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Enhancing high-order harmonic generation by sculpting waveforms with chirp
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We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field
waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies.
Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier
frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses
are considered: (ω, 2ω) and (ω, 3ω). Our results show how changing the signs of the chirps in each of the two
component pulses leads to drastic changes in the HHG spectra. Our theoretical analysis is based on numerical
solutions of the time-dependent Schrödinger equation and on a semiclassical analytical approach that affords a
clear physical interpretation of how our optimized waveforms lead to enhanced HHG spectra.
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I. INTRODUCTION

The electric-field waveform of a laser pulse plays a crucial
role in high-order harmonic generation (HHG) by a few-cycle
driving laser field [1]. Specifically, HHG spectra can be very
sensitive to the carrier-envelope phase (CEP) [2] and the chirp
[3,4] of a single few-cycle pulse, or to the time delay between
two-color synthesized few-cycle laser pulses [5]. An optimized
few-cycle or many-cycle waveform of the laser field can,
e.g., selectively enhance a single harmonic while suppressing
neighboring harmonics [6–8], or, alternatively, greatly enhance
HHG yields across a large range of harmonic photon energies
[5,9–16].

Waveform control in HHG is typically realized by coher-
ently combining two or more color laser pulses while carefully
adjusting the phases, intensities, and, in some cases, the
polarizations of the component frequencies [7,11,12,15–17].
The values of the parameters are often obtained by optimization
techniques using iterative algorithms with feedback loops
[6,8,9,11–16], but can also be determined on the basis of
physical arguments, e.g., for the purpose of increasing ion-
ization rates and/or recollision energies of the active electron
in HHG processes [5,9,10]. Chirp is an additional parameter
for controlling the driving laser waveform and, hence, HHG
spectra. The value of the chirp parameter in a linearly chirped
many-cycle driving laser pulse has been shown to greatly affect
the shape of the HHG spectrum because it can compensate the
chirp of the emitted harmonics [18–21]. More recently, the use
of waveforms composed of two or more color, linearly chirped
many-cycle driving laser pulses has been shown to enable one
to selectively enhance particular harmonics [7,8].

In this paper, we study HHG spectra produced by two-color,
few-cycle linearly chirped laser pulse fields. We show how
the chirps of the two-color pulses can be used to synthesize
few-cycle waveforms that result in enhanced HHG yields
and/or extended HHG cutoff energies. Results are presented
for two common cases of two-color waveforms, i.e., those
formed from ω–2ω and ω–3ω few-cycle pulses. Our results are

obtained by solving the time-dependent Schrödinger equation
(TDSE) as well as by means of a closed-form analytic quantum
description of HHG spectra produced by few-cycle pulses [22].
The latter analytic theory enables us to interpret our results in
terms of the key trajectories of the active electron, thus making
a straightforward connection to the semiclassical three-step
model of HHG [1,23–26].

This paper is organized as follows. In Sec. II we present
our theoretical formulation, including a description of our
parametrization of two-color chirped few-cycle pulses and
a brief overview of our numerical and analytic methods for
calculating HHG spectra. In Sec. III we present our numerical
and analytic results for HHG spectra produced by the important
cases of ω–2ω and ω–3ω few-cycle, chirped laser pulse
waveforms. For each case we discuss our strategy for using
the chirp of each of the two few-cycle pulses to enhance the
HHG yield and/or to extend the HHG cutoff energy. Finally,
in Sec. IV we summarize our results on using two-color,
chirped few-cycle pulse waveforms to enhance HHG yields
and cutoff energies and present some conclusions. Atomic
units (a.u.) are used throughout this paper unless otherwise
specified.

II. THEORETICAL FORMULATION

In this section we present general descriptions of our
theoretical formulation. Specifically, we first discuss how we
parametrize chirped pulses and then provide brief descriptions
of the two methods we employ to calculate HHG spectra.
Details of our pulse parameters are given in Sec. III, where
we present our HHG results.

A. Description of a short laser-field pulse

In the electric dipole approximation, the spatial dependence
of a laser field is neglected and in order to avoid any zero-
frequency component the electric field F(t) of a laser pulse is
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calculated from the vector potential, A(t):

F(t) = −1

c

∂A(t)

∂t
, (1)

where c is the speed of light. A general parametrization of the
vector potential for a linearly polarized field is

A(t) = −cF

ω
f (t) sin[φ(t)]ẑ, (2)

where F is the peak strength, ω is the carrier frequency, f (t)
is the temporal envelope of the laser pulse, and φ(t) is a phase
function. For a chirp-free pulse, the phase function is a linear
function of time, φ(t) = φ0 + ωt , where φ0 is the CEP.

B. Description of chirped pulses

There are two commonly used analytic descriptions of a
linearly chirped laser pulse. One way is to simply add a term
in the chirp-free phase function that is quadratic in the time t so
that the laser field has a time-dependent frequency that is linear
in time, as done in Refs. [4,8,18]. In order to determine the role
of the chirp, typically the pulse durations and peak amplitudes
are fixed (i.e., independent of chirp). For an ultrashort laser
pulse, which has a frequency bandwidth, a different description
has been used in which the frequency bandwidth of the chirped
pulse is kept the same as that of the corresponding chirp-free
pulse [27,28]. In this paper we combine aspects of both pulse
formulations.

