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Quantum-mechanical approach to the laser-assisted vacuum decay
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The quantum-field-theoretical problem of the vacuum decay into electron-positron pairs induced by external
force fields is mapped onto the framework of a quantum-mechanical scattering process. This mapping permits us
to generalize the Hund conjecture, which relates the long-time pair-creation rate for a static and spatially localized
electric field to the transmission coefficient, to general space-time dependent forces that can induce multiphoton
transitions. This leads to conceptual as well as computational simplifications as the vacuum’s decay rate can be
obtained from the laser-assisted scattering of quantum-mechanical wave packets with the force field. Using this
mapping we find an analytical expression for the pair-creation rate for the case where the laser’s polarization
direction is perpendicular to the supercritical static force field.
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I. INTRODUCTION

As the result of recent advances in the development of
light sources with unprecedented high intensities [1], the
possibility to probe the quantum electrodynamical vacuum
state with external fields has found a considerable interest
[2]. There are two intrinsically different mechanisms by which
electron-positron pairs can be created from the vacuum. The
first scheme [3] requires the field (which can be static) to be
extremely large and can be visualized in terms of a tunneling
process between energy shifted Dirac states, while the second
scheme [4,5] creates particles through single- or multiphoton
processes by requiring a time-dependent field with a large
frequency.

Numerous theoretical approaches to study the pair creation
are based on the observation that the quantum-field-theoretical
expectation value of the electric current density (which is
given by a commutator of the field operators associated with
charge symmetrization) can be related to a Green’s function
and therefore to an action integral [3]. Alternatively, and
more relevant to this work, one can study the dynamics also
from a space-time resolved perspective, where solutions to the
time-dependent Dirac equation for a set of suitable initial states
are usually examined [6].

In a pioneering work in 1940, Hund [7] examined quan-
tum mechanically as well as quantum-field theoretically the
stationary processes associated with a single and double step
potential barrier with a height |V0| that exceeds 2mc2/|q|,
where m and q are the electron’s mass and charge and c is
the speed of light. He conjectured that the matter creation
rate for such a supercritical potential configuration can be
obtained from the simple ratio of the transmitted and incoming
current densities. This conjecture opened the door to calculate
the pair-creation rate � for time-independent potentials with
arbitrary spatial dependence from the energy integral of the
corresponding quantum-mechanical transmission coefficient

T(E), i.e., � = (2π )−1 ∫ dE T(E). This useful expression was
employed in numerous works [8–12] to compute � for several
time-independent electric-field configurations, and recently it
was also suggested that Hund’s conjecture can even be applied
to combined static electric-magnetic configurations [13].

As the prospects of combining static and time-dependent
fields to lower the critical field have triggered new discussions
[2], it seems worthwhile to explore if Hund’s conjecture
to map an intrinsic quantum-field-theoretical process onto a
quantum-mechanical scattering problem could even be gen-
eralized to those external force fields that in addition to a
spatial dependence have also a temporal dependence. If this
is possible and the vacuum’s decay rate can be calculated
from the laser-assisted scattering system. Then this quantum-
field-theoretical process should also be amenable to powerful
solution techniques, such as the Kroll-Watson formula [14]
and its generalizations [15–20] and other techniques that so
successfully described laser-assisted scattering experiments
[21–23].

The purpose of this work is actually threefold. We will
show first that the mapping of the quantum-field-theoretical
pair-creation problem onto a quantum-mechanical scattering
problem (Hund rule) can be even generalized to external force
fields that have a time dependence. This provides a better
visualization of the pair-creation process as well as interesting
computational techniques to calculate the pair-creation rate
and energy spectra of the created particles. Second, we suggest
that the polarization direction of the laser field relative to the
direction of the supercritical static external field is crucially
important for the pair-creation yield. Third, triggered by recent
works [24–26], which pointed out the importance of the
magnetic-field component for those pair-creation processes
that are solely triggered by a laser field, we show that if the
laser simply assists the pair-creation process in a supercritical
static field, this magnetic component is not so crucial.
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The paper is organized as follows. In Sec. II we introduce
the model system based on the time-dependent Dirac equation.
In Sec. III we derive rigorously from quantum-field theory
how the vacuum’s decay in a static supercritical potential can
be mapped onto a quantum-mechanical scattering problem.
In Sec. IV we generalize this mapping to the laser-assisted
vacuum decay. In Sec. V we use this mapping to provide a
remarkable accurate analytical expression for the laser-assisted
vacuum decay rate for laser fields that are polarized perpen-
dicular to the force direction associated with the supercritical
static field. In Sec. VI we examine the importance of the laser’s
spatial dependence as well as magnetic-field component. We
close with a discussion of future problems in Sec. VII.

II. MODEL SYSTEM

The four spinor components of the electron-positron
quantum-field operator �(r,t) fulfill the Dirac equation,
ih̄ ∂�/∂t = H�, where the interaction of the vacuum with
the electromagnetic field [given by vector potential A(r,t) ≡
(Ax,Ay,Az) and the scalar potential V(r,t)] is described by the
Dirac Hamiltonian [27]

H = cα[p − qA(r,t)/c] + mc2β + qV (r,t), (2.1)

where α ≡ (α1,α2,α3) and β denote the set of the four 4×4
Dirac matrices. We use for our calculation atomic units [28,29],
where m = 1, q = −1, h̄ = 1, and c = 137.036. If the scalar
potential V(r,t) and vector potential A(r,t) depend only on the
coordinate x, the canonical momenta py and pz are conserved.
For simplicity, we focus on py = 0, pz = 0, which simplifies
the computational analysis significantly. Furthermore, as we
will examine in this work linear polarized laser fields whose
magnetic-field component ∇×A(r,t) points in the z direction,
we can still choose if the laser’s polarization (electric field)
points along the x or y direction. If we choose the spin to align
along the z direction, the spin’s direction will be conserved,
and only two of the four spinor components are really required
to describe the dynamics. Choosing Az = 0, the effective
Hamiltonian for the two relevant spinor components of the
field operator is given by

H = cσ1px + σ1Ax(x,t) + σ2Ay(x,t)+mc2σ3 − V (x,t)σ0,

(2.2)

where σi (with i = 0,1,2,3) denote the set of the four 2×2 Pauli
matrices that satisfy the anticommutation relations {σi,σj} =
2iδi,j. For better clarity with regard to the concept of a
radiative mass introduced in Sec. V, we keep the mass m in all
expressions.

For the static part of the external force, we choose an
electric field that points along the x direction and is spatially
localized. It is modeled by the Sauter [30] potential −V (x) =
V0[tanh(x/w) − 1]/2, where w denotes the spatial extension of
the electric field, given by E(x) = −∇V (x). For our analysis,
we choose below a negative amplitude V0 = −2.5mc2, such
that the corresponding electric field is negative and would
accelerate an electron towards the positive-x direction.

