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Identification and understanding of the evolution of interference patterns in two-particle momentum correlations
as a function of the strength of interatomic interactions are important in explorations of the nature of quantum
states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect
of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas
into potential control and utilization of correlated quantum states as quantum-information resources. With the
use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian,
and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference
patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in
a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed
bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited
states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon
indistinguishability testing and quantum-information science.
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I. INTRODUCTION

The rapid experimental progress in the field of ultracold
atoms is enabling measurements with unprecedented preci-
sion of fundamental many-body quantities such as higher-
order correlations [1–7], especially higher-order momentum
correlations for interacting [4,5,7] ultracold atoms in linear
traps. The study of these correlations, with the full ability
of tuning the interparticle interactions (utilizing the Feshbach
resonance technique) and under pristine environmental con-
ditions, promises to deepen our understanding and potential
technological control of quantum-information processes [8]
and physical phenomena, such as entanglement [9] and genera-
tion of exotic many-body regimes (e.g., Tonks-Girardeau states
[10]). However, in spite of the recent burgeoning experimental
activities aimed at measuring higher-order momentum corre-
lations [4–7], corresponding theoretical investigations are still
lacking in many respects, apart from a couple of studies [4,11].

In this paper, we study the systematic evolution of the
properties and interference patterns of second-order (two-
particle) momentum correlations of two interacting (both
distinguishable and indistinguishable) ultracold fermions in a
double-well optical trap. To provide a complete picture, we go
beyond the case of the ground singlet and first-excited triplet
states and investigate in addition the cases of the second- and
third-excited states, both singlets. (This quartet of states can
be mapped to a two-site Hubbard model; see below.)

Elucidating the second-order momentum correlations as-
sociated with double-well trapping of two ultracold atoms
(without [6] or with [7] interactions) is currently attracting
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pioneering experimental interest, both planned [6] and prepara-
torily achieved [7]. These experimental efforts are motivated
by the unprecedented tunability of (i) the confining external
optical potential and the dynamical imprinting of a relative
phase difference between the two wells [6], and (ii) the two-
body contact interaction via a combination of Feshbach and
confinement-induced resonances [12,13].

The double-well two-particle unit [13,14] is expected to
be a central component for building more complex quantum-
computer and quantum-information architectures, and de-
tailed knowledge of the associated second-order momentum
correlations is emerging as an indispensable tool towards
implementation of these endeavors [6,7]. In this context, recent
work [3,6] investigates the double-well atomic dimers, treating
them as purely photonic analogs (i.e., omitting or minimizing
the role of interparticle interaction). The interparticle inter-
action, however, is an essential factor in particle assemblies
and the desirability of a full understanding of its effects
can hardly be overestimated. The seminal optical Hong-Ou-
Mandel (HOM) second-order-interference experiment [15,16],
widely exploited in photon indistinguishability testing and
quantum-information science, spawned extensions of such in-
terference phenomena to electrons [17,18] and bosonic atoms
[3,19]. Here we further interpret our correlation results for
ultracold fermions in light of the HOM physics.

The much-sought-after deeper understanding of the double-
well fermionic dimer is achieved below through employment of
an exact configuration-interaction (CI) method for solving the
two-body problem, in conjunction with a modified Hubbard-
type analytic modeling that allows a synoptic interpretation
of the properties and interference patterns of the microscopic,
numerically CI-derived, two-particle momentum correlations.

The paper is organized as follows. In Sec. II, essential
definitions and theoretical details are given. Section III displays
a detailed analysis pertaining mainly to interatomic interaction
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effects on the CI-calculated and Hubbard-type-modeled pat-
terns for the second-order (two-body) spatial and momen-
tum correlation distribution maps obtained for the ground
state of two fermionic atoms trapped in a double well. Mi-
croscopic (CI) and Hubbard-like analysis of second-order
correlation maps for the excited states is given in Sec. IV.
Section V links our microscopically calculated and analytically
(Hubbard-type) derived momentum correlation results with the
Hong-Ou-Mandel interference physics, uncovering quantum-
statistics-governed (spatial symmetry of the two-particle wave
function) and interaction-dependent bunching and antibunch-
ing behavior, as well as other interference patterns, in the
ground and excited states. We summarize our results in
Sec. VI. The appendices give details of the derivation of
analytic Hubbard-type two-particle interference formulas (Ap-
pendix A), the methodology of extraction of Hubbard-model
parameters from the CI calculations (Appendix B), and further
illustrations of Hubbard-model-derived two-particle momen-
tum correlation maps (Appendix C). Appendix D displays the
derivation and analytical expressions for the two-body density
matrices for the ground and excited states corresponding
to the Hubbard-type model described in Appendix A, and
relates these to the second-order momentum correlation maps
discussed in the paper.

II. THEORY ESSENTIALS

To implement the microscopic CI method, we start by
considering the two-dimensional (2D) Hamiltonian of two
interacting ultracold fermions,

HMB = H (1) + H (2) + V (r1,r2), (1)

where H (i) represents the single-particle part of the many-
body Hamiltonian and V (r1,r2) represents the interaction term,
with ri ≡ (xi,yi), i = 1,2, being the space coordinates of the
first and second particle. The single-particle part H (i) of the
Hamiltonian contains the kinetic-energy term and a single-
particle external confining potential; in this paper, we consider
a double-well confinement.

The double-well external confining potential has been
extensively described in Refs. [14,20]. The relevant potential
parameters are the interwell separation 2d = d2 − d1 (d1 < d2)
along the x direction, and the value of the dimensionless
parameter εb (determining the interwell barrier height Vb) is
taken to be 0.5 throughout the paper. Each of the parabolic
confining wells is characterized by two harmonic frequencies,
ωx (along the x axis of the well) and ωy (along the y

direction), resulting in a (quasi-one-dimensional) needlelike
shape confinement when ωx << ωy . In our calculations here,
we consider two different sets of values, i.e., ωx = 2π × 8,
ωy = 2π × 800 kHz and ωx = 2π × 15, ωy = 2π × 1500
kHz, both having the same aspect ratio ωx/ωy ; hereafter we
drop, for convenience, the subscript x and use ω = ωx .

The short-range interatomic interaction term is given by

V (r1,r2) = g

σ 2π
e−(r1−r2)2/σ 2

. (2)

In this paper, we use σ = 0.01 μm, yielding a ratio σ/l0 ∼
0.03 for the case of ω = 2π × 8 kHz and σ/l0 ∼ 0.022 for
the case of ω = 2π × 15 kHz; l0 is the oscillator length l2

0 =

h̄/(M6Liω), with M6Li = 10964.90me being the mass of 6Li;
a pair of states out of the three lowest 6Li hyperfine states
corresponds to two different spin states [12]. The factors σ/l0
are motivated by the need to model short-range, contact-type
interactions. Any Gaussian width σ that is sufficiently smaller
than the harmonic-oscillator length l0 along the x direction is
suitable and yields essentially identical final results. Here we
consider both mutually repelling (g > 0) and attractive (g < 0)
particles and the tunable values of the interaction strength g

will be given in units of h̄ωl2
0 .