Specifically, the phase function φ(t) for a linearly chirped
pulse has the form

φ(t) = φ0 + ωt + δ

2
t2, (3)

where δ = d2φ(t)/dt2 is the pulse chirp. In this paper the
vector potential (2) for each of the two linearly chirped
components i of a two-color laser pulse waveform [with
each component having a Gaussian-shaped temporal envelope
fi(t) ≡ e−αi t

2
] thus takes the form

Ai(t) = −cFi

ωi

e−αi t
2

sin(ωit + δi t
2/2 + φi), (4)

where Fi , ωi , φi , and δi are the amplitude, frequency, CEP,
and chirp parameter of the ith color field. The Gaussian
envelope parameter αi is related to the pulse duration τi by
αi = 2 ln 2/τ 2

i , where the pulse duration τi is defined as the
full width at half maximum of the intensity profile. It is
convenient to introduce a dimensionless chirp parameter βi ,
defined by

δi = 2αiβi. (5)

Then the pulse duration τi may be expressed as

τ 2
i = 	2

i

(
1 + β2

i

)
, (6)

where 	i is the pulse duration in the absence of chirp, i.e.,
when βi = 0. The chirp-independent bandwidth 
i of the ith
component pulse is then


i = 4 ln 2/	i. (7)

In this paper we consider two-color pulse waveforms in
which i = 1 corresponds to the component pulse with a carrier

frequency ω, i = 2 corresponds to one with carrier frequency
2ω, and i = 3 corresponds to one with carrier frequency 3ω.
The vector potential for the two-color pulse waveform for the
ω–2ω case is thus

A1+2(t) = A1(t) + A2(t), (8)

and the one for the ω–3ω case is

A1+3(t) = A1(t) + A3(t). (9)

Note that the durations of these three component pulses are
assumed to be different, since in experiments these can be
separately adjusted (see, e.g., Refs. [29–31]). Specifically, we
assume that the parameter 	i equals

	i =
√

iTi , (10)

where the period Ti is defined by Ti ≡ 2π/ωi . For clarity in
this paper, we focus only on the sign of the chirp, i.e., we
compare results for positive (βi > 0) and negative (βi < 0)
chirps having the same absolute magnitude, which is fixed
at |βi | = 2 in all calculations with chirped pulses. Thus our
chirped pulses have pulse durations

τi =
√

5	i =
√

5iTi . (11)

With two colors and the choice of positive (+) or negative (−)
chirp for each color, there are four possible combinations of
chirp, i.e., (+,+), (+,−), (−,+), and (−,−).

Our goal is to determine which combinations give the
highest HHG yields and cutoff energies. Since our aim is
to focus on the role of chirp in optimizing the short-pulse
waveform, when comparing results for our two-color chirped
pulses to results for two-color unchirped pulses, we keep
the pulse durations τi for both chirped and unchirped pulses
the same. As we shall show, for few-cycle pulses the most
important features of the two-color pulse waveform are those in
the neighborhood of the peaks of the two-color pulse envelopes
and thus the results we present are not very sensitive to the
differences in the pulse durations of the ω pulse (τ1) and the
2ω pulse (τ2) or 3ω pulse (τ3).

C. Calculation of HHG spectra

The HHG spectra are calculated using the two methods used
in Ref. [5]. One is to solve the three-dimensional TDSE for an
H atom interacting with a laser electric field F (t) that is linearly
polarized along the z axis. Within the dipole approximation,
the azimuthally symmetric TDSE is thus

i
∂

∂t
�(r,t) =

[
p2

2
− 1

r
+ zF (t)

]
�(r,t), (12)

where the electric field F (t) is derived from the vector po-
tential in either Eq. (8) or (9): F (t) = −∂tA(t)/c, in which
A(t) ≡ A(t) · ẑ. The TDSE is solved in spherical coordinates
using a time-dependent generalized pseudospectral method
[32], in which the wave function is expanded in Legendre
polynomials and the time propagation is carried out using a
second-order split-operator technique. The convergence of our
TDSE calculations was monitored by increasing the basis size
and the grid density in both space and time.
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The dimensionless harmonic spectrum S() is obtained
from the Fourier transformed dipole acceleration along the z
axis D̈z():

S() = 1

h̄c3
|D̈z()|2, (13)

where the Fourier transform is defined by

D̈z() = 1√
2π

∫ ∞

−∞
D̈z(t)e

−itdt , (14)

and the time-dependent dipole acceleration D̈z(t) is [33]

D̈z(t) ≡ 〈�(r,t)| − z̈|�(r,t)〉

= 〈�(r,t)|∂V (r)

∂z
|�(r,t)〉 + F (t) , (15)

in which V (r) = −1/r is the atomic potential for an H atom,
and thus ∂V (r)/∂z = z/r3. Note that the factor h̄c3 in the
denominator of Eq. (13) has been given explicitly (where h̄ = 1
in a.u.) in order to clearly indicate that S() is dimensionless.

The second method employs an analytical description of
HHG spectra produced by few-cycle laser pulses [22]. In
this analytic description, the dimensionless harmonic spectrum
ρ() is obtained by coherently adding a handful of amplitudes
corresponding to ionized electron trajectories (labeled by j

and k) from different half cycles of the laser pulse:

ρ() =
∑
j,k

sjk cos(ϕj − ϕk)Aj (E)Ak(E), (16)

where the harmonic photon energy  and the returning electron
energy E satisfy the relation

 = E + |E0|. (17)

HereE0 is the ground-state energy of the electron, which equals
E0 = −1/2 for the hydrogen atom. In Eq. (16), each amplitude
Aj (E) equals the square root of a product of three factors
representing the three steps of high harmonic generation: the
ionization factor Ij , the propagation factor Wj (E), and the
recombination factor σ (r)(E):

Aj (E) ≡
√
IjWj (E)σ (r)(E) . (18)

Also, in Eq. (16) ϕj is the phase of the j th amplitude and
the factors sjk = ±1 are sign factors. The calculation of each
Aj (E) amplitude begins by finding a corresponding classical
trajectory that starts at t

(j )
i (the ionization time), and ends at

t
(j )
r (the recombination time). For a detailed description of the

calculation of the amplitudes Aj (E), the phases ϕj , the sign
factors sjk , and the times t

(j )
i and t

(j )
r , see Refs. [5,22].

