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Probing the exchange statistics of one-dimensional anyon models
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We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models
in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in
[Phys. Rev. A 94, 023615 (2016)]. We show that the fast modulation of a two-component fermionic lattice
gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows
for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic
ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we
show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting
from the anyonic exchange.
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I. INTRODUCTION

Anyons [1,2], particles with an exchange statistics inter-
polating between bosons and fermions, play a crucial role
in fascinating concepts of modern condensed-matter physics,
such as topological quantum phases, in particular, the fractional
quantum Hall effect [3–6] and topological quantum computing
[7,8]. The experimental search and manipulation of anyons has
attracted great interest in recent years, including spin and boson
models [7,9–12], and systems of ultracold atoms [13–17].
While theoretically settled, an unambiguous detection of any-
onic (quasi-) particles, e.g., by interferometric measurements
[5], is still an object of active research [17,18].

Although anyons were originally proposed for two-
dimensional (2D) systems, one-dimensional (1D) anyons have
been theoretically studied as well [19–27]. The exotic prop-
erties of 1D (Abelian) anyon models include asymmetric
momentum distributions [28–33], particle dynamics [34–37],
entanglement properties [38–40], or statistically induced Mott
insulator to superfluid quantum phase transitions [41–44].
Despite this theoretical interest, the experimental realization
of 1D anyons is still missing. A (pseudo) anyon Hubbard
model (AHM) in 1D optical lattices may be engineered by
means of Raman-assisted tunneling [41,45,46]. Pseudoanyons
exhibit anyonic commutation off-site but on-site behave as
bosons, i.e., there may be more than one particle per lattice
site. A drastically simplified realization of the AHM may be
realized by means of periodically driven lattices [47]. A proper
three-color modulation of the lattice depth has been proposed
for the realization of a two-component 1D anyon Hubbard
model (2AHM) [48].

As for 2D anyons, revealing the anyonic character of the
engineered 1D quasiparticles remains an interesting open ques-
tion. This paper proposes two feasible experiments in which the
modified statistics may be revealed in ultracold lattice gases.
On the one hand, we show that expansion experiments using the
three-color modulation of Ref. [48] may reveal the formation of

anomalous bound-state pairs. These pairs, which result from
the anyonic exchange statistics, anticipate the emergence of
the exotic partially paired phase (PP) predicted for the 2AHM
[48]. On the other hand, combining the three-color modulation
with spin-dependent tilting and Raman-assisted coupling at the
system boundaries allows for the realization of an effective
one-component hardcore (i.e., with at most one particle per
site) AHM with periodic boundary conditions (PBC). This
effective synthetic ring setup allows for interferometric mea-
surements that reveal the statistical angle that characterizes
the anyonic character of the particles. Different scenarios
for probing the exchange statistics have been discussed for
mesoscopic systems in Ref. [49].

The paper is organized as follows. After an introduction to
the three-color modulation scheme in Sec. II and a discussion of
the mappings to anyon models in the low-density limit, Sec. III
is devoted to the expansion of particles in the hardcore AHM
with PBC and its characteristic dependence on the statistical
angle. Finally, in Sec. IV we discuss expansion experiments
for the 2AHM model and conclude in Sec. V with a summary
and a short outlook.

II. THREE-COLOR MODULATION OF AN
INTERACTING FERMI GAS

In the following we will recapitulate and extend the
multicolor modulation scheme introduced in Ref. [48]. The
main experimental idea is depicted in Figs. 1 and 2. A two-
component (σ = 0,1 corresponding to spin ↑ and ↓) Fermi
(or hardcore Bose) gas is loaded into a 1D optical lattice.
We assume a tilted lattice, with an energy shift � between
neighboring sites (Fig. 1) due to acceleration or tilting in
gravity, and hence the tilting is spin independent. An interesting
alternative is to employ a magnetic field gradient, which leads
to a spin-dependent tilting (Fig. 2).
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FIG. 1. Sketch of the lattice setup with a spin-independent tilting
� and the relevant hopping processes (i)–(iv). Blue (red) bullets
correspond to spin ↑ (↓) particles.

