x1

n2n3 . . . np x2

∣∣∣∣∣∣∣∣1 x1

1 x2

∣∣∣∣
, (37)

and other such relations obtained by picking different indices
among the p(p − 1)/2 pairs of indices (such an expression
was obtained for fermions in Ref. [28]). More generally, as a
function of q-point correlation functions we have

n1n2 · · · np = (∓)q−1

∣∣∣∣∣∣∣∣∣

n1nq+1 . . . np x1 · · · x
q−1
1

n2nq+1 . . . np x2 · · · x
q−1
2

...
...

. . .
...

nqnq+1 . . . np xq · · · x
q−1
q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 · · · x
q−1
1

1 x2 · · · x
q−1
2

...
...

. . .
...

1 xq · · · x
q−1
q

∣∣∣∣∣∣∣∣∣

,

(38)

and other such relations obtained by picking any q indices
among the

(
p

q

)
possibilities. The steps are exactly the same as in

Eqs. (34)–(36), replacing the correlators in the determinant by
their expression (32). For q = p we obviously recover Eq. (6).
Again, substituting �(ϕ) by 1 in the proof shows that Eq. (38)
is valid also for the grand canonical ensemble.

3. Relation with Schur polynomials

The ratio of determinants in Eq. (6) allows us to identify
another interesting connection with the theory of symmetric
functions; namely, with a fourth family of symmetric functions,
the so-called Schur polynomials [30]. The definition of these
polynomials is given in Appendix A; they are expressed as a
ratio of two determinants.

The Schur polynomials naturally appear if one replaces the
ni in the numerator of Eq. (6) by their expression (3). By linear
expansion of the determinant with respect to its first column
we directly obtain

n1 · · · np = x1 · · · xp

ZN

N∑
k=p

(±1)p+kZN−ks�k
(x1, . . . ,xp),

(39)

where s�k
are the Schur polynomials for the partition �k =

(k − p,0p−1); cf. Appendix A. We recall that ZN−k is
identified with either the elementary symmetric polynomial
eN−k(x1, . . . ,xM ), or the homogeneous symmetric polynomial
hN−k(x1, . . . ,xM ), where M is the dimension of the one-
particle Hilbert space. Introducing the Schur functions has
allowed us to reduce the p-fold sum in Eq. (5) to a single
sum in Eq. (39).

C. Correlation functions with higher powers (bosons):
Proof of equation (8)

In the case of bosons, we can also consider higher moments
of the occupation numbers (for fermions we have of course
nr

λ = nλ). This question has attracted a lot of attention for
the characterization of the number of condensed bosons in
a BEC [9,11,12,14,33]. In the grand canonical ensemble, the
integer moments of each occupation number can be obtained
simply from the individual grand partition function ξλ = (1 −
ϕxλ)−1 for individual eigenstate |λ 〉 as

nr
λ

g = 1

ξλ

(
ϕ

d

dϕ

)r

ξλ =
∞∑

k=1

ak(r)(xλϕ)k, (40)

with ak(r) = kr − (k − 1)r and r ∈ N. Applying Eq. (31) to
A({nλ}) = n

r1
1 · · · nrp

p , and making use of the independence of
the occupation numbers in the grand canonical ensemble as in
Eq. (4), we readily obtain Eq. (8). For instance, for the second
moment we have

n2
λ =

N∑
k=1

(2k − 1)
ZN−k

ZN

xk
λ. (41)

This representation will be of practical use in the following
section.
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IV. CONDENSATION OF BOSONS IN A
ONE-DIMENSIONAL HARMONIC TRAP

As a simple illustration of our results, we consider N

bosons in a one-dimensional harmonic trap with frequency
ω. The problem has been studied within the grand canon-
ical [7,34–37], the canonical [7,10,11,26], and the micro-
canonical [9,10,12,38] ensembles [39]. In particular, some
limiting behavior of the ground-state occupancy for T → 0,
recalled below, was obtained in several of these references.
The probability distribution of the occupation number of the
kth level was obtained in Ref. [11] :

Pk,N (n) = δnk,n
(N) = xkn[1 − xk + xN−n+k]

ZN−n

ZN

, (42)

where x = e−βω. It is, however, not straightforward to extract
simple information, like moments or cumulants, or to analyze
the large-N asymptotics of this distribution. Here we show that
the canonical formulas obtained in the previous sections lead
to simple analytical results appropriate to discuss the large-N
limit.