III. RESULTS AND DISCUSSION

Commonly used two-color fields include those in which
a pulse with carrier frequency ω is combined with either a
second-harmonic pulse (ω − 2ω) or a third-harmonic pulse
(ω − 3ω). These two combinations can have very different
alignments of the fundamental and harmonic field maxima and
minima. For the ω − 2ω field waveform one can never align all
the major extrema of the two color constituents. As shown in

TABLE I. Laser parameters for the chirped and unchirped pulses
used in our HHG calculations. For each component pulse i, we give
the carrier wavelength λi (nm) (=2πc/ωi), the carrier frequency ωi

(a.u.), the pulse duration τi (fs) [see Eq. (11)], the carrier period Ti

(fs), and the absolute magnitude of the dimensionless chirp parameter,
|βi |. For each of the component pulses, the CEP φi = 0 and the peak
pulse intensity is Ii = cF 2

i /(8π ) = 6 × 1013 W/cm2.

i λi (nm) ωi (a.u.) τi (fs) Ti (fs) |βi |
1 2400 1.90(−2) 17.9 8.0 2
1 2400 1.90(−2) 17.9 8.0 0
2 1200 3.80(−2) 12.6 4.0 2
2 1200 3.80(−2) 12.6 4.0 0
3 800 5.70(−2) 10.3 2.7 2
3 800 5.70(−2) 10.3 2.7 0

Fig. 1(a), the maxima are aligned at t = 0 but are antialigned at
t = 0.5T1, where T1 is the period of the fundamental frequency.
However, for the ω − 3ω field waveform, the extrema can
be aligned at both t = 0 and 0.5T1 [see Fig. 3(a) below].
Owing to such different alignment possibilities as well as
to the fact that HHG spectra are extremely sensitive to the
time profile of a laser pulse waveform, the strategies for
choosing the best chirp combinations are different for the
ω − 2ω andω − 3ω field waveforms. These different strategies
are discussed in turn in Secs. III A and III B for pulses having
zero CEPs (so that the two fields are aligned at t = 0).
The case of nonzero CEPs is considered in Sec. III C. For
convenient reference, the laser parameters for our chirped and
unchirped pulses in the ω − 2ω and ω − 3ω cases are given in
Table I.

A. Case of ω–2ω chirped laser pulses: HHG enhancement by
improving pulse alignment

The ω − 2ω fields plotted in Fig. 1 are those for the chirped
and unchirped component pulses i = 1 and 2 in Table I. The
pulse durations of the unchirped pulses in Fig. 1(a) are set equal
to those of the chirped pulses, i.e., 	1 = 17.9 fs and 	2 = 12.6
fs with chirp parameters |βi | = 0. This is done since the HHG
spectrum is sensitive to the pulse length of an ultrashort pulse
[22] and our aim here is to isolate the effects of chirp on the
HHG spectra.

For the ω − 2ω pulse waveform in Fig. 1(a), the peaks of the
two component pulses interfere constructively at t = 0 where
their electric fields are aligned, but interfere destructively at
t = −0.5T1 and +0.5T1, at which their electric fields are
antialigned. For times approximately a quarter period on either
side of t = ±0.5T1, the combined field waveform (indicated
by the solid line) has two minima. Owing to the periodicity
of the ω − 2ω fields, if one uses chirp to increase the field
minimum in the vicinity of t = −0.25T1, then one expects to
also increase the field minimum in the vicinity of t = +0.75T1.
These two important minima are highlighted in Fig. 1(a). The
increase of the first minimum will increase the ionization rate
just before the maximum in the combined field at t = 0, while
the increase of the second minimum will increase the return
energy of electrons ionized by the peak field near t = 0. In
order to increase the minimum of the ω − 2ω waveform near
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FIG. 1. Two-color (ω − 2ω) pulse waveforms and their HHG spectra. The (ω − 2ω) waveforms defined in Eqs. (1) and (8) are composed
of component pulse fields i = 1 and 2, defined by Eq. (4), having field parameters given in Table I. (a), (b) Electric-field pulses for carrier
wavelengths λ1 = 2400 nm [long dashed (blue) line], λ2 = 1200 nm [short dashed (green) line], and the two-color combined field waveform
[solid (red) line] plotted vs time in units of T1 ≡ 2π/ω1 = 8.0 fs. The arrows indicate the ionization (i) or recombination (r) times of the
three electron trajectories given in Table II. Highlighted areas in the vicinity of times t = −0.25T1 and +0.75T1 are discussed in the main text.
(c) HHG spectra ρ() [see Eq. (16)] produced by the unchirped and chirped pulse waveforms in panels (a) and (b) calculated using the analytic
description of short-pulse HHG of Ref. [22]. The arrows indicate the HHG plateau cutoff energies produced by the trajectories listed in Table II.
(d) TDSE results S() [see Eq. (13)] for the same HHG spectra as in panel (c). To facilitate comparison with the TDSE results S() in panel
(d), each of the analytic spectra ρ() in panel (c) is multiplied by the constant factor 3.08. This factor is chosen so that the values of the TDSE
and analytic curves for the unchirped pulses are equal at the position of the lowest cutoff energy, i.e., ρ( = 112 eV) = S( = 112 eV) for
the unchirped pulses.

t = −0.25T1, one must move the minima of the ω and 2ω

component fields at t = −0.5T1 and −0.25T1, respectively,
closer together. This can be done by introducing a negative
chirp in the ω pulse and a positive chirp in the 2ω pulse.
The resultant fields are plotted in Fig. 1(b) and one can see
the enhanced field strength in the highlighted areas. Note that
the peak intensity of the chirped pulse remains the same as that
of the unchirped pulse because the fields are not affected by
the chirp at t = 0. With this optimization strategy, the HHG
spectrum produced by the chirped ω − 2ω pulse waveform
exhibits a clear enhancement of the HHG yield for harmonic
photon energies greater than 120 eV as compared to the HHG
spectrum produced by the unchirped ω − 2ω pulse waveform,
as shown in Figs. 1(c) and 1(d), where we present the HHG
spectra produced by our analytic method and by our TDSE
method, respectively. We notice also that the cutoff energy of
the lower-energy plateau in the HHG spectrum is increased
from approximately 112 to 150 eV with only a small decrease
in the HHG yield.