The initial vacuum state is represented by the set of occu-
pied eigenstates |k; d〉 of the (field-free) Dirac Hamiltonian
H0 [= cσ1px + mc2σ3] with negative energy that satisfy

H0|k; d〉 = −[m2c4 + c2k2]1/2|k; d〉. We assume that our sys-
tem has a finite spatial extension L and that all states satisfy
periodic boundary conditions. As a result, the states can be
normalized as 〈k1; d|k2; d〉 = δk1,k2 and they have a momen-
tum spacing 
k = 2π/L. The corresponding positive-energy
states with momentum p are denoted by |p; u〉. In compu-
tational quantum-field theory [28] the required space-time
evolution of the electron-positron quantum-field operator can
be obtained equivalently from the time evolution of the set
of all states |k; d〉 and the resulting matrix elements Upk(t) ≡
〈p; u|U (t)|k; d〉, where U(t) is the time-ordered evolution op-
erator associated with H. The corresponding matrix elements
are obviously gauge invariant [11]. The solutions of the space-
time dependent Dirac equation with the external potentials
A(x,t) and V(x,t) can be obtained on a space-time lattice
with Nt temporal and Nx spatial grid points using efficient
fast-Fourier transformation based split-operator schemes [31–
34]. The total number of created electron-positron pairs after
the interaction at final time t is then obtained from all time-
evolved Hilbert-space states as N (t) ≡ �p,k|Upk(t)|2. As the
calculation of this particle number is based on the projection
on the field-free states, a direct interpretation of N(t) during
the interaction time is nontrivial. For example, if the external
field is supercritical, it is extremely difficult to distinguish
between positively and negatively charged particles inside the
interaction zone.

This expression, derived from quantum-field theory, permits
us also to calculate the number density of the created positrons
Nk(t) with a particular (discrete) momentum k. Following
the traditional hole theory, the dynamically induced depletion
rate of a particular negative energy state |k; d〉 (with negative
energy Eneg and momentum k) to states with positive energy
is identical to the creation rate of a positron with the final
(positive) energy E = |Eneg| ≡ [m2c4 + c2k2]1/2. This inter-
pretation suggests that the momentum distribution after the
interaction at final time t is then given by the sum over all final
states |p; u〉 that have a positive energy,

Nk(t) ≡ �p|Upk(t)|2. (2.3)

Using this (discrete) momentum density Nk(t) we can
also define a (continuous) energy density associated with the
continuum limit where the box size L → ∞ and the discrete
summations over k become integrations. For example, the
total number of created positrons can be expressed as an
energy integral, i.e., N (t) = �kNk(t) ≡ ∫ dE N(E,t). If we
replace the discrete summation by an energy integral, i.e.,
�k → (
k)−1 ∫ dk = L/(2π ) ∫ dk = L/(2π ) ∫ dE/v, where
v denotes the velocity v = dE/dk = c2k[m2c4 + c2k2]−1/2,
we obtain

N (E,t) = Nk(t)L/(2πv). (2.4)

We should point out that the final energy spectrum of the
created electrons and positrons do not necessarily match as the
two charges are mainly ejected in opposite spatial directions
and their final spectra can also be affected by possible after-
accelerations due to the consecutive interaction with localized
additional (weaker) force fields that are spatially accessible to
only one type of particle species.
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Formally, the energy spectrum of the electrons is obtained
from the sum over all absolute value squared transition matrix
elements to a specific positive energy state |p; u〉 originating
from all possible Dirac sea states |k; d〉 with the final (posi-
tive) energy E = [m2c4 + c2p2]1/2, i.e., Np(t) ≡ �k|Upk(t)|2.
Equivalently, for consistency, the same energy spectrum could
be obtained from the corresponding charge-conjugated hole
theory, in which the initial Dirac state |p; d〉 is evolved under
the Hamiltonian H (−q) for positrons with charge −q, such
that here the depletion of the state |p; d〉 to all states |k; u〉
corresponds to the creation of an electron with energy E =
[m2c4 + c2p2]1/2.

The fact that the spectra of the two-particle species do
not agree in general does not violate the conservation of
the total charge, as the total number of created positrons,
N (t) = �kNk(t) = �pNp(t), matches for both expressions of
Nk(t) and Np(t), i.e., N (t) = �k�p|Upk(t)|2.

It turns out, however, there are some specific electro-
magnetic field configurations, for which the electrons’ and
positrons’ energy spectra can be identical. For example, if the
static potential in the Hamiltonian H (q) = cσ1px + mc2σ3 +
qV (x,t)σ0 has the spatial symmetry V (x) = −V (−x),
then there exits a space-inversion operator P such that
P H (q)P = H (−q). Here the space-inversion matrix oper-
ator is defined as P = σ3𝓅, where 𝓅 reverses the position
argument, i.e., 𝓅F (x) = F (−x).

The proof for identical energy spectra in this case is
straightforward. We can first insert the unit operator P2 into
the transition matrix elements, using the symmetry of H(q)
and the property P〈x|k; d〉 = 〈x| − k; d〉 and P〈x|p; u〉 =
〈x| − p; u〉 we obtain

Nk(t) = �p|Upk(t)|2 = �p|〈p; u|P2exp[−iH (q)t]P2|k; d〉|2

= �p|〈−p; u|exp[−i H (−q)t]|−k; d〉|2. (2.5)

This expression is obviously the energy density of a created
electron derived from a hole theory with a positronic Dirac sea,
governed by H (−q). Here the depletion of the state | − k; d〉
under the positronic Hamiltonian H (−q) corresponds to the
creation of an electron with energy E = [m2c4 + c2(−k)2]1/2.
We also point out that these quantum-field-theoretical predic-
tions cannot describe the correlations between the two energies
within a single detected electron-positron pair.

III. PAIR CREATION DUE TO A SUPERCRITICAL STATIC
FORCE FIELD GIVEN BY V (r)

In Sec. III A we derive how the quantum-field-theoretical
problem of determining the time dependence of the number of
created positrons with a given energy E can be mapped onto
a single-particle quantum-mechanical scattering problem. In
Sec. III B we provide a concrete numerical example of the
space-time evolution of a (spatially infinitely extended) Dirac
sea state. In Sec. III C we examine the corresponding evolution
of a spatially localized wave packet.

A. Mapping of the vacuum decay onto a scattering problem

Let us discuss two properties of the time-dependent energy
density N(E,t) of the created positrons. We will use Eqs. (2.3)
and (2.4), where N(E,t) can be computed from the depletion

dynamics of a single Dirac state. First, we will show that
for any interaction, N(E,t) can be obtained from the spatially
integrated density of certain wave-function solutions of the
Dirac equation. This relationship will permit us a convenient
space-time resolved interpretation of the pair-creation process
and also guide us to derive the quantum-mechanical means to
compute the pair-creation yields for more complicated cases
where the static force field is accompanied by a time-dependent
field.

First, using the normalization 〈p2; u|p1; u〉 = δp1,p2 we
insert the unit operator expressed as the integration over all
position eigenstates 1 = ∫ dx|x〉〈x| into the expression for
Nk(t). Here the spatial integration extends over the length L
of the system. As a result, Nk(t) can be interpreted as a spatial
integral [area under ρk(x,t)],

Nk(t) ≡ �p|Upk(t)|2 =�p1�p2〈p2; u|p1; u〉Up1k(t)Up2k(t)∗

=
∫

dx �p1�p2〈p2; u|x〉〈x|p1; u〉Up1k(t)Up2k(t)∗

=
∫

dx |�pUpk(t)〈x|p; u〉|2 ≡
∫

dx ρk(x,t). (3.1)

The positive space-time-dependent function ρk(x,t) defined
as |�pUpk(t)〈x|p; u〉|2 with E = [m2c4 + c2k2]1/2 deserves
special attention. It is the spatial density associated with
the positive energy portion of the state |k; d(t)〉 ≡ U (t)|k; d〉,
evolved under the full Dirac Hamiltonian containing V(x,t) and
A(x,t). This can be easily seen by employing the projection
operator into the positive energy manifold �p|p; u〉〈p; u|,
while �p|p; u〉〈p; u| + �k|k; d〉〈k; d| is the unit operator in
this notation:

ρk(x,t) ≡ |�p Upk(t)〈x|p; u〉|2 = |〈x|�p|p; u〉Upk(t)|2
= |〈x|�p|p; u〉〈p; u|k; d(t)〉|2. (3.2)

While the initial state |k; d〉 is spatially infinitely extended,
the density ρk(x,t) evolves from zero and its area ∫ dxρk(x,t)
is equal to Nk(t), which permits therefore a simple quantum-
mechanical interpretation of the pair-creation process.