Because for N = 2 fermions the spin variables separate
from the space variables [21], the CI wave function has the
product form �

S,Sz

CI (r1,r2)χ (S,Sz), where S and Sz denote
the total spin and its projection. As a result, for N = 2, the
spin-resolved and spin-unresolved two-body correlations are
the same [11], apart from an overall factor. Then the two-body
space correlation is defined by [11]

PS,Sz

CI (r1,r′
1,r2,r′

2) = �
S,Sz†
CI (r1,r′

1)�S,Sz

CI (r2,r′
2), (3)

while the two-body momentum correlation is given by the
Fourier transform,

GS,Sz

CI (k1,k2) = 1

4π2

∫ ∞

−∞
e−ik1·(r1−r′

1)
∫ ∞

−∞
e−ik2·(r2−r′

2)

× PS,Sz

CI (r1,r′
1,r2,r′

2)dr1dr′
1dr2dr′

2.

(4)

III. ANALYSIS OF THE GROUND STATE

In Fig. 1, we plot the CI two-body correlations for two
repelling fermions in their singlet (S = 0,Sz = 0) ground
state as a function of the interaction strength g (in units of
h̄ωl2

0 ); the interwell separation is 2d = 2 μm. The values
of g are also expressed as the ratio U/t between the on-
site repulsion (U ) and the intersite hopping parameter (t)
associated with the two-site Hubbard model (whose parameters
have been extracted from the microscopic CI calculation; see
Appendix B). Two different confining harmonic potentials
have been considered with energy spacings ω = 2π × 8 kHz
(top row) and ω = 2π × 15 kHz (bottom row). In all cases in
this work, we show two-particle spatial correlation maps for
y1 = y2 = 0 and two-particle momentum correlation maps for
k

y

1 = k
y

2 = 0; we verified that similar results are obtained for
other y1 = y2 = const and k

y

1 = k
y

2 = const values. Note that
we drop, for convenience, the superscript x and use ki = kx

i ,
where i = 1,2 denotes the index numbering the two particles.

The spatial correlations for the above-noted two confining-
potential energy spacings [Figs. 1(a), 1(c) 1(e), 1(g) and
Figs. 1(i), 1(k) 1(m), 1(o), respectively] exhibit similar be-
havior as g (or U/t) increases, transforming from a four-hump
pattern in a square formation to a two-hump one along the x1 +
x2 = 0 diagonal (referred to here as “antidiagonal”). Naturally,
in the noninteracting limit [g ∼ 0, U/t ∼ 0; Figs. 1(a) and
1(i)], the two humps located along the x1 − x2 = 0 diagonal
(referred to here as “main diagonal”) are due to the double
occupancy (involving both the ↑ and ↓ spins) of the lowest
symmetric single-particle orbital of the double well, which
in the Hubbard modeling translates into double occupancy of
each site. As g increases, the double-occupancy humps along
the main diagonal progressively shrink, and they eventually
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FIG. 1. Ground-state CI-calculated spatial and momentum correlation maps for two fermions in a double well, as a function of the two-body
interaction strength g. The interwell distance is 2d = 2 μm; in the real-space correlation maps we take the origin midway between the two
wells, with the wells located one at d1 = −d and the other at d2 = d > 0 (in particular, here d = 1 μm). The results in the upper and lower rows
correspond to two different choices of the confining harmonic frequencies along the interwell direction (x) and in the transverse one (y). The top
row shows results for ωx = 2π × 8 kHz and the bottom row shows results for ωx = 2π × 15 kHz; for both cases, ωx/ωy = 1/100. The results
in (a),(b) and (i),(j) are for an interaction strength g = 5.5 × 10−6 [in units of h̄ωl2

0 ; see text after Eq. (2)], corresponding to a Hubbard parameter
U/t = 0 (that is, noninteracting particles); those in (c),(d) and (k),(l) are for g = 3.1 × 10−2 and g = 1.2 × 10−3, respectively, corresponding
to U/t = 2; the ones in (e),(f) and (m),(n) are for g = 1.3 × 10−1 and g = 4.8 × 10−3, respectively, corresponding to U/t = 8; and in (g),(h)
and (o),(p), they are for g = 3.1 × 10−1 and g = 1.2 × 10−2, respectively, corresponding to U/t = 20. Because of the quasilinear nature of the
system, here and for all 2D CI-derived correlations, the maps are drawn for y1 = y2 = 0 for the spatial correlations and for k

y

1 = k
y

2 = 0 for the
momentum correlations. Note that we drop, for convenience, the superscript x and use ki = kx

i , where i = 1,2 denotes the index numbering the
two particles. This yields the plotted correlation maps for the position (x1,x2) and momentum (k1,k2) variables along the x direction connecting
the two wells. The color scale, corresponding to the values in the correlation maps, is given by the vertical bar to the right of each of the frames.

vanish in the strong-repulsion regime [see case for U/t = 20
in Figs. 1(g) and 1(o)].

The evolution of the two-body momentum correlations
[Figs. 1(b), 1(d) 1(f), 1(h) and Figs. 1(j), 1(l) 1(n), 1(p)] is
more complex. At the noninteracting limit [Figs. 1(b) and 1(j)],
a plaid pattern of circular humps is evident. As a function
of increasing g, the plaid pattern distorts and transforms into
interference fringes exhibiting elongated maxima along and
parallel to the main diagonal (k1 − k2 = 0); the associated
valleys (minima) of this pattern appear along the antidiagonal
(k1 + k2 = 0). This interference pattern is well developed for
U/t = 20 for which the residues of the U = 0 circular humps
only minimally distort the parallel fringes. We checked that the
U = 0 circular humps do not survive for larger values of g (or
U/t).

Furthermore, there is a prominent qualitative difference be-
tween the top-row (ω = 2π × 8 kHz confinement) and bottom-
row (ω = 2π × 15 kHz confinement) momentum maps. In-
deed, for ω = 2π × 15 kHz (bottom row), there are more
individual features (humps or fringes) compared to the case
of ω = 2π × 8 kHz (top row). In particular, we note for the
independent particle case that there are nine visible humps
in Fig. 1(j) compared to four humps in Fig. 1(b), with the
additional maxima in Fig. 1(j) revealing for U = 0 enhanced
correlations between particles with equal momenta, regardless
of their signs. Similarly, for U/t = 20, we find five visible
fringes in Fig. 1(p) compared to three in Fig. 1(h), with
the added fringes in Fig. 1(p) revealing correlations between
particles having the same, but of opposite sign, momenta.

