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Revisiting photon-statistics effects on multiphoton ionization
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We present a detailed analysis of the effects of photon statistics on multiphoton ionization. Through a detailed
study of the role of intermediate states, we evaluate the conditions under which the premise of nonresonant
processes is valid. The limitations of its validity are manifested in the dependence of the process on the stochastic
properties of the radiation and found to be quite sensitive to the intensity. The results are quantified through
detailed calculations for coherent, chaotic, and squeezed vacuum radiation. Their significance in the context of
recent developments in radiation sources such as the short-wavelength free-electron laser and squeezed vacuum
radiation is also discussed.
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I. INTRODUCTION

It has been known since the late 1960s that any nonlinear
interaction of radiation with electrons depends on the quantum
statistical properties of the radiation [1–15]. In particular,
a transition from a bound state to a continuum, such as
ionization, offers the simplest and most directly observable
process in which intensity correlation functions of the radiation
are involved. A standard derivation of the transition probability
per unit time (rate) for N-photon ionization leads to a rate
that is proportional to some effective N-photon matrix element
multiplied by the Nth-order intensity correlation function.
However, any N-photon transition from the ground state
to the continuum inevitably involves transition amplitudes
through virtual or real bound atomic intermediate states.
Strictly speaking, the above statement on the dependence of
the process on the N th-order intensity correlation function is
valid as long as the intermediate states can be assumed to be
sufficiently far from resonance so that they can be eliminated
adiabatically, which leads to the effective N-photon matrix
element.

To make further discussion more concrete, we consider
for the moment two-photon ionization, whose rate would be
proportional to the second-order intensity correlation function.
The transition amplitude for the first photon involves all
nonvanishing matrix elements between the ground and excited
states. A closely related problem, namely, the strong driving
between two bound states by stochastic radiation, represents a
very fascinating problem, which cannot be treated in terms of
a single transition probability per unit time. That problem has
received considerable attention in the past [16,17] and can be
considered, for all practical purposes, solved. In what follows,
we will be concerned with nonresonant two-photon ionization.
We shall assume that the chosen photon frequency is far from
resonance with the nearest allowable intermediate state; an
assumption to be qualified later on. More precisely, we assume
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that the laser bandwidth is much smaller than the detuning from
the nearest state. Taking this formally to a limiting case, we
shall cast this discussion in terms of a monochromatic source,
which implies zero bandwidth.

For the sake of simplicity, which does not entail a significant
limitation of generality, we stay with the assumption that
initially the electron is in the ground state. The two-photon
transition amplitude involves a summation over the complete
manifold of intermediate states connected to the ground state
with nonvanishing matrix elements. In the limit of small
intensity, the transition probability per unit time is indeed
proportional to the second-order intensity correlation function
multiplied by an effective two-photon matrix element in which
all intermediate states are the bare atomic states [8]. To the
extent that the above condition is satisfied, the rate of ionization
is simply proportional to the second-order intensity correlation
function, which for a chaotic state is larger by a factor of 2 than
that for a coherent state. For an N-photon process, the ratio is
N!, which hereafter shall be referred to as the chaotic state
enhancement. It bears emphasizing at this point that the above
analysis is valid only within perturbation theory, in the form
of Fermi’s golden rule, describing the two-photon transition in
terms of a single rate from the ground state to the continuum.
Modifications to that simple case are discussed in the sections
that follow.

However, for two-photon ionization (or any nonlinear pro-
cess for that matter) to be observable, the laser intensity cannot
be too low. As a consequence, even if the photon frequency is
sufficiently far from resonance with the nearest intermediate
state, as the intensity rises, the Rabi frequency connecting
that state to the ground state may reach a value for which
the nonresonant condition is no longer valid; this will occur
when the Rabi frequency becomes comparable to the detuning
from that state. Obviously, this implies that the validity of the
nonresonant condition, which is the basis for the adiabatic
elimination of the intermediate states, is not independent of
the intensity. When that condition is violated, the simple
dependence of the process on the second-order correlation
function becomes, at best, questionable. It therefore becomes
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necessary to examine the possible modification of the role of
photon statistics as a function of the intensity.