For the special case where the external field is time inde-
pendent, we show in Appendix A that N(E,t) grows (in the
long-time limit) linearly in time with a rate that can be com-
puted from the quantum-mechanical transmission coefficient
associated with the corresponding scattering situation. This
second step will also provide a rigorous proof of the Hund
conjecture based on quantum-field theory. In Appendix B we
show that if the electric field is symmetric with regard to
a space inversion, the positrons’ energy spectra is not only
identical to the electrons’ density, but it is also symmetric with
regard to |V0|/2. For the special case of an electric field that is
spatially constant in a certain region, this rate resembles that
of Schwinger’s calculation [35–37].

B. Time evolution of a single Dirac sea state

We will now illustrate the general finding above for a con-
crete numerical example. We choose the Sauter potential V(x)
with a supercritical amplitude V0 = −2.5mc2 and w = 0.3/c,
and examine the temporal evolution of a single Dirac sea state
|k; d〉 under the influence of V(x). The spatial representation of
this initial two-spinor state [before the interaction with V(x)] is
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FIG. 1. (a),(c),(e) Snapshots of the spatial density |〈x|k; d(t)〉|2 of a single initial state from the Dirac sea with E = 1.25mc2 and negative
momentum k in the supercritical potential step at three moments in time (t1 = 0.005 a.u., t2 = 0.015 a.u., t3 = 0.025 a.u.). (b),(d),(f) The corre-
sponding physical spatial probability density, associated with the state, but projected onto the positive energy manifold and given by ρk(x,t)≡
|〈x|�p|p; u〉〈p; u|k; d(t)〉|2. As a reference, the dashed line is the shape of the supercritical potential energy −V (x)=V0[tanh(x/w)−1]/2.
(L = 16 a.u., Nx = 8192, Nt = 6000).

given by 〈x|k; d〉 = N {−k,c + (c2 + k2)1/2} exp(ikx), where
N is the normalization factor chosen such that the density
satisfies ∫ dx|〈x|k; d〉|2 = 1, with the integration limits from
–L/2 to L/2. If we chose a negative momentum of k =
−[(E − |V0|)2 − m2c4]1/2/c together with the parameter E =
1.25 mc2, this amounts to k = −102.8 a.u. As a side note, we
remark that this state |k; d〉 would be an energy eigenstate of the
force-free Hamiltonian H0 with negative energy −1.25 mc2.
For x < 0 [under the barrier V(x)] it would describe a particle
with a positive velocity vinc = c2|k|/E (= 82.24 a.u. = 0.6c).
As we chose here the specific value E = |V0|/2 we automati-
cally also have vtran = vinc, associated with the velocity it has
for V (x) = 0, corresponding to x > 0. A simple analytical
expression [30,33,38] [given below in Eq. (5.1)] predicts that
for this energy E = 1.25mc2 the transmission coefficient takes
the value T (E) = 0.272 332.

In Fig. 1 we analyze the temporal evolution of the initial
Dirac sea state |k; d〉. For three moments in time, we compare
the density |〈x|k; d(t)〉|2 with the physically relevant density
ρk(x,t), which is associated with the positive-energy portion
of the state after the interaction with the field.

The two densities are already entirely different at the
initial time t = 0 before the interaction with V(x). While

|〈x|k; d(t = 0)〉|2 = 1/L(= 0.0625) is spatially constant over
the entire extension L of our system, the initial density
ρk(x,t) vanishes due to the orthogonality 〈p; u|k; d〉 = 0.
As time evolves, the action of the force field triggers the
generation of a reflected and transmitted part. The reflected
portion originates close to x = 0 and evolves with veloci-
ties vref = −c2|k|/[m2c4 + c2k2]1/2 to the left. The original
right traveling and reflected portions lead to strong inter-
ference patterns in |〈x|k; d(t)〉|2 as shown in Figs. 1(a),
1(c), and 1(e). The transmitted portion evolves to the right
with velocity vtran = c2p/[m2c4 + c2p2]1/2 and momentum
p = (E2 − m2c4)1/2/c.

We point out that due to the unusual relationship between
the momenta k and p for a given energy this is a very peculiar
(nonclassical and nonintuitive) scattering event. For a given
energy an incoming particle with a small speed is accelerated
and escapes to the right with a higher speed, whereas an
incoming fast particle under the barrier emerges on the right
side as a decelerated slower particle.

In more detail, the snapshot was taken after an interaction
time of t = 0.025 a.u., during which a particle with the speed
of light would move a characteristic distance of 3.4 a.u. On
the other hand, a particle evolving with a speed of vtran =
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82.24 a.u. could only cover a distance of about 2 a.u. The
complicated structures in |〈x|k; d〉|2 at 2 a.u. < |x| < 3.4 a.u.

are therefore associated with states with very high negative
energy excited during the abrupt turn-on of the potential.

On the left side, the oscillatory domain at −2 a.u.< x <

0 is the result of the superposition between the incoming
right-traveling state (with amplitude 1/L1/2 and velocity
vinc = 82.24 a.u.) and the reflected portion (with amplitude
r(E)/L1/2 and velocity –82.24 a.u.), where the reflection
coefficient is given by r = [1 − T (E)]1/2 amounting to r =
0.853. As a result, the density can oscillate theoretically be-
tween (1 + r)2/L (= 0.215) and (1 − r)2/L (= 0.001), which
matches roughly the observed amplitudes within our spatial
resolution. The observed period of about 0.03 a.u. matches
π /k, as expected. Finally, for the spatial range 0 < x <

2 a.u., we have only the transmitted portion with height
T (E)/L (= 0.0170), as the original density (with height 1/L)
has vacated this area by moving to the right already to x > 2.
a.u.

In Figs. 1(b), 1(d), and 1(f) we display the density ρk(x,t) ≡
|〈x|�p|p; u〉〈p; u|k; d(t)〉|2, which is more relevant for the
pair-creation process. Its structure is by far not as complicated
as |〈x|k; d(t)〉|2. Due to the required projection �p|p; u〉〈p; u|
in the definition of ρk(x,t), this density picks up only the
truly transmitted portion. This transmitted portion corresponds
precisely to the spatial probability density of the electrons
created from the single Dirac sea state |k; d〉. We can read off
the graph that its average height of ρk(x,t) is 0.0170, which
matches exactly the theoretically expected amplitude (derived
in the appendixes and) given by |τ (E)|2/L where L (=16 a.u.)
denotes the total length of our system. Note that because of
E = |V0|/2, we have here |τ (E)|2 = T (E). Furthermore, as
time evolves, the area under the density grows linearly in time,
∫ dx ρk(x,t) = 1.400t , whose slope agrees again perfectly
with the theoretically predicted value L−1T (E) vinc, as derived
in the appendixes.