The system is then described by the Fermi-Hubbard Hamil-
tonian,

H(t) = −J̃ (t)
∑
j,σ

[c†j+1,σ cj,σ + H.c.] + Hint + Htilt, (1)

where cj,σ is the annihilation operator of a fermion with spin
σ at site j , and the tilting is given by

Htilt = �
∑
j,σ

εσ jnj,σ , (2)

where εσ = 1 for the spin-independent tilting and (−1)σ for the
spin-dependent case. Importantly, we assume that the particles
experience a repulsive on-site interaction,

Hint = U
∑

j

nj,↑nj,↓ . (3)

In both cases we assume that a direct hopping of the particles
between the lattice sites can be neglected, J̃ (t) � �,|� ± U |.
The hopping is restored by a resonant modulation of the optical
lattice. Following Ref. [48] we assume a fast periodic modula-
tion of the optical lattice depths [50], V (t) = V0 + δV (t), with
δV � V0. One could equivalently assume a fast lattice shaking
such as discussed in Ref. [47]. We may then integrate out the
fast periodic drivings and obtain the effective anyon models as
we will discuss in the following.

A. The spin-independent tilting

From Fig. 1 we may identify four relevant hopping pro-
cesses in the spin-independent tilting which we would like to

FIG. 2. Lattice shaking scheme with a magnetic field gradient
for the realization of the hardcore anyon Hubbard model. Microwave
fields � couple the boundaries of the system.

restore by means of the resonant drivings and the correspond-
ing energy differences �Ei :

(i) a single atom hops to an empty site to its right �E1 = �;
(ii) a single atom tunnels to an occupied site at its right:

�E2 = � + U ;
(iii) same as (ii) but the hopping is to the left: �E3 =

U − �;
(iv) an atom in a doubly occupied site tunnels into a single

occupied site (“doublon hopping”): �E4 = �.
As discussed in Ref. [48], a separate but simultaneous driv-

ing with three frequencies, ω1 = �, ω2 = � + U − Ũ , and
ω3 = −� + U − Ũ , allows for (quasi-) resonantly restoring
the four hopping processes. The detuning |Ũ | � U allows for
the introduction of an effective two-body interaction. In the
following we will set Ũ = 0. Hence, we choose a modulation
of the laser intensity as

δV (t) = δV
∑

s=1,2,3

cos(ωst + φs), (4)

which corresponds to a modulation of the tunneling amplitude
as J̃ (t) = J0 + δJ (t) with

δJ (t) = δJ
∑

s

cos(ωst + φs) . (5)

An important aspect here is that we may arbitrarily choose the
phases φs for all three processes, which can be exploited to
realize the fractional statistics.

After integrating out the resonant driving we recover a
model without tilting

Heff = −δJ

2

∑
j,σ

c
†
j+1,σ eiφ|nj+1,σ̄ −nj,σ̄ |cj,σ + · · · . (6)

Interestingly, within the scheme we may also control the
amplitude of the three drivings separately, which opens further
possibilities, e.g., allows for the simulation of more general
correlated hopping Hubbard models with asymmetric hopping
amplitudes for doublons and single particles. Here, however,
we focus on the properties of the AHM with symmetric
hoppings. As discussed in Ref. [48], higher-order terms in
this scenario [the ellipsis in Eq. (6)], may induce effective
interactions between nearest-neighbor (NN) sites due to the
virtual hopping of particles. Those NN interactions open
additional interesting possibilities for the observation of in-
teracting quantum gases. While this aspect was analyzed in
detail in Ref. [48], here in the following we will neglect this
issue.