In order to determine the physical mechanisms responsible
for these enhancements of the HHG spectrum, we employ our
analytic description of HHG spectra produced by few-cycle
pulses. In this description, the harmonic spectrum is obtained
by coherently adding the amplitudes corresponding to a hand-
ful of electron trajectories ionized from different half cycles
in the vicinity of the maximum of the short-pulse envelope
[5]. For each j th electron trajectory, one can calculate the

ionization and recombination times t
(j )
i and t

(j )
r , the instan-

taneous Keldysh parameter γ̃j at the time of ionization, the
ionization factor Ij (which largely determines the spectral
intensity), and the cutoff energy E

(j )
cut . These quantities are

given, respectively, by Eqs. (13), (18), (19), and (25) of
Ref. [5] and are listed in Table II for the HHG spectra in
Fig. 1(c) produced by the unchirped and chirped ω − 2ω pulse
waveforms in Figs. 1(a) and 1(b).

TABLE II. Ionization and recombination times t
(j )
i and t (j )

r

(in units of T1), cutoff energies E
(j )
cut , ionization factors Ij , and

instantaneous Keldysh parameters γ̃j for three important electron
trajectories j = 1-3 that determine the HHG spectra in Fig. 1(c)
produced by the unchirped and chirped ω − 2ω pulse waveforms
shown in Figs. 1(a) and 1(b).

j t
(j )
i t (j )

r E
(j )
cut (eV) Ij γ̃j

(a) Unchirped ω − 2ω

1 −0.98 −0.18 138 2.7(−4) 0.68
2 −0.33 0.13 195 5.6(−6) 0.96
3 0.020 0.80 112 3.7(−3) 0.47

(b) Chirped (−,+)
1′ −0.96 −0.19 135 4.3(−6) 0.98
2′ −0.33 0.13 194 3.7(−5) 0.83
3′ 0.025 0.79 150 3.5(−3) 0.47
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In Figs. 1(a) and 1(b) we indicate the ionization and
recombination times, t

(j )
i and t

(j )
r , for each of the key electron

trajectories j = 1-3 and 1′-3′ given in Table II for the unchirped
and chirped ω − 2ω pulse waveforms, respectively. Also, in
Fig. 1(c) we indicate the cutoff energies for each of these
three trajectories for both the unchirped and chirped pulse
waveforms.

It is clear from Table II that the approximately order-of-
magnitude increase in the HHG yield for harmonic energies
greater than 160 eV stems from the nearly order-of-magnitude
increase in the ionization rate for electron trajectory j = 2′
in the case of the chirped ω − 2ω pulse waveform. One sees
also that the extension of the lower-energy HHG plateau cutoff
energy from 112 to 150 eV is due to the greater recombination
energy obtained by the electron on trajectory j = 3′, which
dominates the spectrum in this energy region. In particular, the
significance of the electron trajectory j = 1′ is greatly reduced
owing to the nearly two-orders-of-magnitude reduction of its
ionization rate. Figures 1(c) and 1(d) show also that both the
analytic and the TDSE results have fine oscillation structures
in the energy region below 160 eV. The origin of these small
peaks is the interference of two or more partial amplitudes from
different trajectories [22]. For example, for the chirped case in
Fig. 1(c), there are three contributing partial amplitudes, 1′, 2′,
and 3′. Trajectory 3′ is the dominant one since its ionization
factor is more than two orders of magnitude higher than those
of the other two, which are responsible for the fine oscillation
structures.

The HHG spectra from our analytical calculations in
Fig. 1(c) agree well with the TDSE results in Fig. 1(d). The
discrepancy in the absolute yields of the analytic and TDSE
results by an overall factor is expected, as the analytic theory
assumes that the instantaneous Keldysh parameter of the j th
trajectory is small, i.e., that γ̃j is small compared to unity. In the
present calculations, this is not always the case (see Table II).
The less smooth curves of the TDSE results as compared to
the analytic results for harmonic energies above 170 eV may
be due to interference of more than one trajectory, whereas the
analytic results stem from only the j = 2 or 2′ trajectory in
the unchirped and chirped cases, respectively. For clarity, our
results in Figs. 1(c) and 1(d) are presented in the high-energy
region of the HHG spectrum since it is in this important energy
region that chirp effects are most significant.

The optimal combination of chirps for the unchirped ω −
2ω pulse waveform in Fig. 1(a) is thus (−,+), in which the
ω pulse is negatively chirped and the 2ω pulse is positively
chirped. We have also carried out calculations for the other
three combinations of chirped pulses: (+,−), (−,−), and
(+,+). The resultant HHG spectra are plotted in Fig. 2. In
Fig. 2(a) one sees that both the (−,+) and (−,−) chirped pulse
waveforms also result in an enhancement of the HHG yield
for photon energies above 120 eV, but the optimal (−,+) chirp
combination produces the greatest enhancement. In contrast, in
Fig. 2(b) one sees that both the (+,−) and (+,+) chirped pulse
waveforms result in a decrease in HHG yields as compared
to the unchirped pulse case, with the opposite of the optimal
combination, i.e., (+,−), giving the lowest HHG yield in the
high-energy region. Although Fig. 2 only shows our analytic
calculation results for the HHG spectra, results of our TDSE
calculations (not shown) are similar.

FIG. 2. Comparison of HHG spectraρ() [see Eq. (16)] produced
by ω − 2ω pulse waveforms with four chirp combinations β = ±2 of
the ω and 2ω pulse fields. (a) HHG spectra for the chirp combinations
(−,+) and (−,−), where the result for the former is the same as that
in Fig. 1(c). (b) HHG spectra for the chirp combinations (+,−) and
(+,+). For comparison, in each panel the HHG spectrum produced
by the unchirped pulse is also plotted.