One can explore the issue starting from the other end
by considering two-photon ionization in the presence of one
or even two nearby intermediate resonances, which has in
fact been addressed quite some time ago [18–22]. As one
might have expected, the simple proportionality of the rate
to the second-order intensity correlation function was found
to be modified significantly. Further richness was found in
the vicinity of two neighboring intermediate states. Aiming at
the generalization of that exploration by including a squeezed
state, we consider two-photon and three-photon ionization
as a function of intensity, at various detunings from the
intermediate resonances. We focus, in particular, on the role of
photon correlations as the Rabi frequency becomes comparable
to the detuning.

The initial motivation for this work seemed academic,
aiming at the calibration of the possibility of using nonlinear
photoabsorption to obtain information on the photon statistics
of squeezed light sources and its role on nonlinear photoabsorp-
tion [23–30]. This led us to the reexamination of that issue in the
context of standard sources, such as coherent and chaotic, in the
process of which we realized that certain assumptions, taken
until now for granted, are highly questionable. As discussed
in detail later on, it turns out that in practical terms, the notion
of nonresonant few-photon ionization is an abstraction that
is difficult, if possible at all, to implement in an experiment.
This may explain why, over the last 40 years or so, there are
hardly any definitive experimental data exhibiting the chaotic
field enhancement, even in the simple case of two-photon
ionization. In the few existing experimental data, the observed
enhancement factor for chaotic light, in most cases, has been
less than the expected factor of 2 [9–12]. The relevance of this
work to present-day possibilities, as far as squeezed radiation is
concerned, has been underscored by very recent experimental
results on the effect of squeezed light on harmonic generation
[31]; albeit at quite low intensities, a limitation which may be
lifted in the future.

The theoretical problem can be cast in terms of the time-
dependent wave function or the density matrix. If the quantity
we need is the rate (transition probability per unit time),
depending on the values of the parameters, the time-dependent
wave function may exhibit rapid oscillations. Although they
can be eliminated through suitable approximations, their
meaning tends to be somewhat opaque, even with extensive
discussion [18]. The density matrix, on the other hand, lends
itself to the derivation of rate equations which are free of such
oscillations, although their validity may become questionable,
for certain values of parameters that will be discussed in detail.

The chief reason for using both approaches needs to be made
clear at the outset. As already pointed out and demonstrated
formally in the following section, for nonresonant processes,
the dependence of the yield on field correlations is contained
in the intensity correlation function. The only approximation
involved in this case comes for the accuracy in the calculation
of the N-photon matrix element, which multiplies the corre-
lation function, thus affecting only the amount of ionization
and not its dependence on field correlations. As it will become
clear in the sections that follow, however, when near resonance
is involved, atomic parameters and field properties do not

factorize. As a consequence, the calculation depends on a
number of inevitable approximations, the most demanding of
which has to do with the summation over the photon-number
distribution. Since no approach can provide an exact result,
each of the two approaches described above is expected to
provide more reliable results in different combinations of
parameters, discussed in the appropriate sections of the paper.
The extent to which the results of the two approaches lead to
similar conclusions provides an indirect test of their validity.

II. GENERAL THEORETICAL BACKGROUND

A. Nonresonant multiphoton ionization rate

Let |g〉 be the ground state of an atom, coupled to a
monochromatic radiation field. Assume that upon the absorp-
tion of N photons of frequency ω, the atom is ionized, ejecting
one electron. Denoting the final continuum state by |f 〉 and
the sets of intermediate states required for the absorption of
the N photons by |ai〉, the transition probability per unit time
describing the N-photon process is known to be of the form [8]