C. Time evolution of a wave packet

After analyzing the evolution of a single spatially delocal-
ized Dirac state, let us now visualize the pair-creation process
in terms of a quantum-mechanical wave-packet scattering. In
order to have a spatially localized wave packet, we superimpose
several Dirac sea states according to

φ(x,t = 0) ≡ ϒ �k exp
[
ik0x − (k−k0)2
x2

0

]〈x|k; d〉, (3.3)

where the normalization factor ϒ guarantees that
∫ dx|φ(x,t = 0)|2 = 1. If the momentum width of this
wave packet is narrow enough such that the transmission
coefficient is nearly constant over the narrow range of all
incoming momenta, then this spatially localized state is a good
approximation to the infinitely extended Dirac sea state with
a sharp momentum. The density is centered around negative
momentum k0 and has a spatial width proportional to 
x0.
This state is localized initially under the barrier (x0 < 0)
and its center evolves to the force region, where part of it is
transmitted to x > 0. In the absence of the barrier, this state
would take a negative central energy −[m2c4 + c2k0

2]1/2.
However, as we have derived in Sec. III A, the energy that is
relevant for the spectrum of the created positrons in the vacuum

decay is actually positive, E ≡ [m2c4 + c2k2
0]1/2, which we

denote by E from now on. To avoid any confusion, we note as
a side issue that (due to the presence of the barrier) the total
energy of the wave packet amounts also to a positive value,
E+ ≡ |V0| − [m2c4 + c2k2

0]1/2, but this particular auxiliary
energy is not directly relevant for the vacuum decay. Due
to the energy conservation, these three energies are trivially
related here. However, for the more general case, where the
vacuum decay is assisted by a laser field, the total energy is
not conserved. Here a single Dirac state (with momentum k)
can evolve into a superposition of several states |p; u〉 with
multiple energies, while the energy of the created positron
remains determined solely by [m2c4 + c2k2]1/2.

In the limit of a large 
x0, the area under the final
transmitted portion, i.e.,

Afin(E) ≡
∫ ∞

0
dx|φ(x,t)|2 (3.4)

integrated from x = 0 to x = ∞, is identical to the trans-
mission coefficient T(E) for the same energy E. Therefore,
according to Hund’s conjecture, this transmitted portion is
directly related to the pair-creation rate �(E) at that energy
(multiplied with 2π ), i.e., 2π�(E) = T (E) = Afin(E).

To test this conjecture numerically we have evolved the
wave packet with 
x0 =0.3, k0 =−102.8 a.u., x0 =−1.2 a.u.,
corresponding to an energy E = 1.25mc2, the same as in
Sec. III B. After a time t = 0.03 a.u. the area of the transmitted
portion Afin of the wave packet amounted to 0.2722 which
matches the monoenergetic limit of T (E = 1.25mc2). This
illustrates again that we can determine the pair-creation rate
for a given energy either from the amplitude [|τ (k)|2L−1] of an
initial (infinitely extended) Dirac energy eigenstate (Sec. III B)
or equivalently from the final area Afin(E) of the transmitted
wave packet. This observation will be important when we
generalize this to the case (discussed below) where the pair-
creation process will be assisted by a time-dependent force.

IV. COMPARISON OF THE VACUUM DECAY WITH
LASER-ASSISTED PARTICLE SCATTERING

In this section, we will examine whether the mapping of the
vacuum decay process onto a quantum-mechanical scattering
problem can be generalized if the pair creation due to the static
supercritical field is assisted by a second force field that is
time dependent [35,39,40]. Due to the inherent nonstationarity
of the process associated with the time-dependent force, it
is nontrivial to define a transmission coefficient without any
approximation, but we can still compare the process with the
predictions from a scattered wave packet in the laser field.

We have examined two alternating but spatially homoge-
nous electric fields that differ by their polarization direction
relative to the static force (x) direction of the supercritical
field, corresponding to E(x,t) = E0 sin(ωt)ex and E(x,t) =
E0sin(ωt)ey . This leads to the interaction potentials Ax(x,t) =
−E0c sin(ωt)/ω and similarly Ay(x,t) = −E0 c sin(ωt)/ω
such that the two Hamiltonians read

H = cσ1px + σ1Ax(x,t)f (t) + mc2σ3 − V (x,t)σ0, (4.1a)

H = cσ1px + σ2Ay(x,t)f (t) + mc2σ3 − V (x,t)σ0. (4.1b)
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FIG. 2. The number of created electron-positron pairs N(t) as a function of time. The pair creation is assisted by a time-periodic
field A(x,t) = −E0c sin(ωt)/ωex or A(x,t) = −E0c sin(ωt)/ωey . For comparison, we provide dashed lines that have specified slopes
[V0 = 2.5mc2,w = 0.3/c,E0 = 0.2c3,ω = 0.5mc2,L = 3 a.u.,Nx = 2048,Nt = 18 000; laser field was turned on smoothly at time t = 2×2π/

ω (=1.3×10−3 a.u.) and off at time t = 12×2π/ω (=8.0×10−3 a.u.) over one cycle of duration 2π/ω (=6.7×10−4 a.u.) and with a nine-cycle
plateau in between].

The envelope f (t) was chosen to contain a very early
time period of duration 2×2π/ω, where the laser was off.
Using a sin2-pulse shape over one optical cycle, the laser was
then turned on to its plateau value of f (t) = 1. The turn-off
follows the same sequence, but in reverse order. With regard
to the parameters, we have chosen again V0 = −2.5mc2 and
w = 0.3/c for the static field and E0 = 0.2c3 and ω = 0.5mc2

for the time-dependent field. We note that the latter field is
sufficiently small such that the number of created particle pairs
solely associated with the alternating field (i.e., for V0 = 0) is
rather negligible. However, as we will see below, when the
supercritical potential is present, the effect of this laser field
onto the pair-creation process is significant.

A. Generalization of a laser-modified rate
for a nonmonotonic growth of the yield

In Fig. 2 we graph the temporal growth of the to-
tal number of created electrons N(t) for both laser field
configurations. The laser was chosen spatially localized
during the interaction around the location of the static
supercritical field with a plateau-like envelope given by
{tanh[(x + d/2)/wA] − tanh[(x − d/2)/wA]}/2 with an ex-
tension d = 0.3 a.u. and a spatial turn-on and -off scale wA =
5/c. During the early and later time of the interaction (when
the field is slowly ramped up and down as described above) the
growth of N(t) is mainly associated with the static potential,
leading to a growth rate of about � ≈ 327. This is fully con-
sistent with the theoretical prediction from the energy integral
over the transmission coefficient from mc2 to 1.5mc2, which
amounts to a numerical value 1/(2π ) ∫ dE T (E) = 327.591.
We also observe that once the laser field has developed its
maximum amplitude, the overall growth is increased for the
case where Ax �= 0 and reduced for Ay �= 0. In addition, both
data sets reveal superimposed heavy oscillations with constant
amplitude. These oscillations occur with frequency 2ω and
are in phase with each other. The fact that these oscillations
occur with a relatively time-independent amplitude suggests
that it is possible to define an average linear growth rate
even during the interaction, as indicated by the two parallel

straight dashed lines in each figure. They have a slope of
about 335 a.u. for Ax �= 0 and about 231 for Ay �= 0. As
these average slopes [which we denote by �(E0,ω)] obviously
determine the final electron-positron yield if the laser is turned
off after a long time t , i.e., N (t) = �(E0,ω)t , it is possible
to interpret from now on �(E0,ω) as the laser-modified pair-
creation rate for this process. Obviously, in the special case
of no laser field, Ax = Ay = 0, it reduces to the original rate
�(E0 = 0, ω) = �.