B. Case of ω–3ω chirped laser pulses: HHG enhancement by
increasing pulse asymmetry

The strategy for enhancing the HHG spectrum produced by
an ω–3ω pulse waveform using chirp differs from that for the
ω–2ω pulse waveform considered in the previous subsection.
In the latter case we have shown that (for pulses with zero
CEPs) the ω pulse and 2ω pulse fields are antialigned at
t = ±0.5T1 [see Fig. 1(a)]. In that case we introduced chirps
in the ω pulse and 2ω pulse fields that slightly improved the
alignment of the two fields at times t = ±0.5T1 + 0.25T1. In
the case of an ω–3ω pulse waveform, however, the ω pulse and
3ω pulse fields are aligned at times t = ±0.5T1 and produce
nearly symmetric oscillations of the two-color waveform that
are centered at times t = ±0.25T1 [see highlighted areas in
Fig. 3(a)]. In this case the strategy for enhancing HHG yields
and increasing HHG plateau cutoff energies is to introduce
chirps in the ω pulse and 3ω pulse fields that result in a reduced
symmetry of the oscillations centered at t = ±0.25T1 in the
two-color waveform.

The ω and 3ω pulse fields and their superposition waveform
are presented in Fig. 3(a) for the component field parameters
given in Table I. Examining the ω–3ω pulse waveform (the
solid line) in Fig. 3(a), one sees that electrons ionized by
the large field amplitude centered at the time t = −0.5T1 are
accelerated back to the atom a half cycle later by the oppositely
directed large field amplitude centered at t = 0. Similarly,
electrons ionized by the large field amplitude centered at t = 0
are accelerated back to the atom a half cycle later by the
large field amplitude centered at t = +0.5T1. By introducing
chirps in the ω pulse and 3ω pulse fields, one can enhance
these dominant motions by changing the amplitudes of the
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FIG. 3. Two-color (ω − 3ω) pulse waveforms and their HHG spectra. The (ω − 3ω) waveforms defined in Eqs. (1) and (9) are composed
of component pulse fields i = 1 and 3, defined by Eq. (4), having field parameters given in Table I. (a), (b) Electric-field pulses for carrier
wavelengths λ1 = 2400 nm [long dashed (blue) line], λ3 = 800 nm [short dashed (green) line], and the two-color combined field waveform
[solid (red) line] plotted vs time in units of T1 ≡ 2π/ω1 = 8.0 fs. The arrows indicate the ionization (i) or recombination (r) times of two
important electron trajectories given in Table III. Highlighted areas in the vicinity of times t = ±0.25T1 are discussed in the main text. (c) HHG
spectra ρ() [see Eq. (16)] produced by the unchirped and chirped pulse waveforms in panels (a) and (b) calculated using the analytic description
of short-pulse HHG of Ref. [22]. The arrows indicate the HHG plateau cutoff energies produced by the trajectories listed in Table III. (d) TDSE
results S() [see Eq. (13)] for the same HHG spectra as in panel (c). To facilitate comparison with the TDSE results S() in panel (d), each of
the analytic spectra ρ() in panel (c) is multiplied by the constant factor 5.81. This factor is chosen so that the values of the TDSE and analytic
curves for the unchirped pulses are equal at the position of the lowest cutoff energy, i.e., ρ( = 119 eV) = S( = 119 eV) for the unchirped
pulses.

small oscillations of the waveform in the highlighted areas in
Fig. 3(a) centered at t = ±0.25T1. Specifically, one wishes to
use chirp to increase the amplitudes of the first half cycles of the
oscillations at times t � ±0.25T1 and reduce the amplitudes of
the second half cycles of the oscillations at times t � ±0.25T1.
By thus increasing the asymmetry of these two minor half
cycles [see the highlighted areas in Fig. 3(a)], the electrons
ionized by the peak field amplitudes centered at times t =
−0.5T1 and 0 gain more energy during their acceleration back
to the atom.

This strategy for using chirp to enhance the HHG spectrum
produced by the ω − 3ω pulse waveform requires that one
positively chirps the ω pulse while negatively chirping the
3ω pulse. As before, our chirp parameter is |βi | = 2. By
introducing these chirps, the magnitude of the ratio of the
amplitude of the first half cycle to the amplitude of the second
half cycle in the highlighted area of Fig. 3 at t = −0.25 is
changed from 0.87 to 1.15. Similarly, the magnitude of the
ratio of the amplitude of the first half cycle to the amplitude
of the second half cycle in the highlighted area of Fig. 3 at
t = +0.25 is changed from 1.15 to 1.82. Thus, the (+,−) chirps
of the ω and 3ω pulses, respectively, increase the asymmetry
in the magnitude of the first half cycle to that of the second half
cycle of each of the minor oscillations at times t = ±0.25T1.
The increase in these asymmetries in turn results in a significant
increase of the HHG plateau cutoff energy as well as an increase
in the HHG yield above 130 eV, as shown in Figs. 3(c) and 3(d),
which present, respectively, our analytic and TDSE results

for this ω–3ω case in the high-energy region of the HHG
spectrum.

The origin of these enhancements of the HHG spectrum
yields and cutoff energies can be understood from our analytic
description of short-pulse HHG spectra. For each of the two
most important electron trajectories, j = 1,2, in the high-
energy HHG spectrum, we present in Table III the ioniza-
tion and recombination times t

(j )
i and t

(j )
r , the instantaneous

Keldysh parameter γ̃j at the time of ionization, the ionization
factor Ij (which largely determines the spectral intensity), and

TABLE III. Ionization and recombination times t
(j )
i and t (j )

r

(in units of T1), cutoff energies E
(j )
cut , ionization factors Ij , and

instantaneous Keldysh parameters γ̃j for two important electron
trajectories j = 1,2 that determine the high-energy HHG spectra
in Fig. 3(c) produced by the unchirped and chirped ω − 3ω pulse
waveforms shown in Figs. 3(a) and 3(b).