A. Thermodynamic properties

Up to a shift in energy, the one-body spectrum is εn =
nω for n ∈ N (we set h̄ = kB = 1). The N -body partition
function [3,40]

ZN =
N∏

n=1

(1 − e−nβω)−1 (43)

corresponds to N independent bosonic modes with frequencies
�n = nω for n = 1, . . . ,N .

The problem involves three characteristic temperature
scales. (i) The lowest scale, TQ = ω, separates the regime
where the spectrum should be considered discrete (T � TQ)
from the one where it can be described as a continuous
spectrum (T � TQ). (ii) The scale T∗ = Nω separates the
quantum regime T � T∗, where the upper modes are frozen in
their ground state [see Eq. (43)], from the classical regime T �
T∗ where all the modes can be described as classical oscillators,
in which case we recover the Maxwell-Boltzmann partition
functionZN � (1/N !)(βω)−N corresponding to neglecting the
effect of quantum correlations. (iii) The third temperature scale
is the Bose-Einstein temperature

TB = Nω

ln N
, (44)

below which a macroscopic fraction of bosons accumulates
in the individual ground state. It can be obtained from the
analysis of the canonical chemical potential μc = FN − FN−1

or the fugacity ϕc = eβμc = ZN−1/ZN = 1 − e−Nβω. Intro-
ducing (incorrectly) this expression in the grand canonical
expression of the ground-state occupancy, n0

g = [1/ϕ − 1]−1,
Eq. (1), shows that n0

g ∼ N for ϕ ∼ 1 − 1/N , i.e., T ∼ TB =
Nω/ ln N .

In the following, we will not describe the effect of the
discrete nature of the spectrum and will always consider
the limit T � ω (the condition will be implicit in the rest
of the paper). In particular, we can treat the sum over the
spectrum in ln ZN as an integral, so that Eq. (43) yields

ln ZN � − ∫ N

0 dn ln(1 − e−nβω). The latter expression can be
reformulated in terms of the polylogarithm function Li2(x) =∑∞

n=1 xn/n2 = − ∫ +∞
− ln x

dy ln(1 − e−y) (see §25 of Ref. [41]).
The free energy is then given by

FN = − 1

β
ln ZN � Li2(e−Nβω) − Li2(1)

β2ω
. (45)

B. Mean occupation numbers

1. Classical regime: T � T∗

In the classical regime T � T∗, i.e., Nβω � 1, one can
use the asymptotic behavior Li2(1 − ε) � π2/6 + ε(ln ε − 1)
for ε � 1. From Eq. (45) we recover the classical (Maxwell-
Boltzmann) result ZN ∼ eN (Nβω)−N , which coincides with
the expression given above since N ! ∼ NNe−N . The mean
occupation number, given by Eq. (3), is dominated by the first
term, so that for the kth level εk it is given by nk � Nβωe−βεk .
Since the canonical fugacity behaves as ϕc � Nβω, we get
nk � ϕce−βεk , which coincides with the well-known grand
canonical behavior.

2. Quantum regime: T � T∗

We now turn to the more interesting regime where T �
T∗ (and T � TQ). The sum in Eq. (3) can be replaced by an
integral. Using Eq. (45) for the expression of ZN , the mean
occupation number can be reexpressed as

nk � N

∫ 1

0
dy

× exp

{
−Nβεky + Li2

(
e−Nβω

) − Li2
(
e−Nβω(1−y)

)
βω

}
,

(46)

where εk = kω. While the exact form (3) is only tractable for
small N in practice, the integral representation (46) has the
advantage that it allows us to study the occupation without
restriction on N . One must, however, keep in mind that Eq. (46)
only holds in the intermediate regime ω � T � Nω.