The amplitude of the oscillations during the interaction is
not so relevant and simply reflects the dressing of the Dirac
sea states due to the laser field. In fact, the amplitude increases
directly with the spatial extension d of the laser pulse while
the slope keeps constant.

B. Laser-assisted scattering

In order to compare the pair-creation process with the
quantum-mechanical scattering also in the presence of the
laser field, we have repeated in Fig. 3 the wave-packet
scattering simulations described in the last part of Sec. III.
The wave packet has an initial location x0 = −1.5 a.u. and

x0 = 0.06 a.u. and initial (negative) momentum k0. In the
absence of the potential barrier it would have a central energy
that is negative with the magnitude E = [m2c4 + c2k0

2]1/2.
It was injected into the potential barrier (around x = 0). The
final area of the transmitted portion Afin(E) was calculated.
The total simulation time was chosen sufficiently large for each
incoming energy, such that the entire wave packet has scattered
completely and Afin becomes independent of time.

For comparison, the top pair of graphs (labeled A = 0) in
Fig. 3 display the corresponding data for the dynamics in the
absence of the laser field. Displayed are the final areas Afin(E)
of the transmitted portion of the Gaussian wave packet as
a function of the incoming energy (open circles), and also
the scaled energy spectrum N(E,t) of the created positrons
obtained from the quantum-field-theoretical simulation (con-
tinuous line). As the number of particles for a given energy
increases monotonically with the interaction time, it had to
be normalized, i.e., we have graphed N(E,t)2π /t . At early

053416-6



QUANTUM-MECHANICAL APPROACH TO THE LASER- … PHYSICAL REVIEW A 97, 053416 (2018)

FIG. 3. The three lines are the rescaled energy spectra of
the created particles from the laser-assisted pair-creation process,
N(E,t)2π/t . The open circles are final areas Afin(E) of a transmitted
Gaussian wave packet as a function of the incoming energy E. The
particle that has been scattered off the supercritical potential V(x) in
the presence of a time-periodic field, with A(r,t) = −E0c sin(ωt)/ω,
pointing along either the x or y direction (same parameters as in Fig. 2;
for the scattering simulation we used L = 20 a.u., Nx = 16 384,
Nt = 18 000, x0 = −1.5 a.u., 
x = 0.0012 a.u., t = 0.05 a.u.).

times this spectrum is very wide in energy, but as the time
increases only the part within the energy range mc2 < E <

1.5mc2 continues to grow. The agreement between the two data
sets for each energy is excellent, so it illustrates numerically
that Afin(E) = N (E,t)2π/t . Therefore, also the corresponding
integral of Afin(E) over all energies reproduces correctly the
observed vacuum decay rate �, i.e., � = 1/(2π ) ∫ dEAfin(E).

The key question that we are interested in here is whether
the numerical value of the energy integral 1/(2π ) ∫ dE Afin(E)
is still related to the laser-assisted pair-creation rate �(E0,ω).

The next pair of data (labeled Ax �= 0) is for the pair creation
and scattering dynamics where the laser field is parallel to
the supercritical static electric field. For small energies E <

1.5mc2, there are fewer positrons created due to the presence
of the laser field, but at the same time the laser induces
the creation of higher energetic positrons that could not be
created solely by the static field. Most importantly, the energy
spectrum of the created particles is matched again very well
by the transmitted wave-packet portion of the corresponding
quantum-mechanical scattering dynamics.

It is interesting to note that this field configuration permits
the scattering event to be accompanied by the irreversible
absorption and emission of photons. While incoming particle
energies for E > |V0| − mc2 (=1.5mc2) are outside the Klein
tunneling region and therefore cannot be transmitted through
the static barrier, the corresponding Dirac state can neverthe-
less become depleted as the emission of a photon lowers its
energy into the permitted Klein tunneling region. Equivalently,
one could argue that the large final energy of the created
positron, E > 1.5mc2, is due to the (permitted) absorption of a
photon during the scattering process. We should point out again
that the energy axis represents both the energy of the outgoing
created positron as well as the absolute value of the (force-free

and negative) energy of the scattered incoming particle. This is
relevant as, in contrast to the laser-free scattering, for Ax �= 0
the energy of the scattered particle can change.

The lowest pair (labeled Ay �= 0) corresponds to the data for
the laser field perpendicular to the supercritical field. Here for
each energy the number of created positrons is less than that
for the other field alignment. Also, the range of the energies of
the created positrons is much narrower than for the two cases
above. Most importantly, we find also here a good match with
the scattering data.

We note that the total-energy integral over N(E,t) corre-
sponds to the total number of created particles N(t). Due
to the excellent match for each energy, the creation rate
can therefore also be obtained from the final areas of the
transmitted Gaussian wave packets. While the application of
Hund’s rule to time-independent force fields is well known
and time-dependent forces fields can be described by other
techniques (see for example [41,42]), the fact that Hund’s rule
can be generalized to time-dependent interactions is, to the best
of our knowledge, not reported in the literature.

V. EFFECT OF THE LASER FIELDS AND THEIR
POLARIZATION ON THE PAIR-CREATION YIELD

In this section, we will exploit the prior finding that the vac-
uum decay process can be mapped onto a scattering problem
to obtain a better physical understanding of the laser-assisted
pair-creation process. We will first examine how the direction
of the polarization of an external linearly polarized electric field
relative to the static force direction will affect the pair-creation
process. For the perpendicularly aligned field Ay(t) we can
even provide a fully analytical theory for the laser-modified
rate �(E0,ω) based on the concept of the relativistic mass
shift that proves that any field will always reduce the yield
for py = pz = 0. For the parallel aligned field Ax(t), due to
the possibility of multiple photon emission and absorption, the
situation seems to be more complicated.

A. Analytical expressions for the rate �

from the scattering theory for A = 0

As we have illustrated in Fig. 3, the final area Afin(E) of the
Gaussian wave packet as a function of the incoming energy
plays a key role in determining the vacuum decay. Also we
have shown in the appendixes, in the absence of any laser field
this final area is identical to the transmission coefficient for a
particle of effective mass M in the same field. It is well known
that an analytical expression for this coefficient [30,33,38] is
given by

T (E; M) = − sinh[πpw] sinh[πkw]/{sinh[π (|V0|/c + p

+ k)w/2] sinh[π (|V0|/c − p − k)w/2]}, (5.1)

where the two momenta k = −[(E − |V0|)2 − M2c4]1/2/c and
p = [E2 − M2c4]1/2/c depend on the effective mass M.

Using this analytical expression for the special case of laser-
free scattering, where the particle’s mass is that of the free
electron, M = m = 1 a.u., we can determine numerical value
of the integral � = 1/(2π ) ∫ dE T (E), which amounts to � =
327.591. As discussed in Sec. IV A, this value is (within our
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numerical accuracy) identical to the vacuum decay rate � read
off the graph for N(t) in Fig. 2.

B. Analytical expressions for the vacuum decay rate �

from scattering theory for Ay �= 0

For the situation where the laser is polarized along the
y direction, i.e., E(r,t) = E0 cos(ωt)ey, it is still possible to
construct a laser-modified transmission coefficient, which will
then lead to an analytical expression for the pair-creation rate.