j t
(j )
i t (j )

r E
(j )
cut (eV) Ij γ̃j

(a) Unchirped ω − 3ω

1 −0.45 0.10 140 1.3(−3) 0.94
2 0.043 0.60 119 3.0(−3) 0.83

(b) Chirped (+,−)
1′ −0.45 0.11 145 2.6(−3) 0.85
2′ 0.035 0.62 142 4.6(−3) 0.78

053414-6



ENHANCING HIGH-ORDER HARMONIC GENERATION BY … PHYSICAL REVIEW A 97, 053414 (2018)

the cutoff energy E
(j )
cut . In our analytic approach, the amplitudes

for these trajectories result in the HHG spectra given in Fig. 3(c)
that are produced by the unchirped and chirped ω − 3ω pulse
waveforms in Figs. 3(a) and 3(b). Comparing the trajectory
parameters in Table III for the unchirped and chirped ω − 3ω

pulse waveforms, one sees that the j = 2′ trajectory has a
greatly increased cutoff energy as compared to that for the
j = 2 trajectory. Also, the ionization factors for the j = 1′
and 2′ trajectories are significantly larger than those for the
j = 1 and 2 trajectories.

In addition to these enhancements, the chirped pulse HHG
spectrum has fine-structure oscillations in the energy region
above 130 eV that are absent in the unchirped pulse spectrum.
These fine-structure oscillations originate from the interfer-
ence between the two trajectories j = 1′ and 2′ of the chirped
pulse. This interference is absent in the unchirped pulse HHG
spectrum owing to the very different cutoff energies of the j =
1 and 2 trajectories, as shown in Table III. Thus in the energy
region from about 135 to 150 eV, the unchirped spectrum is
dependent mainly on the j = 1 trajectory and hence is quite
smooth. By introducing chirps in the ω pulse and 3ω pulse
fields, the cutoff energy of the j = 2′ trajectory increases from
119 to 142 eV, which is about the same as the cutoff of the j =
1′ trajectory. Hence, the fine-structure oscillations with an en-
ergy interval of about 1 eV (or about twice the ω photon energy
of 0.51 eV) are the result of interference of these two trajecto-
ries over the entire high-energy region of the HHG spectrum.

The HHG spectra from our analytical calculations in
Fig. 3(c) agree well with the TDSE results in Fig. 3(d). As noted
previously, the discrepancy in the absolute yields of the analytic
and TDSE results by an overall factor is expected, as the ana-
lytic theory assumes that the instantaneous Keldysh parameter
of each contributing trajectory is small, i.e., γ̃j is small com-
pared to unity. In the present calculations, in each case these pa-
rameters are smaller than but comparable to unity (see Table II).

The optimal combination of chirps for the unchirped ω −
3ω pulse waveform in Fig. 3(a) is thus (+,−), in which the
ω pulse is positively chirped and the 3ω pulse is negatively
chirped. We have also carried out calculations for the other
three combinations of chirped pulses: (−,−), (−,+), and
(+,+). The resultant HHG spectra are plotted in Fig. 4. In
Fig. 4(a) one sees that both the (+,−) and (−,−) chirped
pulse waveforms result in an enhancement of the HHG yield
for photon energies above about 130 eV, but the optimal
(+,−) chirp combination produces the greatest enhancement,
especially above 140 eV. In contrast, in Fig. 4(b) one sees
that both the (−,+) and (+,+) chirped pulse waveforms result
in a decrease in HHG yields as compared to the unchirped
pulse case, with the opposite of the optimal combination, i.e.,
(−,+), giving the lowest HHG yield in the high-energy region.
Although Fig. 4 only shows our analytic calculation results for
the HHG spectra, results of our TDSE calculations (not shown)
are similar.

C. Cases of ω–2ω and ω–3ω two-color pulses
having nonzero CEPs

In Secs. III A and III B we have studied HHG spectra
produced by ω − 2ω and ω − 3ω two-color pulse waveforms
and have developed strategies for using chirp to increase HHG

FIG. 4. Comparison of HHG spectraρ() [see Eq. (16)] produced
by ω − 3ω pulse waveforms with four chirp combinations β = ±2 of
the fundamental and harmonic fields. (a) HHG spectra for the chirp
combinations (+,−) and (−,−), where the result for the former is the
same as that in Fig. 3(c). (b) HHG spectra for the chirp combinations
(−,+) and (+,+). For comparison, in each panel the HHG spectrum
produced by the unchirped pulse is also plotted.

yields and plateau cutoff energies. In each of those two cases,
the ω pulse and the pulses with carrier frequencies 2ω and
3ω were assumed to have equal peak pulse intensities and
zero CEPs. In this section we demonstrate how similar chirp
strategies can be used in the case when the CEPs are nonzero.
In this case, the ω pulse is no longer aligned with the 2ω or 3ω

pulse at t = 0. The appropriate strategy is then to use chirps
to improve the alignment of the ω pulse field and the field
of the 2ω or 3ω pulse at significant times close to t = 0. As
examples, we consider two cases of two-color pulse waveforms
in which the fundamental field has a nonzero CEP φ1. Owing
to the generally good qualitative agreement of the results of
our analytic description of short-pulse HHG spectra and our
TDSE results, in this section we only present results of our
analytic description.

Consider first the ω–2ω pulse waveform studied in Sec. III A
but in which the fundamental field now has a CEP φ1 = π/4.
The unchirped ω pulse and 2ω pulse fields as well as the
ω − 2ω pulse waveform are shown in Fig. 5(a). Examining
the highlighted region centered at t = −0.75T1 we see that
the ω pulse and 2ω pulse fields both have minima that occur
at slightly different times. By introducing chirps, we aim to
improve the alignment of these two fields so that the depth of
the minimum of the ω − 2ω pulse waveform increases. This
can be accomplished by introducing a positive chirp β1 = +2
in the ω pulse and a negative chirp β2 = −2 in the 2ω pulse,
as shown in Fig. 5(b). Comparing Figs. 5(a) and 5(b), one sees
also that the nearly symmetric oscillation of the two-color pulse
waveform centered at about t = −0.38T1 becomes quite asym-
metric in the chirped pulse case. The resulting HHG spectra of
the chirped and unchirped ω − 2ω pulse waveforms are shown
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FIG. 5. Two-color (ω − 2ω) pulse waveforms and their HHG
spectra. (a), (b) Electric fields of an ω pulse, a 2ω pulse, and the
superposed ω − 2ω pulse waveform. The field parameters are the
same as in Fig. 1 except that the ω pulse has a nonzero CEP, φ1 = π/4.
The arrows indicate the ionization (i) or recombination (r) times
given in Table IV for the two most important trajectories. Highlighted
areas in the vicinity of times t = −0.75T1 and +0.25T1 are discussed
in the main text. (c) HHG spectra ρ() [see Eq. (16)] produced
by the unchirped and chirped pulse waveforms in panels (a) and
(b) calculated using the analytic description of short-pulse HHG
of Ref. [22]. The arrows indicate the HHG plateau cutoff energies
produced by the trajectories listed in Table IV.