The integral expression (46) can be further simplified by us-
ing the behavior of the polylogarithm function in the vicinity of
0, Li2(x) � x for x → 0. Indeed, in the regime where Nβω �
1, one can replace Li2(e−Nβω) by e−Nβω. Moreover, when
βω � 1 one can also replace Li2(e−Nβω(1−y)) by e−Nβω(1−y),
since in the vicinity of y = 1, where this approximation breaks
down, the integrand becomes proportional to e−1/(βω) � 1.
For the same reason one can extend the integral to infinity.
Equation (46) thus reduces to

nk � N

∫ ∞

0
dy exp

{
−Nβεky + e−Nβω − e−Nβω(1−y)

βω

}
.

(47)

Introducing the parameter

z = e−Nβω

βω
= T

ω
N−TB/T (48)

053615-6



CORRELATIONS OF OCCUPATION NUMBERS IN THE … PHYSICAL REVIEW A 97, 053615 (2018)

FIG. 1. Occupations of the ground state and the first-excited state,
Eq. (49), for N = 100 (blue solid line) and N = 108 (red dashed). The
green dots correspond to the exact result (3) for the ground state with
N = 100. Thin black lines are (50) and (51). Inset shows the relative
difference between the approximate form (49) and the exact form (3).

and making the change of variables u = zeNβωy , Eq. (47) yields
a representation in terms of the incomplete Gamma function,

nk � 1

βω
zkez�(−k,z). (49)

In the inset of Fig. 1 we compare Eq. (49) with the exact
expression (3): the difference is below 1% on the interval [0,TB]
for relatively small N and we can see that the temperature range
over which the difference remains small grows as N increases.

3. Ground state

Setting k = 0 in Eq. (49), the incomplete Gamma func-
tion reduces to the exponential integral �(0,z) = E1(z). The
T � TB regime corresponds to the limiting behavior E1(z) =
ln[e−γ /z] + O(z) for z → 0, where γ � 0.577 is the Euler-
Mascheroni constant. Hence

n0

N
� 1 − T ln (eγ T /ω)

Nω
for T � TB. (50)

This behavior was already obtained in Ref. [14] by a different
approach (see also Appendix B, where we recall how the
limiting behavior can be obtained within a grand canonical
treatment [37]). In Fig. 1 we compare the approximate ex-
pression (50) with the exact sum (3). For large-enough N the
behavior (50) is indistinguishable from the exact result up to
T ∼ TB.

4. Excited states

For the excited states, because of the factor e−Nβεky , the
integral (46) is dominated by the neighborhood of the lower
boundary. In this case we can use e−Nβω − e−Nβω(1−y) �
−Nβωye−Nβω for y → 0. This is equivalent to replacing
Eq. (49) by the approximation zkez�(−k,z) � 1/(k + z),
which corresponds to the interpolation between the two lim-
iting behaviors �1/k for z → 0 and �1/z for z → ∞ [the
agreement with 1/(k + z) becomes excellent at large k].

As a result we get the approximate form

nk � T

εk + T e−Nω/T
(51)

for k � 1. For T � TB we get the linear behavior nk � T/εk .
However, unlike Eq. (50), Eq. (51) also describes the crossover
from this linear behavior to the decaying behavior above TB,
as illustrated in Fig. 1. Equation (51) shows that the mean
occupation reaches its maximum for T = Nω/ ln(N/k) � TB,
with

nk

∣∣
max � N/k

ln (N/k)
. (52)

The presence of the logarithm in the denominator shows that
only the ground state has a macroscopic occupation below TB,
as expected when BEC occurs.

For the highest excited states, such that εk � T , the contin-
uous approximation of the sum (3), leading to the integral (46),
fails, and the occupation decays exponentially as nk � e−βεk .
This is the expected classical behavior (for ϕc � 1), as weakly
occupied levels can be considered in the classical regime.