While in a nonrelativistic limit (c → ∞) the motion along
the three spatial directions is completely decoupled, in a
relativistic system an external field pointing in the y direction,
such as Ay(t), affects also the motion along the x direction.
This can be easily seen for the scalar model Hamiltonian
H = [m2c4 + c2p2

x + A2
y(t)]1/2, where we have chosen the

conserved momenta pz = py = 0. Here the velocity vx =
dH/dpx amounts to vx = c2px[m2c4 + c2p2

x + A2
y(t)]−1/2,

which shows that the force associated with A2
y(t) along the y di-

rection always reduces the velocity vx. For example, if we con-
sider the oscillatory vector potential Ay(t) = −E0 sin(ωt)c/ω
and expand vx in powers of 1/c, we obtain vx = px − [p3

x +
px(E2

0/ω
2)sin2(ωt)]/(2c2) + O(c−4). If we average this ex-

pression over one laser period [ω/(2π ) ∫ dt sin2(ωt) = 1/2],
we find that the laser field along the y direction reduces the
speed along the x direction by the amount pxE

2
0/(4c2w2).

Similarly, and even more relevant, we can also follow
earlier works [43–45] and introduce an effective radiative
mass m∗, defined by the temporal average m∗(E0,ω) ≡
〈[m2 + A2

y(t)/c4]1/2〉, where 〈…〉 represents the average over
one laser period. More concretely, if we assume Ay(x,t) =
−E0c sin(ωt)/ω, this average mass amounts to

m∗(E0,w) = (2π/ω)−1
∫

dt[m2 + [E0/(ωc)]2sin2(ωt)]
1/2

,

(5.2)

where the integration limits cover one period of the external
field, 2π /ω. We can immediately see that this mass m∗
depends only on the dimensionless ratio of the nonrelativistic
ponderomotive energy E2

0/(mω2) and the electron’s rest mass
energy mc2, i.e., m∗(E0,ω) = mF [E0/(mcω)], where F is
the function given by Eq. (5.2). While there is no useful
analytical solution of this complete elliptic integral of the
second kind, we can at least find the nonrelativistic limit.
Using the large-c expansion [m2 + [E0/(ωc)]2sin2(ωt)]1/2 =
m + E2

0/(2mω2c2)sin2(ωt) + O(c−4), we can perform the av-
erage, leading to m∗(E0,ω) = m + E2

0/(4mω2c2) + O(c−4).
For our numerical parameters for the field, we obtain here
m∗(E0,ω) = 1.04 a.u., which compares well with the exact
value m∗(E0,ω) = 1.038 873 64 a.u. obtained from Eq. (5.2).

In order to test the accuracy of this analytical prediction,
we have compared in Fig. 4 the corresponding analytical
predictions for the normalized energy spectrum of the created
particles N(E,t) 2π /t , which is given by the transmission
coefficient T [E; m∗(E0,ω)] and based on the laser intensity
and frequency-dependent mass M = m∗ from Eqs. (5.1) and
(5.2), with the numerically obtained final areas Afin(E) of the
Gaussian wave packet from Fig. 3. The agreement is excellent,
which shows again that the laser-induced pair-creation process

FIG. 4. The analytical prediction for the (normalized) en-
ergy spectrum of the created electrons, N (E,t)2π/t = �(E0,ω)
without (top data) and with the time-periodic field A(x,t) =
−E0c sin(ωt)/ω ey (bottom data). For comparison, the open dots are
the numerically obtained final areas Afin(E) of the transmitted portion
of the scattered Gaussian wave packet. (same numerical parameters
as in Fig. 2).

for a laser field that is perpendicular to the static field can be
mapped rather exactly onto a scattering problem where the
particle has an effective mass m∗ given by Eq. (5.2).

The relativistic increase of the effective mass also ex-
plains the observed symmetric narrowing of the permitted
energy range of the created particles in Fig. 3. While in
the absence of any laser this range extends from E = mc2

to |V0| − mc2, the laser modified range is only m∗(E0,ω)c2

to |V0| − m∗(E0,ω)c2. Using the nonrelativistic expansion
of m∗(E0,ω) from above suggests that the observed energy
range for N(E,t) narrows with increasing field strength E0 and
decreasing ω.

As a last and final step, we can now use the analytical
expressions Eqs. (5.1) and (5.2) to estimate the laser-assisted
vacuum decay rate according to

N (t)/t = �(E0,ω)=1/(2π )
∫

dE T [E; m∗(E0,ω)]. (5.3)

For example, for the numerical parameters (E0 =
0.2c3, ω = 0.5mc2) used in Figs. 2(b), 3 and 4, this integral
amounts to �(E0,ω) = 231.272, which matches very well
with the observed averaged slope in Fig. 2(b). To obtain a
more general idea as to how this rate decreases with the
dimensionless parameter E0/(mcω) for m = 1 a.u., we have
graphed in Fig. 5 the vacuum decay rate �(E0,ω) for several
spatial extensions w of the static supercritical field.

We can also use this analytical expression to study
the scaling of the rate �(E0,ω) with the laser parame-
ters. If we assume for simplicity that the static field is
very narrow (w → 0), Eq. (5.1) simplifies to N (E,t)2π/t =
−4pk/{(V 2

0 /c2 − (p + k)2}. This takes the largest value for
the energy E∗ = V0/2, for which p = −k. The resulting
expression simplifies to N (E∗,t)2π/t = 1 − 4M2/(V0/c

2)2.
If we insert expansion for M = m∗(E0,ω) = m + E2

0/
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FIG. 5. The analytical prediction for the laser-assisted vacuum
decay rate �(E0,ω) [from Eqs. (5.1) and (5.2)] as a function of the
scaled laser amplitude E0/(mcω) for four spatial extensions of the
static supercritical field with amplitude V0 = −2.5 mc2. The arrow
marks the parameter used in Figs. 2(b), 3, and 4.

(4mω2c2) + O(c−4) we obtain

N (E∗,t) = NE0=0(E∗,t) − t[E0/(ωc)]2/π. (5.4)

This means that the reduction of the number of created
particles does not depend on V0 of the static field. If we assume
that the integrand in the expression for N (t) = ∫ dE N (E,t)
can be approximated by its largest value, the integral over the
range from E = m∗c2 to |V0| − m∗c2, can be evaluated as

N (t) ≈ (|V0| − 2m∗c2){NE0=0(E∗,t) − t[E0/(ωc)]2/π}
≈ [|V0| − 2(mc2 + E2

0/(4mω2))]{NE0=0(E∗,t)

− t[E0/(ωc)]2/π}. (5.5)

We see that the overall laser-induced reduction of the total
number of created particles is due to a decrease associated
with the energy density for each energy [Eq. (5.4)] as well as
a decrease of the energy range at which the particles occur.

VI. EFFECT OF LASER’S SPATIAL
INHOMOGENEITY ON YIELD

For conceptual simplicity, so far we have modeled the
laser field above only by a spatially homogeneous alternating
electric field and therefore neglected the effect of any spatial
dependence and possibly its magnetic-field component. In
order to outline future challenges, we will examine briefly in
this section this effect by comparing the energy spectra of the
created positrons N(E,t) from the above sections with those
obtained from the laser fields given by the vector potentials
A(x,t) = E0sin(ωt − kx)ex and A(x,t) = E0 sin(ωt − kx)ey .