To gain insights about the systematics in the evolution of
the momentum maps, we model the fermion single-particle
space orbitals as displaced Gaussian functions centered at each
well. Taking account of the spin, the ensuing Gaussian-type

spin orbitals are used to form Slater determinants according
to the spin eigenfunctions of the corresponding two-site Hub-
bard model (with parameters U and t extracted from the CI
calculations; see Appendix B). This procedure endows the
Hubbard-model eigenvector solutions with the (otherwise ab-
sent) spatial degrees of freedom; see Appendix A. Considering
the strictly one-dimensional case along the x axis and applying
the definition in Eq. (4) to these modified Hubbard-model
solutions, one obtains, for the two-body momentum correlation
of the singlet ground state,

GS=0,Sz=0
Hub,gs (k1,k2) ∝ 2s2e−2s2(k2

1+k2
2 )

π [UQ(U ) + 16]

× {[UQ(U ) + 8] cos[2d(k1 − k2)] + 8 cos[2d(k1 + k2)]

+ 4Q(U ) cos(2dk1) + 4Q(U ) cos(2dk2) + UQ(U ) + 16},
(5)

where U = U/t , Q(U ) = √
U2 + 16 + U , s is the width of the

Gaussian orbital, and 2d is the interwell distance. Equation (5)
is valid for both negative (U � 0, attractive) and positive (U >

0, repulsive) values; similarly, the expressions in Eqs. (6)–(8)
below are valid in the whole range −∞ < U < +∞. Note
that Q(−U ) = P(U ) ≡ √

U2 + 16 − U and that UP(U ) → 8
when U → ∞.

In Eq. (5), four specific cos terms contribute, displaying
oscillations along the main diagonal (k1 − k2), the antidiagonal
(k1 + k2), and the two axes (k1 and k2). These four terms
are supplemented with a constant fifth, circularly symmetric
contribution. Each of these terms is damped by an exponential
prefactor e−2s2(k2

1+k2
2 ), whose range (1/2s2) depends on the

width s of the displaced Gaussian orbitals. This fact accounts
for the different number of visible individual features (circular
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humps or fringes) in the CI momentum maps between the
top and bottom row of Fig. 1. Indeed, a narrower confining
potential (i.e., the one with ω = 2π × 15 kHz) results in a
smaller spatial extent of the associated single-particle states
compared to a wider confining potential (i.e., the one with
ω = 2π × 8 kHz); the oscillator length (and thus s) is inversely
proportional to

√
ω, leading to a damping range 1/2s2 ∝ ω/2.

The evolution of the analytic weights for the Hubbard
ground state [coefficients in front of the four cos terms plus
the constant term in Eq. (5) without the overall common factor
2s2e−2s2(k2

1+k2
2 )/π ] is plotted as a function of U/t in Fig. 2(a);

the spectra for the ground and three lowest excited states are
displayed in Fig. 2(e). The variation of these weights provides
a direct interpretation of the evolution of the CI momentum
maps in Fig. 1. In fact, for noninteracting fermions (g ∼ 0 or
U = 0), all five terms contribute in a substantial way in the
sum of Eq. (5), and this leads to the plaid pattern in Figs. 1(b)
and 1(j). For strong g (or high U/t), only two contributions
survive, i.e., the constant and the cos[2d(k1 − k2)] terms with
equal weights. The corresponding Hubbard momentum map
(for U/t = 8) plotted in Fig. 2(c) [see lower, green star in
Fig. 2(e)] is found to agree with the pattern and orientation
of the fringes observed in the CI-calculated maps in Figs. 1(f)
and 1(n). The analytic parameter s in Fig. 2(c) was adjusted to
correspond to a potential well with a steeper confinement (i.e.,
ω = 2π × 15 kHz); in this case, there are five visible fringes in
Fig. 2(c) precisely as in the CI case in Fig. 1(n). Note that in the
strong-interaction case, the two-term 1 + cos[2d(k1 − k2)] =
2 cos2[d(k1 − k2)] pattern can be reproduced also using [11] a
Heisenberg-Hamiltonian modeling.

IV. ANALYSIS OF EXCITED STATES

CI momentum maps for the first three excited states are
displayed in Fig. 3. For the first- (triplet) and second- (singlet)
excited states [see the the yellow and blue stars in Fig. 3(a)],
the momentum correlation maps are independent of the in-
terparticle interaction (because of the wave-function nodal
structure for these excited states), and thus we display for
these states the results for a single value of the interaction
(U/t = 8); see Figs. 3(b) and 3(c), respectively. Indeed, the
analytic expressions of the corresponding two-site Hubbard
model contain only a single sinusoidal term, independent of
the parameter U/t , namely,

GS=1,Sz=0
Hub,1stex (k1,k2) ∝ 4s2e−2s2(k2

1+k2
2 ) sin2[d(k1 − k2)]

π
, (6)

and

GS=0,Sz=0
Hub,2ndex(k1,k2) ∝ 4s2e−2s2(k2

1+k2
2 ) sin2[d(k1 + k2)]

π
. (7)

We have checked that Eq. (6) applies to the other two S = 1,
Sz = ±1 triplet states as well.

In Fig. 3(b) (first CI excited state), the valley of vanishing
values lies along the main diagonal (antibunching behavior),
a fact that reflects the Pauli exchange principle which comes
into play for a triplet state (S = 1, antisymmetric space wave
function). We further note that in Fig. 3(c) (second CI excited
state), the orientation of the fringes is perpendicular to that
in Fig. 3(b), a behavior that reflects the sin2[d(k1 + k2)]
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FIG. 2. Plots of analytic weights of the (a) ground and (b) third-
excited states [both singlets; see Eqs. (5) and (8)] of the various
contributing terms in the two-body momentum correlations as a
function of the strength of the Hubbard interaction parameter U/t .
The contributions to the various terms in Eqs. (5) and (8) are identified
by different colors, as indicated on the right in (a) and (b). (c),(d) The
Hubbard momentum maps at U/t = 8 for the ground (green star)
and third-excited (red star) states. (e) The energy spectrum (solid
lines) of the two-site Hubbard model covering both the attractive
(U/t < 0) and repulsive (U/t > 0) ranges. The symbols Bj , j =
1, . . . ,4, denote the four Bell states at U/t → ±∞. The red dots
are the corresponding microscopic CI energies. The Hubbard model
in (c)–(e) corresponds to the CI calculation with 2d = 2 μm and
ω = 2π × 15 kHz. Hubbard-model analytic two-particle spatial and
momentum correlation maps for the ground state and the three lowest
excited states for the repulsive (U/t = 8) and attractive (U/t = −8)
cases are shown in Figs. 6–8. Note the reversal of the energy ordering
of the Bell states for the Hubbard U/t → −∞ and U/t → +∞
limits.

oscillatory pattern in Eq. (7) (associated with the B3, S = 0
symmetric-in-space Bell state) versus the sin2[d(k1 − k2)] one
in Eq. (6).