C. Variance of the ground-state occupation

We now study the fluctuations around the mean occupation
number. We restrict ourselves to the ground state, which has
attracted some attention in higher dimension [14,33]. The exact
expression for n2

0 is given by Eq. (41). In the most interesting
regime, TQ = ω � T � T∗ = Nω, we get an integral repre-
sentation similar to Eq. (46): the coefficient ak(2) = 2k − 1 in
the sum (41) translates into a factor 2Ny − 1 � 2Ny in the
integral (46), so that

n2
0 � 2N2

∫ 1

0
dyye [Li2(e−Nβω)−Li2(e−Nβω(1−y))]

/
(βω). (53)

Performing the same approximations as above and using
the asymptotics

∫ ∞
x

du ln(u)e−u/u � (1/2)[− ln2 x + γ 2 +

FIG. 2. Fluctuations of the ground-state occupancy as a function
of the rescaled temperature, for N = 100 (blue solid line) and 108 (red
dashed), from Eq. (61). Thin black line corresponds to (54). Green
dots show exact expression from Eqs. (3)–(41).
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π2/6] as x → 0, we obtain

Var(n0) � 1

6

(
πT

ω

)2

for T � TB. (54)

This behavior was obtained in Refs. [11,14] by a different
canonical calculation [42]. It was also obtained within the mi-
crocanonical ensemble in Refs. [9,12]. The variance deduced
from Eq. (53), which is plotted in Fig. 2, presents a peak close to
T ∼ TB, with a scaling Var(n0)|T =TB ∼ N2/ ln2 N . A careful
analysis of the expression (61) derived below, with the help of
the software MATHEMATICA, shows that the peak in the variance
scales as

Var(n0)
∣∣
max � π2N2

6 ln2 N

[
1 − (ln ln N )2

ln N
+ O

(
ln ln N

ln N

)]
,

(55)

thus the relative fluctuations are δn0/n0 ∼ 1/ ln N . Due to this
slow decay, n0 cannot be considered self-averaging in practice.

D. Distribution of occupation numbers

1. Characteristic function

To demonstrate the efficiency of our formalism, we now
derive the full distribution of the ground-state occupancy. We
start from the general expression of the moments, Eq. (8). As
for the first two moments, we replace the sum by an integral,
which is valid for TQ = ω � T � T∗ = Nω. For r � 1, we
have

nr
k �Nr+1

∫ 1

0
dy

[
yr −

(
y − 1

N

)r]
e−Nβεky

× exp

{
Li2(e−Nβω) − Li2(e−Nβω(1−y))

βω

}
, (56)

where εk = kω. Weighting this expression by (αβω)r/r! and
summing over r , we get the characteristic function

exp {αβωnk} � 1 + 1 − e−αβω

βω
zk−α

∫ 1/(βω)

z

duuα−k−1

× exp

{
Li2(βωz) − Li2(βωu)

βω

}
, (57)

where z is given by Eq. (48) and we made the change of
variables u = zeNβωy . In the limit where βω → 0 (continuous
approximation), keeping z finite (i.e., probing T ∼ TB), one
can again use Li2(x) � x for x → 0. We recognize the integral
representation of the incomplete Gamma function �(α − k,z).
We finally get

eαβωnk � 1 + αezzk−α�(α − k,z) ≡ Gk,z(α), (58)

where we introduced the moment-generating function Gk,z(α).
We define a rescaled variable ξ by Gk,z(α) = eαξ . It is such
that ξ � βωnk . In this regime, the generating function of the
occupation number for the kth excited state only depends on
the nontrivial combination of parameters given by z defined in
Eq. (48).

We can get the moments by expanding the generating
function as

Gk,z(α) =
∞∑

r=0

μr (z,k)

r!
αr with nr

k � μr (z,k)

(βω)r
. (59)

We get

μ1(z,k) = zkez�(−k,z), (60)

which coincides with Eq. (49), as it should. The higher
moments are expressed in terms of Meijer G functions:

μr (z,k) = r!ezG
r+1,0
r,r+1

(
z

∣∣∣∣ 1 + k, . . . ,1 + k

0,k, . . . ,k

)
. (61)

These expressions are valid in the full range of temperature
T ∼ TB where quantum correlations dominate. The cumulants
of the occupations can be deduced from the expansion

ln Gk,z(α) =
∞∑

r=1

cr (z,k)

r!
αr with nr

k

cum � cr (z,k)

(βω)r
. (62)

However, we have not found any expression for the cumulants
that would be simpler than that obtained from the moments.