W
(N)
fg = σ̂NGN, (1)

where σ̂N is a generalized cross section given by

σ̂N = (2πα)N

4π2

mK

h̄
ωN

∫ ∣∣M(N)
fg

∣∣2
d�K, (2)

and GN is the N th-order intensity correlation function, which
contains information about the coherence properties of the
radiation field [23]. As usual, α is the fine-structure constant,
m is the mass of the outgoing electron, and K is its wave vector.
The total generalized cross section is obtained by integration
of the differential generalized cross section dσ̂N

d�K
over all

possible directions �K of the ejected electron. As discussed
in the sections that follow, this expression for the transition
probability per unit time is valid only in the off-resonance,
weak-field limit, where the intermediate states enter as virtual
states, implying that they acquire no population during the
process. If this condition is not satisfied, the process is not
describable in terms of a single rate as in Eq. (1) and a
time-dependent approach is necessary. The matrix elements
M

(N)
fg contain all of the information about the atomic structure

and are defined via

M
(N)
fg =

∑
aN−1...a1

〈f |r (λ)|aN−1〉 · · · 〈a1|r (λ)|g〉[
ωaN−1 −ωg−(N−1)ω

] · · · (
ωa1 −ωg−ω

) ,

(3)

where r (λ) is the projection of r on the polarization vector of
the field, and r is the position operator of the electron.

As long as the off-resonance condition is satisfied, the only
other quantity we need, in addition to the above N-photon
matrix element, is the Nth-order intensity correlation function,
which is determined by the stochastic properties of the field.
These properties depend on the physical processes within the
source that produces the radiation, resulting in the particular
photon probability distribution characterizing the source and
its effect on nonlinear processes. A brief summary of the
photon probability distributions for the three types of sources,
namely, the coherent, the chaotic, and the squeezed state, that
are of interest in this paper, is given in the following section.
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B. Photon probability distributions

1. Coherent state

The coherent state is the eigenstate of the annihilation
operator â; therefore, by definition, it satisfies the equation

â|a〉 = a|a〉, (4)

where the eigenvalue a can be any complex number. Expanding
the coherent state in the orthonormal set of eigenstates of the
number operator (Fock states), the probability of finding n

photons in the field is

Pcoh(n) = |〈n | a〉|2 = e−|a|2 |a|2n

n!
. (5)

The average photon number is given by n̄ = ∑∞
n=0 nPcoh(n) =

|a|2, in terms of which the photon probability distribution
assumes the form

Pcoh(n) = e−n̄ n̄n

n!
, (6)

which is the well-known Poisson distribution.

2. Chaotic state

The chaotic state, which represents the equilibrium state
of a boson field at temperature T, is a mixed state whose
density operator has only diagonal matrix elements in the
number basis. The average number of photons is given by
n̄ = ∑∞

n=0 nPchao(n) = 1
eh̄ω/kB T −1 in terms of which the photon

probability distribution for the chaotic state is

Pchao(n) = 1

1 + n̄

(
n̄

1 + n̄

)n

= n̄n

(1 + n̄)n+1 . (7)

3. Squeezed vacuum state

Since the properties of squeezed radiation and especially
its photon-number distribution are not as commonly found in
the literature, in this section we provide a somewhat extended
summary of its properties. A squeezed state is a state with
phase-sensitive quantum fluctuations, which at certain phase
angles are less than those of a coherent or the vacuum field.
Squeezed states of a radiation field are generated in nonlinear
processes in which an electromagnetic field drives a nonlinear
medium. In such a medium, pairs of correlated photons of the
same frequency are generated. In the interaction picture, this
process can be described by the effective Hamiltonian [32,33]

ĤI = ε(α̂†)2 + ε∗α̂2. (8)

This Hamiltonian describes how a pump field is down-
converted to its subharmonics at half the driving frequency,
with the parameter ε containing the amplitude of the driv-
ing field and the second-order susceptibility for the down-
conversion. Since the total Hamiltonian is time independent,
the time evolution operator (also called squeeze operator) is

Û (t) = exp

(
− iĤ t

h̄

)
= exp

[
ξ

(α̂†)
2

2
− ξ ∗ α̂2

2

]
≡ S(ξ ),

(9)
where ξ = − iεt

h̄
is the so-called squeezing parameter, which

can also be written as ξ = r exp(iϕ). The squeezing parameter

characterizes the degree of squeezing and depends on the
amplitude of the driving field and the interaction time, i.e., the
time that it takes for light to travel via the nonlinear medium.