At low lattice filling ρ, for which processes (iv)
may be neglected, a Jordan-Wigner–like transformation
[41],

fj,σ = e−i2φ
∑

1�l<j nl e−iφnj cj,σ , (7)

maps model Eq. (6) into a 2AHM,

H2AHM = −J
∑
j,σ

(f †
j,σ fj+1,σ + H.c.) + ŨHint, (8)

and in the following we define δJ
2 = J . The operators fj,σ

and f
†
j,σ characterize anyonlike hardcore particles that fulfill a
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deformed exchange statistics:

fj,σ f
†
k,σ ′ + Fj,kf

†
k,σ ′fj,σ = δj,kδσ,σ ′ ,

fj,σ fk,σ ′ + Fj,kfk,σ ′fj,σ = 0. (9)

The complex parameter Fj,k determines the statistics of the
system:

Fj,k :=
⎧⎨
⎩

e−i2φ, j > k,

1, j = k,

ei2φ, j < k,

(10)

where the condition Fj,j = 1 sets the hardcore behavior of the
particles. Note that for φ = 0 we retrieve the two-component
Fermi-Hubbard model, while φ = π/2 corresponds to the
two-component hardcore Bose-Hubbard model. Nontrivial
quantum effects may be observed even for Ũ = 0 and φ = π/2
[48].

B. Magnetic field gradient

We now consider the case of a spin-dependent tilting of
the optical lattice such as realized in a magnetic field gradient
Fig. 2. Again we may identify four hopping processes and three
corresponding frequencies:

(i) single atom hops to an empty site to its right �E1 = �;
(ii) single ↑ (↓) atom tunnels to occupied site at its right

(left): �E2 = � + U ;
(iii) the same event as (ii) but the hopping is to the left

(right): �E3 = U − �;
(iv) doublon hopping: �E4 = �.
Hence, now the same three-color modulation scheme allows

to realize opposite phases for the hopping of ↑ and ↓ particles
of the AHM:

H SD
eff = −δJ

2

∑
j = 0 · · · L
σ = 0,1

c
†
j,σ ei(−1)σ φ|nj+1,σ̄ −nj,σ̄ |ci+1,σ + H.c.

(11)

Interestingly, the phase φ, contrary to Model (6), has no effect
on the spectrum of the model and can be gauged out in a
system with open boundary conditions (OBC) by a simple
redefinition of the fermion operators. This, however, depends
on the boundary conditions and is no longer possible if we
couple the two components by means of a resonant laser or
microwave field. If we assume the particles to be trapped in a
steep box-shaped trap such that the boundaries of the systems
are well defined, we may couple the boundaries [51] through
spin-flip terms:

H SD
eff − �(c†0,1c0,0 + c

†
L,1cL,0 + H.c.). (12)

For low densities we may now interpret the system as an
anyon model with single-component particles in 2L sites and
with PBC. Most importantly, two effective single-component
particles pick up a phase φ when exchanging their position,
i.e., by traveling once around the ring. In the low-density limit
[i.e., if we again may neglect process (iv)] we obtain a model
of, now spinless, hardcore anyons on a synthetic ring:

HAHM = −J
∑

i=0...2L

α
†
i αi+1 + α

†
Lα0 + H.c., (13)

FIG. 3. Scheme of the experimental protocols discussed in the
paper. (a) Interferometer scheme for the PBC anyon model of Sec.
III. (b) Doublon expansion for the 2AHM discussed in Sec. IV.

where we again set J = δJ
2 = �. The anyons αi obey the

hardcore constraint (α†
i )2 ≡ 0 and the deformed exchange

relation

αjα
†
k + e−i2φ sgn(j−k)α

†
kαj = δjk, (14)

αjαk + e−i2φ sgn(j−k)αkαj = 0. (15)

It is important to note that Model (13) is integrable. For
OBC a Jordan-Wigner transformation maps it to the case of
free fermions, and the spectrum, as well as those properties
that depend on the density, are unaffected by the phase φ (see,
e.g., Ref. [30] and references therein for a detailed discussion
on the Jordan-Wigner transformation in OBC and PBC). The
quasimomentum distribution and the single-particle density
matrix certainly exhibit a strong dependence on the statistics.
However, an experiment will only measure the fermionic
momentum distribution (since only local hoppings in the model
are affected). This changes, however, for PBC. Certainly, the
model is still integrable, but a mapping to free fermions leads
to a density-dependent boundary term,

HAHM = −J
∑

i

c
†
i ci+1 + eiφ

∑
0<j<L−1 nj c

†
Lc0 + H.c. (16)

We will show in the following how this effective boundary term
will affect the real-space density during the time evolution after
a quantum quench.