2. Distribution

Using the integral representation �(a,z) = za
∫ ∞

0 dξ

exp{aξ − zeξ }, we rewrite the generating function (58) as

Gk,z(α) = eαξ = 1 + ez

∫ ∞

0
dξαeαξ e−kξ−zeξ

. (63)

An integration by parts makes it clear that the rescaled
occupation number ξ � βωnk is distributed according to the
law

Qk,z(ξ ) = θH(ξ )ez(k + zeξ ) exp{−kξ − zeξ }, (64)

where θH(ξ ) is the Heaviside function. Although the connec-
tion is not obvious, this distribution is the large-N limit of
Eq. (42).

We can compare our result (64) with the simple result given
by the grand canonical ensemble. In this case, occupations
are independent and the distribution of the occupation is
exponential, P

g
k (n) ∝ ϕne−nβεk , where ϕ is the fugacity; cf.

Eq. (30). The rescaled variable ξ � βωnk is then distributed
according to the law Q

g
k(ξ ) ∝ ϕT ξ/ωe−kξ . The two distributions

thus significantly differ, and in particular the large deviations,
as shown in the inset of Fig. 3.

As stressed by Schönhammer [28], the deviation from the
purely exponential distribution in the canonical ensemble can
be interpreted as a deviation from the Wick theorem induced
by the constraint on the number of particle number.

3. Ground state

In the case of the ground state, it is more convenient to shift
the rescaled variable as ζ = ξ + ln z � βωn0 + ln z. The new
variable is thus distributed according to

Fz(ζ ) ≡ Q0,z(ξ ) = θH(ζ − ln z) exp{z + ζ − eζ }, (65)

which is the truncated Gumbel distribution. In the limit z →
0, we get the Gumbel law F0(ζ ) = exp{ζ − eζ }, defined on
R, describing extreme-value statistics of independent random
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FIG. 3. Distribution P1,N (n) of the number of bosons in the
first-excited state for N = 1000. Temperature is T/TB = 2 (red), 1
(orange), 0.5 (green), and 0.1 (blue), obtained from Eq. (64). The plot
in log-linear scale in the inset shows that the distribution is far from
exponential when T � TB.

variables [43,44]. The probability distribution for the ground-
state occupancy n0 can then be written as

P0,N (n) � ω

T
Fz

(
ω

T

(
n − N + T

ω
ln (T/ω)

))
. (66)

This distribution is plotted in Fig. 4 for different temperatures.
The curves correspond at first sight with the plot of Eq. (42) in
Ref. [11], although the connection with the Gumbel distribu-
tion was not made in that paper.

The distribution simplifies in the regime T � TB, as well
as the moments: when z → 0, Eq. (58) yields ln G0,z(α) �
−α ln z + ln �(1 + α), leading to

ln G0,z(α) � −α ln z +
∞∑

r=1

ψ (r−1)(1)

r!
αr as z → 0, (67)

where ψ(x) is the digamma function. This leads in particu-
lar to μ1(z,0) = c1(z,0) = − ln z + ψ(1) + O(z) � − ln z −
γ , in accordance with Eq. (50), and c2(z,0) = ψ ′(1) +
O(z ln z) � π2/6, in accordance with Eq. (54). In general,
we have for r � 2 the expression cr (z,0) = ψ (r−1)(1) +
O(z lnr−1 z) as z → 0, thus

nr
0

cum � ψ (r−1)(1)

(
T

ω

)r

for r � 2, (68)

which coincide with the cumulants of the Gumbel law, as it
should. Again, recall that this behavior holds in the regime
TQ � T � TB.