Figures 3(d)–3(f) describe the evolution with increasing
repulsion of the CI momentum maps for the third-excited state
[orange stars on the upper curve in Fig. 3(a)]. This evolution
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FIG. 3. CI momentum correlation maps for two fermions in a dou-
ble well associated with the first three excited states, denoted by stars
colored as follows: (b) yellow (U/t = 8, g = 4.8 × 10−3 in units of
h̄ωl2

0 ), (c) blue (U/t = 8, g = 4.8 × 10−3), (d) orange (U/t = 0, g =
5.5 × 10−6), (e) orange (U/t = 8, g = 4.8 × 10−3), and (f) orange
(U/t = 20, g = 1.2 × 10−2), respectively. The interwell distance is
2d = 2 μm and the steeper potential confinement (ω = 2π × 15
kHz) is used. The energy spectrum of the corresponding two-site
Hubbard model is plotted in (a). The stars in (a) indicate the specific
values of U/t (corresponding to particular g’s) for which the CI
momentum maps for the (b) first-excited, (c) second-excited, and
(d)–(f) third-excited states were calculated. The red dots or triangles
in (a) are the corresponding microscopic CI energies.

can be interpreted by considering the corresponding analytic
two-site Hubbard momentum correlation,

GS=0,Sz=0
Hub,3rdex (k1,k2) ∝ 2s2e−2s2(k2

1+k2
2 )

π [16 − UP(U )]

× {[8 − UP(U )] cos[2d(k1 − k2)] + 8 cos[2d(k1 + k2)]

− 4P(U ) cos(2dk1) − 4P(U ) cos(2dk2) + 16 − UP(U )},
(8)

where, as mentioned before, P(U ) = √
U2 + 16 − U .

The analytic weights of the five contributing terms in
Eq. (8) as a function of U/t are plotted in Fig. 2(b). [As
mentioned before, UP(U ) → 8 when U → ∞.] For the non-
interacting limit (U = 0), all five terms contribute and yield
a plaid pattern [see Fig. 3(d)], as was also the case for the
singlet ground state. For very strong interactions, only the
two contributions 1 + cos[2d(k1 + k2)] = 2 cos2[d(k1 + k2)]
survive; see Fig. 3(f) corresponding to U/t = 20. For an
intermediate U/t = 8, Eq. (8) is plotted in Fig. 2(d) [see
upper, red star in Fig. 2(e)], exhibiting fringes with a dominant
1 + cos[2d(k1 + k2)] behavior, which is, however, distorted
by residual humps due to the other three weaker terms. The
Hubbard pattern in Fig. 2(d) agrees very well with the CI

0-10 10
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Hub. model 2nd ex.
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FIG. 4. The probability P11, that is, the so-called coinci-
dence probability—commonly measured in HOM and HOM-like
experiments—for finding a particle in one of the wells and another
particle in the other well, calculated here as a function of the Hubbard
interparticle interaction strength parameter U = U/t . Results are
shown for two particles in a double-well trap, with an interwell
distance 2d = 2 μm. Results are shown for attractive (U < 0) and
repulsive (U > 0) interactions, for both the ground state (gs) and
three lowest excited (ex.) states. The red dots on the blue (short
dashes) curve display the corresponding microscopic (CI) results for
the ground state.

momentum map in Fig. 3(e); for additional two-particle spatial
and momentum correlation maps according to the Hubbard
model, see Figs. 6–8.

V. ENTANGLEMENT ASPECTS AND CONNECTION TO
THE HONG-OU-MANDEL INTERFERENCE PHYSICS

The Hubbard-model eigenstates (see details in Ap-
pendix D 1) are a superposition of the four maximally en-
tangled Bell states B1 = (|LR〉 − |RL〉)/√2, B2 = (|LR〉 +
|RL〉)/√2, B3 = (|LL〉 − |RR〉)/√2, and B4 = (|LL〉 +
|RR〉)/√2, where |L〉 and |R〉 are, respectively, the single-
particle states (including spin) in the left or right well; the
superposition coefficients depend on the parameter U . This is
illustrated in Fig. 2(e), where the corresponding Bell states at
U → ±∞ are explicitly denoted. The first- and second-excited
states are the pure Bell states B2 and B3, respectively, for
any U . The Hong-Ou-Mandel [15] interference phenomena
are related to the coincidence probability P11 of having two
particles in the B3 (spin-up and spin-down fermions mim-
icking indistinguishable bosons [3,19], P11 = 0) or B2 state
(indistinguishable fermions [17,18], P11 = 1 due to the Pauli
exclusion principle); see Fig. 4. The state B4, being also an
entangled NOON state [22], can provide a further analogy to
the bosonic HOM effect. Finally, the state B1 can also be related
to the fermionic HOM effect; however, in the context of the
ground state of the Hubbard dimer, this state is associated with
the process of fermionization [12,23] due to large interatomic
repulsion, rather than with a quantum-statistics effect.

In our treatment, P11 can be related to the second-order spa-
tial and momentum correlations through the diagonal elements
of the two-particle density matrix ρijkl which decomposes the
second-order correlation maps to left-right (L,R) components.
From the momentum correlation maps and using the Hubbard
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modeling for simplicity, one has

GHub(k1,k2) =
∑

i,j,k,l=L,R

η
Hub,2nd
ijkl (k1,k2)

=
∑

i,j,k,l=L,R

ρ
Hub,2nd
ijkl ψi↑ (k1)ψj↓(k2)

×ψ
†
k↑(k1)ψ†

l↓(k2). (9)

The explicit expressions for ρijkl for the four Hubbard states are
given in Appendices D 3–D 6. P11 = ρLRLR + ρRLRL; Fig. 4
displays the dependence of P11 on U .

Additional HOM [and also Handbury-Brown-Twiss
[1,2,24,25] (HBT)] aspects can be evoked based on the role
played by the four Bell states in our approach. Developing cor-
responding experimental protocols that will test, among other
possibilities, the interplay of beam splitters and interaction
effects is beyond the scope of this paper. However, we mention
here two possible paths. The first is the measurement of spatial
noise [26] in the particle counts in the image of the expanding
cloud of the two ultracold atoms; this image reflects in space the
momentum correlation maps. Such measurements along the
main diagonal or antidiagonal of the image will correspond to
the observation of both HOM antibunching and bunching types
with fermions when using the first- or second-excited states,
respectively; see Figs. 3(b) and 3(c). This will follow the spirit
of Refs. [17,18] that address the fermionic case for electrons by
measuring current noise in mesoscopic semiconductors [27].
Away from the two diagonals, the noise measurements may
be associated with oscillatory HBT interference reflecting the
distance 2d between the two wells [1,2,24,25]. Furthermore, if
the left- or right-well provenance of the particles can be deter-
mined, noise measurements associated with the components
ηijkl of the momentum correlation maps [see Eq. (9)] could
be performed, yielding additional pathways for exploration
of particle interference effects. The second path relates to
entanglement aspects by using the density matrix ρijkl in the
spirit of Refs. [6,9].