III. DYNAMICAL PROBING OF THE
EXCHANGE STATISTICS

The experimental setup described above allows for the
engineering of 1D anyons with an arbitrary statistical angle
0 � φ � π/2. In the following, we propose an interferometer
scheme that reveals the anyonic character by means of an
expansion experiment in a small lattice system. The general
idea is sketched in Fig. 3(a). Initially, a spin-polarized cloud
of two or more particles is prepared in the center of the lattice.
For concreteness we first consider exactly two (spin↑) particles
tightly confined to the two adjacent central sites. After that, we
discuss the case of a larger cloud with fixed average particle
number.

A. Two-particle interference

In Fig. 4 we show the evolution of the density of two
particles for different statistical angles φ = 0, π/4, and π/2.
The upper panels of Fig. 4 show the evolution of the density
of the spin-↑ component n0 and in the lower panels the spin-↓
component n1. Although the particle expansion is diffusive
and we cannot monitor the position of single particles, one
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FIG. 4. Time evolution of the local density for (a) and (b) fermions
(φ = 0), (c) and (d) φ = π/2 anyons, and (e) and (f) hardcore bosons
(φ = π/2). Panels (a), (c), and (e) show the ↑ component (i.e., sites
0 . . . 5 of the PBC ring system), and panels (b), (d), and (f) the ↓
component (sites 6 . . . 11).

may observe the emergence of an interference pattern at the
center of the system after particles have in average traveled
once through the whole lattice at τ ≈ JL.

Figure 5 depicts in detail the time evolution of the central
density for both components for φ = 0 (effective fermions)
and φ = π/2 (effective hardcore bosons). For τ/J � L/2 the
curves noticeably depend on the statistical angle. In particular,
close to the classical point of return τ ≈ JL the density
n0(L/2) shows a strong dependence on the statistical angle.
The inset of Fig. 5(a) depicts this central spin ↑ density n0 for
τ/J = L + 1, where we observe a distinct peak for fermions
and a local minimum for the bosonic case (dashed line in
Fig. 5).

Figure 5 also compares the evolution of the full three-color
modulation Model (1) and the effective PBC AHM (13). Due
to higher-order terms the two corresponding curves separate
during the time evolution; however, for the given parameters
the time evolution of Model (1) recovers very well the hardcore
anyon model over the full range of τ/J � 2L shown in Fig. 5.

While Model (13) is integrable as discussed above, for
the real-time evolution of the interacting two-component
three-color modulated Fermi-Hubbard model we employ exact
diagonalization techniques in combination with a higher-order
Runge-Kutta method.

B. Fixed average particle density

Experiments with single-site resolution [52–55] may allow
for the controlled initial preparation of a two-particle state
and the subsequent observation of the time evolution of the
(possibly spin-resolved) density [56] corresponding to Fig. 5.
In the following we relax these conditions and analyze the
possibility of an interferometrical measurement with a larger
cloud with fixed average density. Initially we again assume a
fully polarized sample with all particles prepared in a tight
trap and ensemble average over several realizations of the
setting with fluctuating total particle densities with average
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FIG. 5. Time evolution of the central density for the (a) spin ↑
component n0 and the (b) spin ↓ component n1 for the effective hard-
core anyon model for fermions (φ = 0, dashed lines) and hardcore
bosons (φ = π/2, solid lines). The dotted lines depict a comparison
with the full three-color modulation model with �/J0 = 40, U/J0 =
20 (real-space length L = 12 sites, two particles, δJ = 0.5J0). The
inset of (a) shows the density n0(x = L/2) for τ/J = L + 1 of
the effective model (solid line) and the full three-color modulation
simulation (symbols) as a function of the statistical angle φ.