In Fig. 6 we have displayed the scaled data N(E,t)2π /t . For
the laser field polarized along the y direction (right panel),
the yield is indistinguishable from that obtained for spatially
homogeneous field for all energies as the radiative mass
increase governs the laser-assisted decrease of the pair-creation
yield. Here the corresponding time-dependent magnetic field,
B(x,t) = dAy/dx ez, points in the z direction and apparently
does not affect the pair-creation process.

On the other hand, for the vector potential along the x

direction (left figure) the impact of its spatial dependence is
much more interesting. It has a dramatic and rather nontrivial
effect on the spectrum that depends on the energy of the
created electrons, as some energies are enhanced and others
reduced compared to the laser-free case as well as to the
case where kx = 0. While this particular field configuration
has no magnetic-field component, as ∇×A = 0, the impact of
the kx term in A(x,t) affects only the corresponding electric
field, E(x,t) = −c−1∂A/∂t − ∇V (x) in the direction of the
static force field. As this direction is more relevant for the pair
creation, any modification of the term ∂A/∂t has a measurable
impact on the yield.

We should mention that also for both external fields with
kx �= 0 the data perfectly match with the Gaussian scattering
data. We have to point out that due to the projection on field-free
states, one should not overinterpret the time dependence of
the yield N (t) = ∫ dEN (E,t) during the interaction time. The
observed rapid oscillations with frequency 2ω shown in Fig. 2
are almost suppressed for both polarization directions when the

FIG. 6. Comparison of the energy spectra of the created particles from the laser-assisted pair-creation process with and without the effect
of the spatial dependence of the laser field, N(E,t)2π /t for the field polarized parallel (left) and perpendicular (right) to the static force. The
dotted line is the spectrum without any laser field. (parameters as in Fig. 2).
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laser field has a spatial as well as time dependence. Here we
observe a nearly monotonic increase of N(t) during the plateau
region of the external fields.

VII. SUMMARY AND OPEN QUESTIONS

We have suggested that it is possible to map the quantum-
field-theoretical problem of the decay of the QED vacuum
state onto the quantum-mechanical problem of laser-assisted
scattering where the incoming scattering particle is comprised
of negative energy states of the force-free Dirac equation. We
should note here a rather peculiar feature of the relationship
between the energies involved in the scattering and the cor-
responding vacuum decay. The mapping is nontrivial as the
absolute value of the (chosen) initial energy of the incoming
wave packet is identical to the final energy of the created
positron in the vacuum decay process even in the case of laser-
induced energy transitions. The total energy of the incoming
wave packet (comprised of Dirac states) is actually positive
due to the “lift” by the external potential energy |V0|. In
the absence of any laser this energy is conserved. However, in
the presence of the laser field, the energy of the wave packet is
not conserved due to multiphoton transitions, such that the final
scattered state can contain several energies. It is noteworthy
that also in the laser-assisted decay the chosen initial energy
(and not the final one) matches that of the created positron.

While this equivalence opens the door to new theoretical
approaches, one might also wonder if it is even possible to
model this process in classical mechanical terms of relativistic
scattering [46] similar to those established for laser-assisted
scattering [14–20]. It was suggested that some of the features of
quantum-mechanical interactions, such as self-repulsion [47],
energy spectra in pair creation [48], and relativistic resonances
[49,50], can indeed be reproduced with surprising accuracy
by corresponding classical ensembles of quasiparticles. We
presently certainly lack any classical intuition for the Klein
tunneling through a supercritical barrier. We reiterate that this
“scattering” potential is peculiar as the energy of an incoming
particle determines whether the particle is accelerated or
decelerated. Here it would be required to develop a classical
mechanical description that permits “classical” particles to take
formally a negative energy. For some early first ideas in this
direction, see the work by Costella et al. [51] who suggested
how antiparticle motion is not a prerequisite but can be dealt
with in classical mechanics itself. This goal is, of course, very
speculative and might also make use of two-state particles or
to make physical sense out of particles that formally involve
backward in time as suggested by the Feynman-Stueckelberg
interpretation [52,53].

In this work, the vacuum state is represented by the complete
set of (negative) energy eigenstates, whose temporal evolution
had to be obtained by the dynamics of each (Dirac sea) state
separately. This tedious task is unfortunately rather computer
memory and CPU time consuming and its feasibility often
requires a restriction of the spatial dimension. In order to be
able to tackle also three-dimensional situations with full space-
time resolution, two interesting early works [24,25] proposed
to model the quantum-field-theoretical vacuum state by just
a single quantum-mechanical state that is a superposition of
only a few eigenstates. In Ref. [24] the vacuum was modeled

by a single electron wave packet of negative energy at rest to
be sufficiently narrow in momentum, to exclude unphysical in-
terference effects between different momentum states. In [25]
a single quantum-mechanical state was chosen that included,
as a linear superposition, all possible momentum states up
to a certain maximum. While these single-state calculations
provided us with plenty of information about multiphoton
processes in the context of pair creation, it should be kept in
mind that they nevertheless represent only a certain subportion
of the Dirac sea. It seems computationally a very promising
task to being able to identify, a priori, which of the initially
occupied Dirac states are dynamically most relevant. The
mapping of quantum-field theory onto quantum-mechanical
states discussed in this work might provide guidance and
avenues for this goal. Complementary to the present computa-
tional approach, there has been also some significant progress
obtained using real-time lattice techniques [54–56]. These rely
on the classical-statistical approximation that is valid in the
small coupling limit.

While our approach permitted us to include the laser
polarization directions being aligned at arbitrary angles relative
to the static electric-field vector of the static potential, we
note that it was possible here to restrict the spatial domain
to only the x direction, as the canonical momenta in the y and
z directions were conserved. In a more general situation where
the spatially dependent external field varies also along the other
two directions, more studies will be required.
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APPENDIX A

We will now examine the general expression (3.2) for the
special case where the positrons are created solely by a static
supercritical field V(x). We will show below that in the long-
time limit the energy density grows linearly in time and can
be expressed in terms of the quantum-mechanical transmission
coefficient where the energy E is in the range mc2 to |V0| −
mc2. Here among all possible initial Dirac states |k; d〉 only a
small subgroup of states happen to contribute to the vacuum
decay in the long-time limit. It turns out that only those Dirac
sea states that have a negative momentum (due to our choice
of sign V0 < 0), which is in the energy range between −|V0| +
mc2 < −[m2c4 + c2k2]1/2 < −mc2 can contribute in the long-
time limit.

As a quick excursion, we have to briefly summarize first
some stationary properties of this field configuration. Let
us assume that the external force field is localized around
x = 0 and given by a scalar potential V(x) that fullfils V (x =
−∞) = V0 and V (x = ∞) = 0 such as the Sauter potential
used in our numerical analysis. The height |V0| is assumed
to be supercritical, i.e., |V0| > 2mc2. For a given positive
(auxiliary) energy in the range mc2 < E+ < |V0| − mc2 there
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exists a stationary energy eigenstate of the Dirac Hamiltonian
that fulfills [cσ1p + c2σ3 − V (x)]|E+〉 = E+|E+〉. This state
contains the reflection and transmission amplitudes.