VI. SUMMARY

In conclusion, with the use of a two-particle density matrix
constructed via configuration-interaction exact diagonalization
of the microscopic Hamiltonian, we have explored the system-
atic evolution of characteristic, damped interference patterns in
the two-particle momentum and spatial correlation maps of two
ultracold fermionic atoms trapped in a double-well potential,
over the entire range of variation of the contact (both repulsive
and attractive) interatomic interaction strength. For the singlet
ground state, the two-body momentum maps were found to
transform from a square-plaid pattern [Figs. 1(b) and 1(j)]
for vanishing interparticle interaction to a system of striped
interference fringes oriented in the direction parallel to the
main diagonal of the square two-particle map [Figs. 1(h) and
1(p)]. The most intense fringe lies along the main diagonal,
indicating bunching. Our theoretical results (Fig. 1, top row)
agree well with the evolution (found with increasing strength)
of preparatory experimentally measured [7] momentum corre-
lation maps [28]. We have also analyzed two-body momentum
correlation maps for low-lying excited states (Figs. 2 and 3).

The triplet-excited state is associated with antibunching [see
Fig. 3(b)]. A derived modified-Hubbard-type effective model,
incorporating spatial degrees of freedom (i.e., interwell dis-
tance and particle localization length) in addition to the
customary on-site U and hopping (t) Hubbard-Hamiltonian
parameters (determined in each case from the CI results),
has been found to reproduce well the microscopic CI results.
Importantly, this development allowed us to uncover analytic
expressions capturing the full evolution of the two-particle mo-
mentum correlation maps over the entire range of interparticle
interactions—from the noninteracting regime (U/t = 0, with
substantial ground-state site-double-occupancy contributions)
to the Mott-insulating regime with large U/t .
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APPENDIX A: DERIVATION OF ANALYTIC
HUBBARD-TYPE INTERFERENCE FORMULAS

FOR TWO PARTICLES

Here we illustrate in detail the derivation of the analytic
interference formulas for N = 2 particles, allowing a rather
immediate generalization to more complex cases with N > 2
particles. For this analytic modeling, we assume that the spatial
part of the orbital of the j th particle is approximated by a
displaced Gaussian function (localized at a position dj ),

ψj (x) = 1

(2π )1/4
√

s
exp

[
− (x − dj )2

4s2

]
, (A1)

where s denotes the width of the Gaussian functions. The
single-particle orbital ψj (k) in the momentum Hilbert space
is given by the Fourier transform of ψj (x), namely, ψj (k) =
(1/

√
2π )

∫ ∞
−∞ ψj (x) exp(ikx)dx. Performing this Fourier

transform, one finds

ψj (k) = 21/4√s

π1/4
exp(−k2s2) exp(idj k). (A2)

In our previous paper [11], we focused on well-localized
particles within each well (neglecting the possibility of double
occupancy in each well), a condition that is satisfied for
strong repulsion. Here we are interested in an analytical model
for all interaction strengths, allowing for double occupancy.
We therefore consider the more general case of the two-
site Hubbard model instead of the Heisenberg model (as
was done in Ref. [11]). The two particles are localized at
two different wells, at positions d1 < 0 and d2 > 0, which
together with the spin yields four possible spin eigenfunctions
|◦,↑↓〉 , |↓,↑〉 , |↑,↓〉, and |↑↓,◦〉. These spin eigenfunctions
form a complete many-body base for the diagonalization of the
fermionic Hubbard Hamiltonian,

H = −
∑

σ

(ĉ†1,σ ĉ2,σ + ĉ
†
2,σ ĉ1,σ ) + U

2∑
i=1

n̂i↑n̂i↓, (A3)
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where σ sums over the up (↑) and down (↓) spins. The
ratio U = U/t , where U and t are the on-site repulsion and
the nearest-neighbor hopping parameters. The energies are
expressed in units of t .

There are many equivalent ways of writing the Hubbard-
model basis in the second-quantization formalism, and
throughout this paper we use the following convention:

b1 = ĉ
†
2↑ĉ

†
2↓|〉 = |RR〉 = |◦,↑↓〉, (A4)

b2 = ĉ
†
1↓ĉ

†
2↑|〉 = |RL〉 = |↓,↑〉, (A5)

b3 = ĉ
†
1↑ĉ

†
2↓|〉 = |LR〉 = |↑,↓〉, (A6)

b4 = ĉ
†
1↑ĉ

†
1↓|〉 = |LL〉 = |↑↓,◦〉. (A7)

In the third column above, the spin of the particle is not
denoted explicitly. In this case, the following mnemonic rule
is helpful: the spin-up particle is always written first inside the
ket |· · ·〉.

For a small number of particles, the Hubbard Hamiltonian
can be exactly diagonalized (for instance, using SNEG [29]). For
Sz = 0, a general solution of the two-site Hubbard Hamiltonian
using the aforementioned second-quantization basis is of the
form

� = a(U )|◦,↑↓〉 + b(U )|↓,↑〉 + c(U )|↑,↓〉 + d(U )|↑↓,◦〉.
(A8)

The coefficients a(U ), . . . ,d(U ) of course satisfy the con-
straint that � is normalized. Naturally, such a Hubbard-model
solution yields the wave function in second-quantization form.
Our modification aims at including the spatial component of
the wave function by associating each basis ket bi , i = 1, . . . ,4,
with a determinant of spin orbitals ψj,σ (x) = ψj (x)σ , where
σ represents the spin. When the spin orbitals are localized
on the left or right well, they will also be denoted as |L〉 or
|R〉, respectively. The corresponding determinants D to each
basis ket are (the tilde indicates the incorporation of the space
orbitals)

|R̃R〉 = D|◦,↑↓〉(x1,x2)

= 1√
2!

[ψ2↑(x1)ψ2↓(x2) − ψ2↑(x2)ψ2↓(x1)], (A9)

|R̃L〉 = D|↓,↑〉(x1,x2)

= 1√
2!

[ψ1↓(x1)ψ2↑(x2) − ψ1↓(x2)ψ2↑(x1)], (A10)

|L̃R〉 = D|↑,↓〉(x1,x2)

= 1√
2!

[ψ1↑(x1)ψ2↓(x2) − ψ1↑(x2)ψ2↓(x1)], (A11)

|L̃L〉 = D|↑↓,◦〉(x1,x2)

= 1√
2!

[ψ1↑(x1)ψ1↓(x2) − ψ1↑(x2)ψ1↓(x1)]. (A12)

We can therefore write the full wave function, including the
space and spin parts, as

�(x1,x2) = a(U )D|◦,↑↓〉(x1,x2) + b(U )D|↓,↑〉(x1,x2)

+ c(U )D|↑,↓〉(x1,x2) + d(U )D|↑↓,◦〉(x1,x2),
(A13)

where the coefficients are, in general, dependent on the inter-
well distance 2d = d2 − d1 (d1 < d2) and the width s.