The action of the squeeze operator on the vacuum state |0〉
results in the so-called squeezed vacuum state, denoted by

|ξ 〉 ≡ S(ξ )|0〉. (10)

In order to obtain the photon-number probability distribution
of the squeezed vacuum state [32,33], we decompose |ξ 〉 in the
Fock basis,

|ξ 〉 =
∞∑

n=0

Cn|n〉, (11)

and seek an expression for the relevant coefficients. Starting
with the vacuum state, which satisfies the relation

â|0〉 = 0, (12)

we multiply by Ŝ(ξ ) from the left and use the fact that Ŝ(ξ ) is
unitary to obtain

Ŝ(ξ )âŜ†(ξ )Ŝ(ξ )|0〉 = 0 ⇔ Ŝ(ξ )âŜ†(ξ )|ξ 〉 = 0. (13)

By the definition of ξ , we find that

Ŝ(ξ )âŜ†(ξ ) = â cosh r + eiθ â† sinh r. (14)

In view of Eq. (13), Eq. (14) becomes

(â cosh r + â†eiθ sinh r)|ξ 〉 = 0. (15)

By substituting Eq. (11) in Eq. (15), we obtain a recursion
relation for the coefficients Cn:

Cn+1 = −eiθ tanh r

(
n

n + 1

)1/2

Cn−1, (16)

whose solution is

C2n = (−1)n(eiθ tanh r)n
[

(2n − 1)!!

(2n)!!

]1/2

C0. (17)

If we demand from C2n to satisfy the normalization condition∑∞
n=0 |C2n|2 = 1, we obtain

|C0|2
[

1 +
∞∑

n=0

(tanhr)2n(2n − 1)!!

(2n)!!

]
= 1. (18)

Using the identity

1 +
∞∑

n=0

zn

[
(2n − 1)!!

(2n)!!

]
= (1 − z)−1/2, (19)

Eq. (18) reduces to C0 = √
cosh r . Finally, in view of the

following two identities:

(2n)!! = 2nn!, (20)

(2n − 1)!! = 1

2n

(2n)!

n!
, (21)

one obtains the final expression for the coefficients,

C2n = (−1)n
√

(2n)!

2nn!

(eiθ tanh r)
n

√
cosh r

. (22)
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Substitution of Eq. (22) back into Eq. (11) gives the decompo-
sition of the squeezed vacuum state in the Fock basis,

|ξ 〉 = 1√
cosh r

∞∑
n=0

(−1)n
√

(2n)!

2nn!
einθ (tanh r)n|2n〉. (23)

The probability of detecting 2n photons in the field is

P2n = |〈2n | ξ 〉|2 = (2n)!

22n(n!)2

(tanh r)2n

cosh r
, (24)

and the probability of the detection of 2n+1 photons is

P2n+1 = |〈2n + 1 | ξ 〉|2 = 0. (25)

Equations (24) and (25) indicate that the photon probability
distribution of a squeezed vacuum state is oscillatory, with
the probability for all odd photon numbers to be zero. The
probability can also be expressed in terms of the mean photon
number, n̄ = ∑∞

n=0 P2n(2n) =sinh2r , as

P2n = 1√
1 + n̄

(2n)!

(n!)222n

(
n̄

1 + n̄

)n

. (26)

III. PHOTON CORRELATION EFFECTS IN
NEAR-RESONANT TWO-PHOTON IONIZATION

In this section, we present a self-contained formulation and
discussion of the effect of photon statistics on two-photon
ionization, with emphasis on the near-resonant process. It is
useful to solve the problem assuming that the field is initially
prepared in a number state and then use the photon probability
distributions derived in the previous section to obtain results for
the cases of coherent, chaotic, or squeezed vacuum radiation.
For reasons discussed in Sec. I, we have approached the
problem through two different formulations: specifically, the
resolvent operator and the density matrix.