density navg. [For concreteness we choose an ensemble with
ρ(n) ≈ e−(n−navg)2

).]
A measurement of the total spin polarization,

�n =
∑

x

〈n0(x) − n1(x)〉 , (17)

may be used as a indicator of the anyonic exchange statistics.
As the particles travel to the other half of the chain, they start to
interfere and differences in the average populations of the two
components may be measured. After long enough waiting time
this difference may be quite pronounced. In Fig. 6 we show the

Δ
 n

φ / π

navg=1/2
navg=1/2
navg=2/3

-2

 0

 2

 4

 0  0.1  0.2  0.3  0.4  0.5

FIG. 6. Spin polarization as a function of the statistical angle φ

for various average fillings navg.
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ensemble-averaged value of �n after a fixed time τ/J = 2L

as a function of the statistical angle φ for different values of
navg. The curves are not a monotonous function of the phase φ

and depend on navg; however, they exhibit a strong dependence
on the statistics of the particles.

IV. DYNAMICAL PROBING OF PAIRING IN THE 2AHM

We now return to the 2AHM (8) introduced in Ref. [48].
We discuss how an expansion experiment may reveal the
unconventional pairing properties of the 2AHM in the (pseudo)
boson limit. For the case of a pseudoanyon Hubbard model
(single-component, softcore anyons), similar ideas have been
discussed in Ref. [36].

A. Bound pairs in the 2AHM

Contrary to the hardcore AHM, the phase diagram of Model
(8) depends strongly on the statistical angle φ. Indeed, as a
function of φ and the filling, a plethora of ground-state phases
may be found. This includes the emergence of the PP phase and
a paired (singlet superconducting, SS) phase even for vanishing
interactions Ũ = 0 (see Ref. [48]). A detailed analysis of the
full ground-state phase diagram of model (8) as a function of
the phase φ will be published elsewhere.

Both PP and SS phases can be understood from the un-
conventional emergence of paired states in the spectrum of
the model. Following the analysis of Ref. [48] and similar
calculations for the softcore AHM [44], one observes that
for a finite φ > 0 bound states may form in the two-particle
spectrum even for vanishing on-site interactions Ũ = 0. For
the 2AHM with a vanishing on-site interaction term Ũ = 0,
we find two-body bound states with a dispersion relation

EK = ±2
√

2J
cos(K) cos(2φ) + 1√

cos(K)[2 cos(2φ) − 1] + 1
. (18)

Here K is the total momentum of the two-particle solution and
π/2 < K < 3π/3. For φ > π/3 the bound-state spectrum EK

has a local minimum at π . As discussed in Ref. [48], due to
a quasicondensation of bound pairs in this point PP and SS
phases can form as the fractional statistics also induces an
effective interaction between the anyons. Several examples of
the two-particle spectrum are shown in Fig. 7.

B. Expansion dynamics

The formation of unconventional bound states resulting
from the anyonic exchange statistics may be revealed by the
characteristic expansion of a cloud of particles (now with
balanced spin and OBC) into an empty lattice [Fig. 3(b)].
We consider the particles initially with opposite spin on two
adjacent sites in the center of an empty lattice. In Fig. 8 we show
the time evolution of the real-space density n0(x) + n1(x),
and in Fig. 9 the spin n0(x) − n1(x) for several values of φ.
All examples show a light-cone-like ballistic expansion of the
density with constant velocity independent of the statistical
angle φ, corresponding to single unbound particles moving
into the empty lattice. Contrary to the case of softcore anyons
[36], the light cone is symmetric for all φ.