We can now use the wave function �(x1,x2), together with
the formulas described in the main paper [see Eqs. (3) and (4)
therein], to obtain the two-particle correlation expressions in
real and momentum space [see Eqs. (5)–(8)]. The integrations
associated with the Fourier transforms can be carried out with
the help of the MATHEMATICA algebraic computer language
[30].

APPENDIX B: EXTRACTION OF HUBBARD-MODEL
PARAMETERS FROM THE CI CALCULATION

In order to compare our analytical model with the CI
results, it is important to relate the interparticle interaction
strength g [see Eq. (2)] with the Hubbard parameter U , and
to extract the value of the hopping parameter t from the single-
particle energy spectrum associated with the external confining
potential. Given the single-particle spectrum, the value of t can
be extracted as t = (e2 − e1)/2, where e1 and e2 are the ground
and first-excited single-particle energies, respectively. This
can be directly inferred from the tight-binding limit (setting
U = 0).

In order to determine U from the CI, we first take a close
look at the Hubbard-model energy levels and their properties.
An exact diagonalization of the Hubbard Hamiltonian shows
that the second-excited-state energy E3(U ) is directly propor-
tional to U with E3(U ) = U + 2t + E1(0), where E1(0) is the
noninteracting ground-state energy. For noninteracting (U =
0) particles, the energy of the second-excited state is therefore
simply given as E3(0) = 2t + E1(0). Consequently, one can
extract the parameter U directly from the difference between
the noninteracting and interacting second-excited-state energy,
U = E3(U ) − E3(0). This is a trivial result within the Hubbard
model, but it also applies for our CI calculations.

In order to verify that U can be determined by using the
corresponding energy difference from our CI spectrum, i.e.,
U = ECI

3 (g) − ECI
3 (0), we look at the properties of the second-

excited CI state. In the Hubbard model, the second-excited
state is given as (|LL〉 − |RR〉)/√2, containing only doubly
occupied sites (as we would expect since U represents the
on-site interaction energy). It is easily verified via conditional
probability distributions (CPDs) [14,20,31,32] in which, in
analogy with the Hubbard-model case, the second-excited CI
state consists solely of doubly occupied wells; see Fig. 5. We
therefore proceed to determine U using U = ECI

3 (g) − ECI
3 (0).

Afterwards, we compare the CI and Hubbard energy levels
using values for U obtained from the CI in this way and
find very good agreement between the CI spectrum and the
Hubbard model spectrum [see Figs. 2(e) and 3(a)], validating
our approach for extracting U from the CI calculation.
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FIG. 5. This figure shows spin-resolved conditional probability densities (SR-CPDs) for two particles in the second-excited state in a double
well. We plot the SR-CPD for three different interaction strengths: (a) g = 5.5 10−6h̄ωl2

0 (corresponding to U/t = 0), (b) g = 4.8 10−3h̄ωl2
0

(corresponding to U/t = 8), and (c) g = 1.2 10−2h̄ωl2
0 (corresponding to U/t = 20). The black up-arrow represents the fixed position of the

spin-up particle in the plane of the grid. The red down-arrow indicates that we are calculating the resulting occupation probability (density) for
a spin-down particle; see the plotted red surface. As is apparent from the figure, the red probability surface is directly situated on top of the black
(spin-up) fixed point for all interaction strengths. This indicates strong double occupancy. The second well of the double well at d2 = d = 1 μm
is practically unoccupied. This double occupancy is what allows us to extract the Hubbard on-site interaction parameter U from the energy level
of the second-excited CI state. The parameters for the double wells are ω = ωx = 2π × 15 kHz, ωy = 2π × 1500 kHz, and εb = 0.5 (interwell
barrier Vb/h = 33.5 kHz). The interwell distance is 2d = 2 μm.

APPENDIX C: ADDITIONAL FIGURES PORTRAYING
HUBBARD-MODEL TWO-PARTICLE MOMENTUM

CORRELATION MAPS

In order to further highlight the extent to which our
modified-solutions Hubbard model reproduces the micro-
scopic CI two-particle space and momentum correlations, we
display three additional figures, Figs. 6–8. Both space and
momentum correlation maps in Fig. 6 should be compared
with the corresponding CI ones in the bottom row (steeper
confinement withω = 2π × 15 kHz) of Fig. 1. The momentum
correlation maps in Fig. 7 for the repulsive case with U/t = 8
should be compared with those CI ones in Figs. 3(b), 3(c) and
3(e) [due to the contrast, the outer fringes in Figs. 3(b) and
3(c) are better seen after one enlarges these figure panels]. The
corresponding results for the attractive case with U/t = −8
are shown for completeness in Fig. 8.

APPENDIX D: THE SECOND-ORDER (TWO-BODY)
DENSITY MATRICES DERIVED IN THE HILBERT SPACE
OF THE MODIFIED-SOLUTIONS HUBBARD MODEL AND

THEIR RELATION TO THE CORRELATION MAPS

1. Solution of the two-site two-particle Hubbard model

Here we outline the solution of the two-site Hubbard model
with two spin-1/2 fermions. The Hubbard Hamiltonian in
second quantization is given in Eq. (A3). We remind the
reader that U in Eq. (A3) is the on-site interaction, t is the
tunneling parameter, and n̂iσ is the number operator at site i

for spin σ . For convenience, we repeat our definition of the
Hubbard-model basis functions [see Eqs. (A4)–(A7)]:

b1 = ĉ
†
2↑ĉ

†
2↓|〉 = |RR〉 = |◦,↑↓〉, (D1)

b2 = ĉ
†
1↓ĉ

†
2↑|〉 = |RL〉 = |↓,↑〉, (D2)

U/t=0.0 U/t=2.0 U/t=8.0 U/t=20
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FIG. 6. The analytic Hubbard-model ground-state (singlet) (a)–(d) space and (e)–(h) momentum [see Eq. (5)] two-particle correlation maps
for two ultracold fermions in a double well, as a function of the Hubbard interaction strength U/t . The interwell distance is 2d = 2 μm and
the width of the displaced Gaussian functions is s = 0.2 μm.
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FIG. 7. Hubbard-model analytic two-particle correlation maps
for the ground state and the three lowest excited states (as marked in
the figure) of two ultracold fermions in a double well, calculated for an
intermediate positive value of the Hubbard interaction strength U/t =
8. (a),(c),(e),(g) Two-particle spatial correlations maps. (b),(d),(f),(h)
Two-particle momentum correlation maps according to Eqs. (5)–(8).
The interwell distance is 2d = 2 μm and the width of the displaced
Gaussian functions is s = 0.2 μm.