A. Resolvent-operator formalism

Consider the atom initially in its ground state |g〉, in
the presence of an external field in a Fock state |n〉.
The initial state of the compound system (atom + field)
is |I 〉 = |g〉|n〉. The initial atomic state is connected to an
intermediate atomic state |a〉 via a single-photon electric
dipole transition of frequency ω (Fig. 1), which brings the
compound system to the intermediate state |A〉 = |a〉|n − 1〉.
The absorption of a second photon takes the atom to the final
continuum state |f 〉. Therefore, the final state of the compound
system is |F 〉 = |f 〉|n − 2〉. The energies of the above three
system states are ωI = ωg + nω,ωA = ωa + (n − 1)ω, and
ωF = ωf + (n − 2)ω. All energies are measured in units of
frequency, as all Hamiltonians are assumed divided by h̄. The
detuning from the intermediate resonance is � = ω − ωag =
ω − (ωa − ωg). The Hamiltonian H of the system is the sum of
the unperturbed Hamiltonian H 0 and the field-atom interaction
Hamiltonian V . The wave function of the system at times t > 0
is given by |(t)〉 = U (t)|I 〉, where U (t) is the time evolution
operator.

In order to obtain the probability of ionization as a function
of the time t , we need the equations of motion of the matrix
elements UII and UAI or UFI of the time evolution operator,

FIG. 1. Ionization via two single-photon electric dipole transitions.

in terms of which the ionization probability is expressed as

Pion(t) =
∫

dωF |UFI (t)|2 = 1 − |UAI (t)|2 − |UII (t)|2.
(27)

This equation, based on the conservation of probability,
simply states that what is missing from the two bound states is
in the continuum. The time evolution of these matrix elements
can be obtained analytically with the help of the resolvent
operator G(z) ≡ (z − H )−1, which is the Laplace transform of
U (t). The procedure involves finding the equations that govern
the time evolution of the matrix elements GII ,GAI , and GFI

of the resolvent operator, from which the respective matrix
elements of the time evolution operator are obtained through
the inverse Laplace transform. The relevant mathematical
details of this procedure are summarized in the Appendix.

The matrix element 2VAI reflects the Rabi frequency of the
|g〉 ↔ |a〉 transition,

� = 2VAI , (28)

while VFA is related to the rate of ionization of the intermediate
state �A as

�A = 2π |VFA|2. (29)

Note that for Eq. (27) to represent the probability of
ionization, the spontaneous decay of the intermediate state has
to be negligible compared to the ionization width. Since we are
working in the number state representation, we can express the
Rabi frequency and the ionization rate in terms of the number
of photons of the states |I 〉 and |A〉 as

� = μ
√

n, (30)

�a = σ (n − 1), (31)

where μ is the single-photon dipole matrix element of the
|g〉 ↔ |a〉 transition and σ is the cross section associated with
the ionization of |a〉.

To account for the effects of photon statistics, we average the
ionization probability over the photon probability distributions
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of a coherent, a chaotic, and a squeezed vacuum state,

Pcoh(t) =
∞∑

n=2

Pcoh(n,〈n〉)Pion(t,n), (32)

Pchao(t) =
∞∑

n=2

Pchao(n,〈n〉)Pion(t,n), (33)

PSV(t) =
∞∑

n=1

PSV(2n,〈n〉)Pion(t,2n). (34)

Notice that in Eqs. (32) and (33) the summation begins from
n = 2 since it is the lowest number of photons necessary
for the process to be completed. In Eq. (34), the summation
begins from n = 1 since the argument of the squeezed vacuum
distribution is 2n.