On the right side (x > 0) of the potential (where V (x) ≈ 0)
the wave function of this state |E+〉 describes an outgoing
(right-traveling) electron state φ+

tran(x,p) with a characteristic
transmission amplitude τ . If we analytically continue this state
to all positions x it would have a (positive) momentum p and
energy E+ ≡ [m2c4 + c2p2]1/2, as it would satisfy [cσ1p +
c2σ3]φ+

tran(x,p; u) = E+φ+
tran(x,p; u). The energy dependence

of the transmission amplitude τ depends on the details of the
region where the electric field is nonzero and can be obtained
by assuming that the asymptotic current densities are the same,
i.e., jinc + jref = jtran. The corresponding transmission coeffi-
cient is defined by the ratio of the transmitted current and the
incoming current, i.e., jtran/jinc = |τ |2vtran/vinc, where vtran =
c2p/[m2c4 + c2p2]1/2 and vinc = c2|k|/[m2c4 + c2k2]1/2.

On the left side of the electric field (x < 0), the energy
eigenstate is a superposition of an incoming φ−

in (x,k; d) and a
reflected φ−

ref (x, − k; d) state, where the negative momentum
k is related to the auxiliary energy E+ according to E+ =
|V0| − [m2c4 + c2k2]1/2. It is important to remark that (after
analytic continuation to all positions) both states φ−

in and
φ−

ref are identical to free-force eigenstates with negative en-
ergy, as they both fulfill [cσ1p + c2σ3]φ−(x, ± k; d) = (E+ −
|V0|)φ−(x, ± k; d). As characteristic of all eigenstates with
negative energy, a negative momentum k corresponds to a
positive current density presenting a particle moving to the
right.

After this excursion to the stationary scattering theory, we
can now return to the interpretation of the evolution of the
spatial density ρk(x,t). At the initial time, this density ρk(x,t)
vanishes identically and it would remain so for all times in
the absence of any forces, V ′(x) = 0. This means that any
spatial growth of ρk(x,t) can occur only at those specific spatial
regions where the force V ′(x) is nonzero. This means that any
nonvanishing portion of ρk(x,t) originates close to x = 0 and
then consecutively could propagate into the positive and (at
least in principle) into the negative x direction. The initial
Dirac state |k; d〉 with negative energy −[m2c4 + c2k2]1/2 and
negative momentum k has the largest overlap (scalar product)
with the specific scattering state |E+〉 that has the (auxiliary)
positive energy E+ = |V0| − [m2c4 + c2k2]1/2. This should be
obvious as the two wave functions φ−

inc(x,k; d) and 〈x|k; d〉 are
identical under the barrier V(x).

This means we have arrived at the following visual picture.
The population associated with the initial state |k; d〉 “flows” to
the region x ≈ 0, where it is continuously converted to a state
φ+

tran(x,p; u) that “flows” out to the right with momentum p.
For sufficiently long times, we can now calculate the integral
∫ dxρk(x,t) by the product of the height of ρk(x,t) and its
spatial extension.

The height of ρk(x,t) follows from the fact that |k; d〉 mainly
excites |E+〉. In other words, its amplitude should match that of
|φ+

tran(x,p; u)|2, which is |τ (E+)|2/L. Here the second factor
is the result of the (finite) total length L of our system and
a direct consequence of the box normalization of all states
〈k1; d|k2; d〉 = δk1,k2 as mentioned in Sec. II. The length of the
spatial region [where ρk(x,t) = L−1|τ (E+)|2 �= 0] is given by
the product of the velocity and time, i.e., vtrant . As a result, we

can estimate∫
dx ρk(x,t) = L−1|τ (E+)|2vtrant. (A1)

If we introduce the transmission coefficient via the
expression |τ (E+)|2vtran = T (E+)vinc, we obtain Nk(t) =
∫ dxρk(x,t) = L−1T (E+)vinct . If we convert the (discrete)
density Nk(t) to the corresponding energy density (as outlined
in (2.4) above), we obtain

N (E,t) = (2π )−1T (E+)t = (2π )−1T (|V0| − E)t (A2)

as the velocity term as well as the numerical box size L cancels
out.

APPENDIX B

In this appendix, we will show that for general static electric-
field configurations for which the corresponding electric field
is even (symmetric) with respect to a given location, the
transmission coefficient is symmetric with regard to its central
energy |V0|/2, i.e., T (|V0| − E) = T (E). This proof relies on
the existence of the antiunitary charge-conjugation operator
C , which for the Hamiltonian (2.1) in the (standard-Dirac)
representation takes the form C = iβα2K , where K is the (an-
tilinear) complex-conjugation operator. For the Hamiltonian
(2.2) it takes the analogous, but simpler, form C = iσ3σ2K =
σ1K It should not be confused with the (more important)
quantum-field-theoretical operator. It has the property that
any general Hamiltonian for an electron of charge q coupled
to an external field, i.e., H (q) ≡ H0 − qαA + qV , can be
transformed into the corresponding Hamiltonian for a positron
coupled to the same field, i.e., C H (q)C −1 = −H (−q).

If we apply this operator on both sides of the eigenvalue
equation for the stationary scattering state (H0 + qV )|E+〉 =
E+|E+〉 (discussed in Appendix A), we obtain

C (H0 + qV )C −1C |E+〉 = C E+|E+〉, (B1)

where we also have inserted the unit operator C C −1 = 1. Us-
ing the charge-conjugation symmetry C H (q)C −1 = −H0 +
qV (x), subtracting the constant positive energy qV0 = |V0| on
both sides of the equation, and multiplying with −1, we obtain

[H0 − qV (x) + qV0]C φ(x) = (qV0 − E+)C φ(x). (B2)

The original wave function φ(x) was a scattering eigenstate
with energy E+ associated the potential V(x) with the asymp-
totic properties V (−∞) = V0 and V (∞) = 0 corresponding to
an incoming particle from the left (k < 0) with the asymptotic
properties state φ(x) = 〈x|k; d〉 + r〈x| − k; d〉, where V (x) =
V0. For positive x [where V (x) = 0] the state represented the
transmitted portion, given by φ(x) = τ 〈x|p; u〉. Equation (B2)
shows that the wave function C φ(x) is an eigenstate of the
Hamiltonian H0 + qW (x), where the new potential W (x) =
−V (x) + V0 has the identical shape as V(x), it is just reversed
with regard to its asymptotic properties, i.e., W (−∞) = 0
and W (∞) = V0. However, the wave function C φ(x) has the
different energy qV0 − E+.

The charge-conjugation operation changes the signs of the
momenta and reverses basically the role of upper and lower
energy states. As a result, C φ(x) is a superposition of the in-
coming and reflected state, C φ(x) = 〈x| − k; u〉 + r∗〈x|k; u〉
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[for the left region where W (x) = 0] and the transmitted
portion C φ(x) = τ ∗〈x| − p; d〉 for the right region where
W (x) = V0. Therefore φ(x) and C φ(x) contain the transmis-
sion coefficients that are just complex conjugates of each other,
even though they are associated with different energies E+ and
qV0 − E+ and different potentials V(x) and W(x).

In general, the associated potentials V(x) and W(x) are
different from each other. However, the situation is different if
the electric field has some symmetry under spatial inversion.

For example, V ′(x) = V ′(−x) can lead to V (−x) = −V (x) +
V0 and we obtain W (−x) = V (x). This means that the spa-
tially inverted solutions C φ(−x) and φ(x) are both solutions
associated with the same potential V(x), but energies E+ and
qV0 − E+. This means that we have proven the symmetry
property T (E+) = T (qV0 − E+) such that Eq. (A2) simplifies
to

N (E,t) = (2π )−1T (E)t. (B3)
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