b3 = ĉ
†
1↑ĉ

†
2↓|〉 = |LR〉 = |↑,↓〉, (D3)

b4 = ĉ
†
1↑ĉ

†
1↓|〉 = |LL〉 = |↑↓,◦〉, (D4)

where L and R represent site 1 and 2, respectively. There
are many equivalent notations for these basis functions in the
literature and we have listed three of them in Eqs. (D1)–(D4).
In the following, we will use the L,R notation. The basis
set in Eqs. (D1)–(D4) spans the Hilbert space of the two-site
two-particle Hubbard model and the resulting Hubbard matrix
is

H =

⎡⎢⎣U t −t 0
t 0 0 t

−t 0 0 −t

0 t −t U

⎤⎥⎦. (D5)

Diagonalization of this Hamiltonian yields the following
eigenenergies:

E1 = 1

2
(U −

√
16t2 + U 2), (D6)

E2 = 0, (D7)
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FIG. 8. Hubbard-model analytic two-particle correlation maps
for the ground state and the three lowest excited states (as marked in
the figure) of two ultracold fermions in a double well, calculated for
an intermediate negative value of the Hubbard interaction strength
U/t = −8. (a),(c),(e),(g) Two-particle spatial correlations maps.
(b),(d),(f),(h) Two-particle momentum correlation maps according to
Eqs. (5)–(8). The interwell distance is 2d = 2 μm and the width of
the displaced Gaussian functions is s = 0.2 μm.

E3 = U, (D8)

E4 = 1

2
(U +

√
16t2 + U 2). (D9)

The eigenfunctions corresponding to these eigenvalues are

�1 = A(U,t)|RR〉 + B(U,t)|RL〉 − B(U,t)|LR〉
+ A(U,t)|LL〉

= A(U,t)(|RR〉 + |LL〉) + B(U,t)(|RL〉 − |LR〉)
= A(U,t)

√
2|B4〉 − B(U,t)

√
2|B1〉, (D10)

�2 = 1√
2

(|RL〉 + |LR〉) = |B2〉, (D11)

�3 = 1√
2

(|LL〉 − |RR〉) = |B3〉, (D12)

�4 = C(U,t)|RR〉 + D(U,t)|RL〉 − D(U,t)|LR〉
+ C(U,t)|LL〉

= C(U,t)(|RR〉 + |LL〉) + D(U,t)(|RL〉 − |LR〉)
= C(U,t)

√
2|B4〉 − D(U,t)

√
2|B1〉, (D13)
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where

A(U,t) = 1

/√
(
√

16t2 + U 2 + U )2

8t2
+ 2, (D14)

B(U,t) = −
√

16t2 + U 2 + U

4t

/√
(
√

16t2 + U 2 + U )2

8t2
+ 2,

(D15)

C(U,t) = 1

/√
(U − √

16t2 + U 2)2

8t2
+ 2, (D16)

D(U,t) = −U + √
16t2 + U 2

4t

/√
(U − √

16t2 + U 2)2

8t2
+ 2,

(D17)

and |B1〉,|B2〉,|B3〉,|B4〉 are the four Bell states:

|B1〉 = 1√
2

(|LR〉 − |RL〉), (D18)

|B2〉 = 1√
2

(|LR〉 + |RL〉), (D19)

|B3〉 = 1√
2

(|LL〉 − |RR〉), (D20)

|B4〉 = 1√
2

(|LL〉 + |RR〉). (D21)

Writing the Hubbard-model solutions in this form has the
advantage that it reveals the simple structure of the Hubbard
Hamiltonian in the four Bell-states basis, i.e.,

H =

⎡⎢⎣ 0 0 0 −2t

0 0 0 0
0 0 U 0

−2t 0 0 U

⎤⎥⎦. (D22)

We note that for two fermions, one can form two additional
Bell states by adding and subtracting the S = 1, Sz = 1 (|↑,↑〉)
and S = 1, Sz = −1 (|↓,↓〉) triplet states [33,34]. These two
Bell states, however, do not conserve the total spin and thus
they are not CI eigenstates.

2. Calculation of the second-order two-body density matrix

For each state of the Hubbard model (�1,�2,�3,�4,
denoted in general as �), one can obtain the second-order
density matrix as ρ

S,Sz

Hub = |�〉〈�|, which can be written in the
L, R basis as

ρ
S,Sz

Hub =
∑

i,j,k,l=L,R

ρ
Hub,S,Sz

ijkl |i j 〉〈k l|. (D23)

In order to obtain the spatial second-order density matrix
(and, subsequently, the second-order spatial correlation func-
tion) from the Hubbard-model density matrix, we define an
operator that associates single-particle spatial wave functions
[ψ ; see, e.g., Eq. (A1)] with the L,R basis, as

Os =
∑

i,j,k,l=L,R

ψi↑(x1)ψj↓(x2)ψ†
k↑(x ′

1)ψ†
l↓(x ′

2)ĉ1↑ĉ2↓ĉ
†
1↑ĉ

†
2↓.

(D24)

The spatial second-order density matrix can then be ob-
tained as the expectation value of this operator,

GS,Sz

Hub (x1,x2,x
′
1,x

′
2) = 〈�|Os |�〉 = Tr

[
ρ

S,Sz

Hub Os

]
, (D25)

which yields

GS,Sz

Hub (x1,x2,x
′
1,x

′
2)

=
∑

i,j,k,l=L,R

ρ
Hub,S,Sz

ijkl ψi↑(x1)ψj↓(x2)ψ†
k↑(x ′

1)ψ†
l↓(x ′

2).

(D26)

The second-order momentum density matrix is obtained
through Fourier transform,

GS,Sz

Hub (k1,k2,k
′
1,k

′
2)

= 1

4π2

∫ ∞

−∞
e−k1x1dx1

∫ ∞

−∞
e−k2x2dx2

∫ ∞

−∞
ek′

1x
′
1dx ′

1

×
∫ ∞

−∞
ek′

2x
′
2dx ′

2

×
∑

i,j,k,l=L,R

ρ
Hub,S,Sz

ijkl ψi(x1)ψj (x2)ψ†
k (x ′

1)ψ†
l (x ′

2)

=
∑

i,j,k,l=L,R

ρ
Hub,S,Sz

ijkl ψi↑(k1)ψj↓(k2)ψ†
k↑(k′

1)ψ†
l↓(k′

2). (D27)

To proceed, we use single-particle Gaussian wave functions
for the left and right wells, where L,R indicate that the
real-space Gaussian wave function (ψ) is localized in the
left (ψL) and right (ψR) well, respectively. The real-space
displaced Gaussian function was given in Eq. (A1); (dj < 0
corresponds to L, dj > 0 corresponds to R) s is the Gaussian
width. Its Fourier transform was given in Eq. (A2).