We are interested in the behavior of the ratios
Pchao(T )/Pcoh(T ) and PSV(T )/Pcoh(T ) as a function of the
mean photon number for various detunings, where T is a time
sufficiently larger than the time it takes for the atom to get
ionized. The results are presented and discussed in Sec. V.

B. Density matrix formalism

The density matrix describing resonant two-photon ioniza-
tion is essentially the density matrix of a two-level system
[8] with the addition of a relaxation for the upper state due to
ionization. This is accomplished through the introduction of an
ionization rate �ion describing the transfer of population from
the excited state to the continuum. Neglecting the spontaneous
decay of the excited state, which in the present context is
much smaller than the ionization rate, the density matrix rate
equations governing the time evolution of the ground and the
excited atomic state (denoted by |g〉 and |a〉, respectively), are

∂

∂t
ρgg(t) = R[ρaa(t) − ρgg(t)], (35)

∂

∂t
ρaa(t) = −�ionρaa(t) − R[ρaa(t) − ρgg(t)], (36)

where

R = �ion|�|2
�2 + �ion

2

4

(37)

is the rate of the process, while ρgg and ρaa indicate the
populations of the ground and the excited state, respectively.
Note that since we neglected the spontaneous decay of the
excited state and have no additional relaxation mechanism, the
off-diagonal relaxation rate is γαg = �ion

2 .
In view of Eqs. (30) and (31) that relate the Rabi frequency

and the ionization width to the number of photons, the rate is
expressed in terms of the photon number n as

R = σμ2n(n − 1)

�2 + σ 2

4 (n − 1)2
≡ W (n). (38)

Again, to obtain the effects of photon correlations, we aver-
age Eq. (38) over the photon probability distribution of the
respective field state, as described in the previous section.

FIG. 2. Ionization via three single-photon electric dipole
transitions.

IV. PHOTON CORRELATION EFFECTS IN
NEAR-RESONANT THREE-PHOTON IONIZATION

A. Resolvent-operator formalism

Using the notation introduced in the previous section,
we denote the states of the compound system (atom
+ radiation field) as |I 〉 = |g〉|n〉, |A〉 = |a〉|n − 1〉, |B〉 =
|b〉|n − 2〉, |F 〉 = |f 〉|n − 3〉, where |g〉 is the initial atomic
state, |a〉 and |b〉 are the two intermediate states, and |f 〉 is
the final atomic state that belongs to the continuum. Every
state is coupled to its lower one via a single-photon electric
dipole transition in the presence of a driving field with
frequency ω (Fig. 2). The respective energies of the com-
pound states are ωI = ωg + nω,ωA = ωa + (n − 1)ω,ωB =
ωb + (n − 2)ω, and ωF = ωf + (n − 3)ω. We introduce the
two detunings from the intermediate resonances as �1 = ω −
ωag = ω − ωα + ωg and �2 = 2ω − ωbg = 2ω − ωb + ωg .

We choose the energies of the atomic states and the driving
frequency such that they result in a detuning �1 sufficiently
larger than the energy difference ωag , i.e., �1 
 ωag , implying
that the first transition is off resonant, focusing on the problem
for various detunings from the second resonance. The equa-
tions of motion of the resolvent operator’s matrix elements are
now four, but can be reduced to three after eliminating the
continuum, as described in the Appendix. The coupling of |b〉
to |f 〉 leads to an ionization rate �b and a shift which, for the
sake of simplicity, is neglected as it does not contribute to the
issues of interest in this paper. Noting again that spontaneous
decays of the intermediate states are negligible, the ionization
probability at times t > 0 is given by

Pion(t) = 1 − |UII (t)|2 − |UAI (t)|2 − |UBI (t)|2, (39)

where Uii, i = I , and A,B are the matrix elements of the
time evolution operator between the states of the compound
system considered in our problem. It should be evident that
the two-photon resonant, three-photon ionization problem is
formally similar to the two-photon ionization case, with the
only difference being that the two-photon Rabi frequency to
the resonant state is now proportional to the intensity rather
than the field amplitude. As a consequence, the Rabi frequency
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and the ionization rate of the excited state have the same
dependence on the intensity.