4. Excited states

The study of the fluctuations of the occupation numbers
for the excited states follows the same lines as for the ground
state. For instance, the second moment n2

k is given by inserting
a factor 2Ny in the integral (46). Similar approximations as
for the calculation of the mean value lead to n2

k � 2(nk)2,

FIG. 4. Distribution P0,N (n) of the number of condensed bosons
for N = 1000. Temperature is (from left to right) T/TB = 2 (red), 1
(orange), 0.5 (green), and 0.1 (blue), obtained from Eq. (66).

thus

Var(nk) � (nk)2 for T � TB. (69)

As is turns out, this approximation reproduces quite well the
variance in the whole regime T � T∗. As for the ground state,
we get a quadratic behavior at low temperature, Var(nk) ∼
(T/εk)2 for ω � T � TB. The fluctuations are maximum
for T � TB with Var(nk)|max � (N/k)2/ ln2(N/k). Hence, the
maximal fluctuations in the excited states are of the same order
as the fluctuations in the ground state

δnk ∼ 1

k
δn0 for T ∼ TB; (70)

however, the relative fluctuations are larger in the excited states,
δnk/nk ∼ 1, than in the ground state, δn0/n0 ∼ 1/ ln N .

The distribution of the occupation number is given by
Eq. (64). We remark that the distribution simplifies in the low-
temperature limit as Qk,0(ξ ) = θH(ξ )ke−kξ , i.e., Pk,N (n) �
βεke

−nβεk for T � TB. Interestingly, in this limit, this distri-
bution coincides with the similar distribution obtained in the
grand canonical ensemble (see Sec. IV D 2) P

g
k (n) ∝ e−nβεk

with ϕ = 1. This supports the fact that the condensed bosons
in the ground state play the role of a reservoir for the excited
bosons in this regime [33] (cf. Appendix B).

For T � TB, the distribution presents a decay faster than
exponential (see Fig. 4).

5. Correlations

We can also study the correlations between occupation num-
bers. For example, by using Eq. (7) we can easily get nkn0. Let
us study the T → 0 limit of the correlator, when n0 � N and
nk � 1/(βεk). In the continuum limit (βω � 1) and for small-
enough k, we can expand the exponential eβεk � 1 + βεk . As
a result we obtain Cov(n0,nk) = nkn0 − nk × n0 � −(nk)2.
Denoting by Nex = ∑

k>0 nk the number of excited bosons,
this result implies that Cov(n0,Nex) � −∑

k>0(nk)2 �
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−(T/ω)2 ∑
k>0 1/k2 = −(1/6)(πT/ω)2 � −Var(n0), as it

should since Cov(n0,Nex) = −Var(n0) = −Var(Nex) follows
from the constraint that n0 + Nex = N is fixed. Furthermore,
we see that the anticorrelations

nkn0 − nk × n0√
Var(nk)Var(n0)

� −
√

Var(nk)

Var(n0)
� −

√
6

πk
for T � TB,

(71)

decay as higher excited states are considered.

V. CONCLUSION

We obtain several general results for the occupation num-
bers in the canonical ensemble for bosons and for fermions:
mean occupations, fluctuations, and correlation functions. We
show that the p-point correlation function for N particles is
expressed in terms of the k-body canonical partition func-
tions, with k = 1, . . . ,N , where these partition functions can
be obtained by using a well-known recursion formula. We
have also obtained a representation of the p-point correlation
function in terms of the ratio of two determinants, involving the
mean occupations, which can therefore be viewed as the only
fundamental quantities controlling any correlation function.
An open question would be to extend our determinantal rep-
resentation to correlation functions involving arbitrary powers
(in the bosonic case) and clarify the connection with the theory
of symmetric functions in this case.

The two-point correlation function and the relation (7)
have recently found an application in Ref. [27], where the
variance of a specific observable for a gas of noninteracting
fermions in a one-dimensional harmonic trap was analyzed in
detail. We demonstrate the efficiency of our results by deriving
some analytical expressions for the problem of Bose-Einstein
condensation in a one-dimensional gas harmonically trapped.
We obtain significant deviations with the results given by
the traditional grand canonical treatment where the constraint
on the number of bosons is introduced a posteriori (cf.
Appendix B). This detailed analysis relies on the knowledge
of the exact canonical partition function. A study of higher
dimensions or other situations would be interesting.