As soon as bound states can be found in the two-particle
spectrum for a finite φ > 0 we observe a second light cone,

-4

-2

 0

 0  0.5  1  1.5  2

E
(K

) /
 J

K / π

FIG. 7. Unconventional bound states in the two-particle spectrum
of model (8) (vanishing on-site interactions Ũ = 0) as a function
of the total momentum of two particles K . Dashed lines depict the
two-particle scattering continuum. Solid lines show the bound states
for (from top to bottom) φ/π = 0.1, 0.2, 0.3, 0.4, and 0.5.

most evident in Fig. 8(b). As this feature is absent in the spin-
density picture (see Fig. 9), we conclude that it corresponds
to bound pairs of particles. The pairs exhibit a larger effective
mass due to the flatness of the bound-state band (see Fig. 7) and
hence the second inner light cone is much steeper. Interestingly,
for our choice of initial state, the expansion of the bound-state
fraction almost stops for φ = π/2 [Fig. 7(c)].

To further quantify this expansion dynamics we monitor the
evolution of the average expansion of the cloud,

�j (τ ) =
√

〈nj (j − L/2)2〉(τ ) , (19)

which after some initial time becomes of the form�j (τ ) ≈ γ τ .
This expansion rate γ is shown in Fig. 8(d) and depends
monotonously on the statistical angle φ. As expected, for free
fermions (φ = 0, U = 0) we find γ = √

2. For finite statistical
angles the expansion rate is reduced due to the enhanced
tendency to form bound pairs.
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FIG. 8. Expansion dynamics of the total density n0 + n1(x) of
the 2AHM with (a) φ = 0, (b) φ = 0.4π , and (c) φ = π/2 (Ũ = 0,
L = 60 sites) initially prepared as a fully localized state (two particles)
on the two adjacent central sites [compare Fig. 3(b)]. Panel (d) depicts
the calculated expansion rate γ /J as a function of the statistical angle
φ (see text).
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FIG. 9. Expansion dynamics of the spin density |n0 − n1|(x) of
the 2AHM. The parameters are the same as in Fig. 8.

V. CONCLUSION AND OUTLOOK

In summary, we have proposed a versatile experimental
scheme to engineer different types of anyon Hubbard models
extending the work of Ref. [48]. By means of fast periodic
drivings (lattice shaking or lattice-depth modulation) of a
two-component Fermi gas in a tilted lattice a 2AHM may be
engineered whose spectrum exhibits a nontrivial dependence
on the statistical phase. Expansion experiments employed
for the 2AHM may reveal properties of the unconventional
quantum phases of the model. In particular, a clear tendency
of forming bound pairs may be observed in the pseudoboson
limit, revealing the underlying mechanism of the formation of
the PP phase.

For a spin-dependent tilting the same scheme realizes a
model in which for OBC the effect of the phase may be
gauged out and, hence, has no influence on the dynamics or
statics of the model if one focuses on observables such as
local densities. The situation changes drastically if one allows

for Raman-assisted spin flips at the system boundaries. This
scenario may be mapped to a single-component hardcore anyon
model in a synthetic ring. We have shown how fractional
quantum statistics may be monitored by means of a simple
interferometer scheme. The density of a cloud of expanding
particles and the total spin polarization may be used to clearly
reveal the exchange statistics.

The implementation of PBC in cold atom scenarios itself has
attracted considerable interest, since PBC allows, for example,
for the observation of intriguing topological phenomena such
as the Aharonov-Bohm effect or the study of persistent currents
[57]. Experimentally ring-shaped traps [58–61] have been
realized and recently the implementation of PBC and further
complex geometries using synthetic dimensions [51,62] or
Laguerre-Gauss beams [63] has been proposed. In this context,
further interesting experimental possibilities of our proposal
for the realization of PBC could include an additional phase
factor φ1 to the modulations, which would allow one to
create a ring model penetrated by a finite flux. One may
now employ this setting to analyze properties of persistent
currents as a function of, for example, interactions, particle
statistics, and temperature and study variations of the Drude
weight.

It is important to note that our proposal is not limited to 1D
lattices, although only for this case the interpretation in terms
of an anyon model is valid. By adding an extended lattice in
a second real-space direction one may create a 2D or cylin-
derlike system with unconventional correlated hoppings and
fluxes.
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