The matrix elements 2VGA ≡ �1 and 2VAB ≡ �2 reflect the
Rabi frequencies of the two transitions, while the ionization
rate is equal to �b = 2π |VFB |2. Since we are working in
the number state representation, we express the two Rabi
frequencies and the ionization rate in terms of the number of
photons of the states |I 〉, |A〉, and |B〉, i.e.,

�1 = μ1
√

n, (40)

�2 = μ2

√
n − 1, (41)

�b = σ (n − 2), (42)

where μ1, μ2 are the single-photon dipole matrix elements of
the transitions |g〉 ↔ |a〉 and |a〉 ↔ |b〉, respectively, while σ

is the ionization cross section of state |b〉.
We now average the ionization probability over the photon

distributions of the field states, starting the sums from the least
number of photons needed for the process to occur. Note that in
the squeezed vacuum average, the argument of the ionization
probability is 2n and the sum begins from n = 2 since the
squeezed vacuum photon probability distribution is zero for
odd number of photons,

Pcoh =
∞∑

n=3

Pcoh(n,〈n〉)Pion(n), (43)

Pchao =
∞∑

n=3

Pchao(n,〈n〉)Pion(n), (44)

PSV =
∞∑

n=2

PSV(2n,〈n〉)Pion(2n). (45)

In Sec. V, we plot the ratios Pchao/Pcoh and PSV/Pcoh as a
function of the mean number of photons for various detunings
from the second resonance.

B. Density matrix formalism

As in the previous section, we choose the frequencies of the
atomic states and the external frequency such that the condition
�1 
 ωag is satisfied. Since the first transition is off resonance,
as noted in the previous section, the overall three-photon
process is formally similar to the two-photon case, with the
resonant transition driven by an effective two-photon Rabi
frequency �eff . This allows us to use the rate derived for the
two-photon case, with the effective Rabi frequency and the
ionization rate now given by

�eff = μ(2)
√

n(n − 1), (46)

�ion = σ (n − 2), (47)

where σ is the ionization cross section and μ(2) is the effective
two-photon dipole matrix element.

The resulting expression for the rate of ionization now is

R = �ion|�eff |2
�2 + �2

ion
4

= σ (μ(2))2
n(n − 1)(n − 2)

�2 + σ 2(n−2)2

4

≡ W (n). (48)

FIG. 3. Ratio of chaotic over coherent two-photon ionization
probability as a function of the mean photon number for various
detunings from the intermediate resonance. The values of the dipole
matrix element and the cross section used are μ = σ = 0.0003 a.u.
(1) Blue line: �/ωα = 0.0001; (2) red line: �/ωα = 0.01; (3) olive
line: �/ωα = 0.05; and (4) green line: �/ωα = 0.1. The blue and
red lines coincide.

As in the previous sections, the effect of field correlations
on the overall process is obtained through averaging the above
rate over the appropriate photon-number distribution.

V. RESULTS AND DISCUSSION

Having established the formal aspects of the problem, in
this part, we present and discuss a collection of results with
an interpretation of the underlying physics. Although the basic
physics is common to both cases, we discuss the two- and
three-photon cases separately, as there are some differences in
the details. In the plots that follow, we show ionization yields or
transition rates as a function of intensity for different quantum
states of the driving field. In order to assess and illustrate the
enhancement due to bunching, we plot the ratio of the yield
for either a chaotic or squeezed vacuum state to that for a
coherent state, as a function of the intensity. The respective
ionization probabilities are denoted by the self-evident notation
Pcoh, Pchao, and PSV and the respective transition rates by Wcoh,
Wchao, and WSV.