in Fig. 5(c). One observes that the chirped pulse waveform
has a much higher HHG yield for harmonic energies above
about 135 eV and also that both the low-energy plateau and the
high-energy plateau have significantly greater cutoff energies.

Our analytic description of HHG spectra enables us to
understand the origin of these enhancements in terms of the two
important electron trajectories contributing to the high-energy
HHG spectrum. The ionization and recombination times of
these two trajectories are indicated in Figs. 5(a) and 5(b)
and their respective cutoff energies are indicated in Fig. 5(c).
In Table IV we give the values of these parameters of the two
trajectories as well as their ionization factors and instantaneous
Keldysh parameters. One sees from Fig. 5 and Table IV
that the (+,−) chirp has increased the ionization factor for
trajectory j = 1′ by an order of magnitude, explaining the
great increase in yield in the chirped pulse HHG spectrum for
harmonic energies greater than about 160 eV. This increase in

TABLE IV. Ionization and recombination times t
(j )
i and t (j )

r (in
units of T1), cutoff energies E

(j )
cut , ionization factors Ij , and instanta-

neous Keldysh parameters γ̃j for two important electron trajectories
j = 1,2 that determine the high-energy HHG spectra in Fig. 5(c)
produced by the unchirped and chirped ω − 2ω pulse waveforms
shown in Figs. 5(a) and 5(b).

j t
(j )
i t (j )

r E
(j )
cut (eV) Ij γ̃j

(a) Unchirped ω − 2ω

1 −0.65 0.10 203 5.7(−5) 0.80
2 0.00068 0.41 129 1.6(−3) 0.54

(b) Chirped (+,−)
1′ −0.66 0.10 211 6.3(−4) 0.62
2′ −0.0058 0.43 149 1.8(−3) 0.53

the ionization factor of the trajectory j = 1′ was accomplished
by using chirp to improve the alignment of the minima of the
ω pulse and 2ω pulse fields in the highlighted regions in the
vicinity of t = −0.75T1 [cf. Figs. 5(a) and 5(b)]. The chirps
also increased the alignment of the field minima in the second
highlighted regions in Figs. 5(a) and 5(b) near t = +0.25T1.
This resulted in an increase in the recombination energy of
the trajectory j = 2′ by 20 eV, explaining the extension of the
low-energy harmonic plateau from 129 to 149 eV. Finally, a
small increase in the cutoff energy of the trajectory j = 1′ was
produced by increasing the asymmetry of the oscillation of the
two-color waveform in the vicinity of t = −0.38T1.

Consider second the ω − 3ω pulse waveform studied in
Sec. III B but in which the ω pulse field now has a nonzero
CEP, φ1 = π/3. The unchirped ω pulse and 3ω pulse fields
as well as the ω − 3ω pulse waveform are shown in Fig. 6(a).
Examining the highlighted region located about t = −0.5T1

we see that the ω pulse and 3ω pulse fields both have minima
that occur at slightly different times. By introducing chirps,
we aim to improve the alignment of these two fields so that the
depth of the minimum of theω − 3ω pulse waveform increases.
This can be accomplished by introducing a negative chirp
β1 = −2 in the ω pulse and a positive chirp β2 = +2 in the 3ω

pulse, as shown in Fig. 6(b). The resulting HHG spectra of the
chirped and unchirped ω − 3ω pulse waveforms are shown in
Fig. 6(c). One observes that the chirped pulse waveform has
a much higher HHG yield across the entire harmonic energy
spectrum shown.

Our analytic description of HHG spectra enables us to
understand the origin of this enhancement of the HHG yield in
terms of three important electron trajectories contributing to the
high-energy HHG spectrum. The ionization and recombination
times of these three trajectories are indicated in Figs. 6(a)
and 6(b) and their respective cutoff energies are indicated in
Fig. 6(c). In Table V we give the values of these parameters
of the three trajectories as well as their ionization factors and
instantaneous Keldysh parameters. One sees from Fig. 6 and
Table V that the (−,+) chirp has increased the ionization
factors significantly for all three trajectories j = 1′,2′, and 3′,
explaining the great increase in yield in the chirped pulse HHG
spectrum for all harmonic energies shown. An increase in the
ionization factor of the trajectory j = 1′ by nearly three orders
of magnitude was accomplished by using chirp to improve
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FIG. 6. Two-color (ω − 3ω) pulse waveforms and their HHG
spectra. (a), (b) Electric fields of an ω pulse, a 3ω pulse, and the
superposed ω − 3ω pulse waveform. The field parameters are the
same as in Fig. 3 except that the ω pulse has a nonzero CEP, φ1 = π/3.
The arrows indicate the ionization (i) or recombination (r) times given
in Table V for the three most important trajectories. Highlighted areas
in the vicinity of times t = ±0.5T1 are discussed in the main text.
(c) HHG spectra ρ() [see Eq. (16)] produced by the unchirped and
chirped pulse waveforms in panels (a) and (b) calculated using the
analytic description of short-pulse HHG of Ref. [22]. The arrows
indicate the HHG plateau cutoff energies produced by the trajectories
listed in Table V.