We demonstrate that, in the regime where quantum correla-
tions dominate (TQ = ω � T � T∗ = Nω), the distribution
of the individual ground-state occupancy has the form of a
truncated Gumbel law. Moreover, in the regime T � TB, we
get the Gumbel distribution. Interestingly, this is not the first
time that a connection is established between thermodynamical
properties of a Bose gas and extreme-value statistics: in
Ref. [45], the spectral density of a Bose gas (not necessarily
harmonically confined) was shown to be related to the different
extreme-value distributions for identical and independently
distributed random variables. Depending on the exponent
controlling the single-particle density of states ρ(ε) ∝ εα−1,
the different universality classes (Gumbel, Fréchet, or Weibull)
can be obtained. For the one-dimensional harmonically trapped
Bose gased studied here, the connection between the ground-
state occupancy distribution and extreme-value statistics still
remains to be explained.
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APPENDIX A: SCHUR FUNCTIONS

Consider the integer partition λ = (λ1,λ2, . . . ,λn) with
λ1 � λ2 � · · · � λn. If an integer is repeated, we may use the
notation (2,1,1,1) ≡ (2,13), here for the partition of 5. We in-
troduce the specific partition δ = (n − 1,n − 2, . . . ,1,0). Ad-
dition of partitions is simply obtained by adding integers term
by term λ + δ = (λ1 + n − 1,λ2 + n − 2, . . . ,λn−1 + 1,λn).
We introduce the determinant

aλ(x1, . . . ,xn) =

∣∣∣∣∣∣∣
x

λ1
1 x

λ2
1 · · · x

λn

1
...

...
. . .

...
xλ1

n xλ2
n · · · xλn

n

∣∣∣∣∣∣∣. (A1)

The Vandermonde determinant is then aδ(x1, . . . ,xn), up to a
sign. The Schur function is defined by [30]

sλ(x1, . . . ,xn) = aλ+δ(x1, . . . ,xn)

aδ(x1, . . . ,xn)
. (A2)

APPENDIX B: GRAND CANONICAL TREATMENT OF
BOSONS IN A ONE-DIMENSIONAL HARMONIC TRAP

In this appendix, we recall the grand canonical treatment
for bosons in a harmonic trap. A first rough description can
be found in Refs. [35,36], which corresponds to slightly
adapting the usual treatment valid for d > 1 [2,3]: while
for d > 1 the fugacity reaches ϕ = 1 at the Bose-Einstein
temperature, one needs to introduce a cutoff in one dimension
and set ϕ = 1 − 1/N . This leads to the linear behavior [46].
n0/N � 1 − T/TB for T < TB. In practice, the linear behavior
is only reached for huge numbers of bosons because the
fluctuation region is rather large in one-dimension [37]. A
refined treatment was proposed in Ref. [34] (see also Ref. [37]):
assuming that the occupations are given by the usual Bose-
Einstein factor (1), one splits the sum N = ∑

λ nλ
g between

strongly occupied low energy levels and weakly occupied high

FIG. 5. Comparison between the form (46), obtained within the
canonical treatment, and the result of the grand canonical treatment,
solution of Eq. (B1).
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energy levels. This leads to the equation for the condensate
fraction [34,37]

N − T

ω
ln (T/ω) = N0 − T

ω
ψ

(
1 + T

N0ω

)
, (B1)

where ψ(z) is the digamma function [we use a different
notation for the (exact) canonical condensate fraction n0

and its counterpart N0 in the (approximate) grand canonical
approach]. From this equation, it is possible to recover the
limiting behavior (50). However, a precise comparison with
Eq. (46) shows a relative difference of ∼16% when T ∼
TB, irrespectively how large N is, as shown in Fig. 5 [note
that this discrepancy cannot be attributed to the continuous
approximation leading to Eq. (46); cf. inset of Fig. 1].
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