Using these Gaussian single-particle wave functions, the
second-order momentum density-matrix elements can be cal-
culated explicitly,

η
Hub,S,Sz

ijkl (k1,k2,k
′
1,k

′
2)

= ρ
Hub,S,Sz

ijkl ψi↑(k1)ψj↓(k2)ψ†
k↑(k′

1)ψ†
l↓(k′

2). (D28)

This allows us to write the second-order momentum density
matrix as

GS,Sz

Hub (k1,k2,k
′
1,k

′
2) =

∑
i,j,k,l=L,R

η
Hub,S,Sz

ijkl (k1,k2,k
′
1,k

′
2). (D29)

For a physical interpretation and for the creation of the
second-order momentum correlation maps, we are interested
only in the diagonal elements of the second-order momentum
density matrix, which are given as

GS,Sz

Hub (k1,k2) =
∑

i,j,k,l=L,R

η
Hub,S,Sz

ijkl (k1,k2), (D30)

with

GS,Sz

Hub (k1,k2) ≡ GS,Sz

Hub (k1,k2,k1,k2), (D31)

η
Hub,S,Sz

ijkl (k1,k2) ≡ η
Hub,S,Sz

ijkl (k1,k2,k1,k2). (D32)

When evaluating this expression, one needs to account for
the orthogonality of the spins. The function GS,Sz

Hub (k1,k2) is
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termed the second-order (two-body) momentum correlation
function. One can obtain the spin-resolved version by only
selecting terms with a certain spin configuration. Alternatively,
the spin-unresolved version can be obtained by taking all the
spin terms into account. In the special case of a two-particle
second-order correlation function, both the spin-resolved and
the spin-unresolved versions are identical (for a given spin pro-

jection) apart from an overall factor. Expressing GS,Sz

Hub (k1,k2)
using the η

Hub,S,Sz

ijkl (k1,k2) elements has the advantage that

the η
Hub,S,Sz

ijkl (k1,k2) clearly show the interference terms that
correspond to the individual entries in the Hubbard-model
density matrix ρ

S,Sz

Hub . These elements can be read off directly
from the matrices given in Appendices D 3–D 6.

3. Ground state

Using U = U/t and Q(U ) = √
16 + U2 + U , the Hubbard-model two-body density matrix is given by

ρ
S=0,Sz=0
Hub = 1

Q(U )U + 16

⎛⎜⎜⎜⎝
LL LR RL RR

4 Q(U ) Q(U ) 4
Q(U )U

2 + 4 Q(U )U
2 + 4 Q(U )

H.c. Q(U )U
2 + 4 Q(U )

4

⎞⎟⎟⎟⎠
LL

LR

RL

RR

(D33)

=

⎛⎜⎝
LL LR RL RR

A(U )2 −A(U )B(U ) −A(U )B(U ) A(U )2

B(U )2 B(U )2 −A(U )B(U )
H.c. B(U )2 −A(U )B(U )

A(U )2

⎞⎟⎠LL

LR

RL

RR

. (D34)

Note that ρS=0,Sz=0
Hub for the ground state as well as for the excited states (see Appendices D 4–D 6 below) are idempotent. Including

the Fourier-transformed wave functions, we obtain

η
S=0,Sz=0
Hub (k1,k2) = 2s2e−2s2(k2

1+k2
2)

π [Q(U )U + 16]

⎛⎜⎜⎜⎝
LL LR RL RR

4 e−2idk2Q(U ) e−2idk1Q(U ) 4e−2id(k1+k2)

Q(U )U
2 + 4 1

2e−2id(k1−k2)[Q(U )U + 8] e−2idk1Q(U )

H.c. Q(U )U
2 + 4 e−2idk2Q(U )

4

⎞⎟⎟⎟⎠
LL

LR

RL

RR

. (D35)

Using Eq. (D30) and the second-order momentum matrix in Eq. (D35), one can obtain the two-body ground-state momentum
correlation function [see Eq. (5)]. Similarly, the two-body momentum correlation functions for the excited states [see Eqs. (6)–(8)]
can be obtained through the use of the matrices given in Appendices D 4–D 6 below.

4. First-excited state

ρ
S=1,Sz=0
Hub and η

S=1,Sz=0
Hub (k1,k2) for the first-excited state of the Hubbard Hamiltonian [see Eq. (D11)] are given by

ρ
S=1,Sz=0
Hub = 1

2

⎛⎜⎝
LL LR RL RR

0 0 0 0
1 −1 0

H.c. 1 0
0

⎞⎟⎠LL

LR

RL

RR

, (D36)

η
S=1,Sz=0
Hub (k1,k2) = 4s2e−2s2(k2

1+k2
2)

π

⎛⎜⎜⎝
LL LR RL RR

0 0 0 0
1
4 − 1

4e−2id(k1−k2) 0
H.c. 1

4 0
0

⎞⎟⎟⎠
LL

LR

RL

RR

. (D37)

5. Second-excited state

ρ
S=0,Sz=0
Hub and η

S=0,Sz=0
Hub (k1,k2) for the second-excited state of the Hubbard Hamiltonian [see Eq. (D12)] are given by

ρ
S=0,Sz=0
Hub = 1

2

⎛⎜⎝
LL LR RL RR

1 0 0 −1
0 0 0

H.c. 0 0
1

⎞⎟⎠LL

LR

RL

RR

, (D38)
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η
S=0,Sz=0
Hub (k1,k2) = 4s2e−2s2(k2

1+k2
2)

π

⎛⎜⎜⎝
LL LR RL RR

1
4 0 0 − 1

4e−2id(k1+k2)

0 0 0
H.c. 0 0

1
4

⎞⎟⎟⎠
LL

LR

RL

RR

. (D39)

6. Third-excited state

ρ
S=0,Sz=0
H and η

S=0,Sz=0
Hub (k1,k2) for the third-excited state of the Hubbard Hamiltonian [see Eq. (D13)] are given by

ρ
S=0,Sz=0
Hub = 1

16 − P(U )U

⎛⎜⎜⎜⎝
LL LR RL RR

4 −P(U ) −P(U ) 4

4 − P(U )U
2 4 − P(U )U

2 −P(U )

H.c. 4 − P(U )U
2 −P(U )

4

⎞⎟⎟⎟⎠
LL

LR

RL

RR

(D40)

=

⎛⎜⎝
LL LR RL RR

C(U )2 −C(U )D(U ) −C(U )D(U ) C(U )2

D(U )2 D(U )2 −C(U )D(U )
H.c. D(U )2 −C(U )D(U )

C(U )2

⎞⎟⎠LL

LR

RL

RR

, (D41)

where U = U/t and P(U ) = √
16 + U2 − U ; and

η
S=0,Sz=0
Hub (k1,k2) = 2s2e−2s2(k2

1+k2
2)

π [P(U )U − 16]

⎛⎜⎜⎜⎝
LL LR RL RR

4 −e−2idk2P(U ) −e−2idk1P(U ) 4e−2id(k1+k2)

4 − P(U )U
2 − 1

2e−2id(k1−k2)[P(U )U − 8] −e−2idk1P(U )

H.c. 4 − P(U )U
2 −e−2idk2P(U )

4

⎞⎟⎟⎟⎠
LL

LR

RL

RR

. (D42)
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