TABLE V. Ionization and recombination times t
(j )
i and t (j )

r (in
units of T1), cutoff energies E

(j )
cut , ionization factors Ij , and instanta-

neous Keldysh parameters γ̃j for three important electron trajectories
j = 1,2,3 that determine the high-energy HHG spectra in Fig. 6(c)
produced by the unchirped and chirped ω − 3ω pulse waveforms
shown in Figs. 6(a) and 6(b).

j t
(j )
i t (j )

r E
(j )
cut (eV) Ij γ̃j

(a) Unchirped ω − 3ω

1 −0.58 0.068 167 1.2(−6) 1.7
2 −0.067 0.56 142 8.5(−5) 1.2
3 0.43 1.1 93.1 3.2(−5) 1.3

(b) Chirped (−,+)
1′ −0.57 0.067 166 9.5(−4) 0.97
2′ −0.059 0.55 146 2.4(−4) 1.1
3′ 0.46 1.0 80.6 1.5(−3) 0.92

the alignment of the minima of the ω pulse and the 3ω pulse
fields in the highlighted regions in the vicinity of t = −0.5T1

[cf. Figs. 6(a) and 6(b)]. The chirps also increased the align-
ment of the field minima in the third highlighted regions
in Figs. 6(a) and 6(b) near t = +0.5T1. This resulted in an
increase in the ionization factor of the trajectory j = 3′ by
nearly two orders of magnitude, explaining the increase in the
yield of the low-energy HHG plateau (at the cost of a slightly
lower cutoff energy). Finally, a small increase in the ionization
factor of the trajectory j = 2′ was produced by improving the
alignment of the fundamental and third harmonic fields in the
second highlighted region located near t = 0. This increase in
the ionization factor of the j = 2′ trajectory contributed to the
increase in the HHG yield for harmonic energies from about
90 to 150 eV.

D. Applicability to other atoms

Although our analysis of chirp effects in a two-color field
has been presented for a one-electron system, the results we
obtain should be applicable also for many-electron systems.
Specifically, in this paper we have presented results for the H
atom because electron correlation effects are absent and hence
our TDSE results are exact. In the three-step analytic model
for HHG that we have employed, the first step depends only
on the binding energy of the valence electron. Since Ar and
many other atoms have binding energies comparable (within
a few eV) to that for the H atom and since the second step
of the three-step model treats the electron as moving freely in
the laser field, these two steps are similar for a wide range of
atoms. The main atom-specific part of the three-step model is
the recombination step. For the H atom, this third step is known
analytically and for other atoms the third (recombination)
step can be obtained from existing fully correlated results for
photoionization cross sections (using the principle of detailed
balance).

The factorization of the HHG spectrum into a quasiuniversal
“electron wave packet” factor (produced by the first two steps
of the three-step model) and a target-specific recombination
factor has been successfully employed to describe HHG by
atoms [34–37] as well as by ions [38] and molecules [39].
Whereas the H atom photoionization cross section is smoothly
decreasing, those for rare gas atoms can have structure,
which is reflected in the HHG spectra, as has been confirmed
experimentally [40]. However, all of the results we present in
the current paper have mainly to do with the first two steps of
the three-step model, i.e., the ionization and the excursion of
the active electron away from and back to the ion. Whatever the
recombination amplitude happens to be for other atomic, ionic,
or molecular targets, the HHG yield will increase if the active
electron moves under the influence of the chirped fields we
propose. In brief, since the chirp effects on HHG spectra that we
present originate from laser-induced electron dynamics, which
have been shown to be independent of electron correlation
effects in numerous prior studies [34–40], they are expected to
be applicable to any atomic (or molecular) system.

IV. SUMMARY AND CONCLUSIONS

We have studied how chirp can be used to enhance the yields
and plateau cutoff energies of the HHG spectrum produced
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by a few-cycle, linearly polarized pulse waveform composed
of two-color component pulses that are linearly chirped. We
have studied two common two-color cases: ω − 2ω pulses and
ω − 3ω pulses, in which either the ω pulse and the 2ω or 3ω

pulses have zero CEPs or in which the ω pulse has a nonzero
CEP. In all cases we consider only chirp parameters having
the same magnitude, so that our focus is on the signs of the
chirps in the ω pulse and the 2ω or 3ω pulses. As we have
shown, the general strategy is twofold. In cases in which major
peaks of the two-color component pulses are not aligned, one
can use the chirp to improve the alignment by bringing the
neighboring minima or maxima closer to each other in time, so
that the resultant field has a higher strength and consequently
leads to an increased yield of the HHG spectrum. In cases
in which the major peaks of the two-color fields are aligned,
chirps can be used to enhance the asymmetry of smaller peaks
so that the net acceleration of the ionized electron back to the
atom leads to an increased recombination energy and, hence,
a higher HHG plateau cutoff energy. In both cases, one should
positively chirp one color and negatively chirp the other in
order to achieve the best enhancement of the HHG spectrum.
The physical mechanisms responsible for these enhancements
can be explained based on the well-known three-step model of
HHG [1,23–26].

To conclude, two things should be noted. First, our studies
have focused on the use of chirp to sculpt two-color pulse
waveforms in order to enhance HHG spectra based on a
semiclassical analytic analysis of the unchirped waveforms.

This analytic approach to optimal control of HHG differs from
approaches based upon various kinds of iterative algorithms,
although both approaches share the same goals. Second, for
all cases we consider, enhanced HHG spectra result from
oppositely chirping the two-color pulses, i.e., the ω pulse
and the 2ω– or 3ω pulse should be chirped either in the
combination of (+,−) or (−,+). Experiments can thus try
these two possible chirp strategies to see which works best
in enhancing the HHG spectrum as compared to that obtained
using unchirped two-color pulses. Thus this paper contributes
to a more comprehensive understanding of how to sculpt
synthesized waveforms of two-color, few-cycle pulses, which
can benefit not only HHG but also attosecond pulse generation
and other related topics.
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