A. Two-photon results and discussion

In Fig. 3, we have chosen the dipole matrix element coupling
to the intermediate state and the ionization cross section so that
they result in the Rabi frequency equal to the ionization rate
�, for small mean photon numbers. This picture changes with
increasing intensity because the Rabi frequency is proportional
to the square root of intensity, while the ionization rate
scales linearly with intensity. Note that in the single-mode
approximation, the mean photon number is approximately
related to the average intensity I via 〈n〉 = (8π3c2/ω2)(I/�ω)
[8], where �ω is the bandwidth of the source.

At low intensities, the ratio Pchao/Pcoh is equal to 2, in agree-
ment with the expected enhancement factor due to the linear
dependence of the ionization on the second-order correlation
function, which is 2 for the chaotic field. As the intensity
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FIG. 4. Ratio of squeezed vacuum over coherent two-photon
ionization probability as a function of the mean photon number for
various detunings from the intermediate resonance. The values of
the dipole matrix element and the cross section used are μ = σ =
0.0003 a.u. (1) Blue line: �/ωα = 0.0001; (2) red line: �/ωα = 0.01;
(3) olive line: �/ωα = 0.05; (4) green line: �/ωα = 0.1. The blue
and red lines coincide.

increases, however, we notice a rapid decrease of the ratio
below the value of 2. This decrease from 2 can be attributed to
the fact that with saturation approaching, the ionization yield
begins depending on all higher-order correlation functions and
not only on the second-order one. As a result, we observe a
drastic change of the ratio.

The different curves in Fig. 3 correspond to different values
of the detuning from the intermediate resonance. In the limit
of large intensities, all curves end up to unity as expected
due to saturation, but the decrease of the ratio below the
N! factor is faster when the external frequency is tuned on
resonance with the |a〉 ↔ |g〉 transition because that is when
the validity of the nonresonant scheme breaks down faster with
increasing intensity. It is interesting to note that there is a
rather broad regime of mean photon numbers for which the
ratio drops below unity. Evidently, for that range of intensities,
chaotic radiation is less effective in two-photon ionization than
coherent radiation, which is a rather surprising result. Actually,
these results are in agreement with those of an earlier work by
one of the authors on saturation in atomic transitions [16,17],
where it was shown that the initially observed monotonical
decrease of the ratio to unity was due to the assumption of
a chaotic field within the decorrelation approximation (DA).
When the DA is adopted to the case of an N-photon transition,
it results in equations of motion that contain information only
about the N th-order correlation function. Therefore, for low
intensities where the process depends only on the N th-order
correlation function, the DA is valid. However, for stronger
fields, the simple proportionality of the process to the N th-
order correlation function breaks down since higher-order
correlation functions come into play, at which point the DA
can lead to false predictions.

In Fig. 4, we plot the ratio of the two-photon ionization
probability for squeezed vacuum over coherent as a function
of the mean photon number, again for different values of
the detuning from the intermediate resonance. Although the

overall behavior of the ratios, as depicted in those curves,
appears similar to those of Fig. 3 , an important difference
arises at small mean photon numbers for which the ratio
diverges. This is compatible with the fact that at weak fields,
the process should depend linearly on the second-order field
correlation function, which in the case of a squeezed vacuum
field is equal to 〈n〉2(3 + 1

〈n〉 ). This result can be obtained by
averaging the second-order correlation function of a field in a
Fock state, i.e., GFock

2 = n(n − 1), over the squeezed vacuum
photon probability distribution given by Eq. (46). The ratio of
the squeezed vacuum over coherent second-order correlation
functions would then be equal to 3 + 1

〈n〉 , which apparently
diverges when 〈n〉 → 0. Be that as it may, a nonlinear process,
such as a two-photon transition, becomes meaningless in the
limit of zero intensity.

In the strong-field limit as expected, owing to saturation, all
curves approach unity, reaching that value at approximately
〈n〉 � 200. As in the case of a chaotic field, there is a broad
region of intensities between the weak field and the saturation
limits, where the ratio drops below unity. Therefore, in two-
photon near-resonant ionization, squeezed vacuum radiation
is more effective than coherent radiation only in the vicinity
of small mean photon numbers. For the parameters used in
the problem at hand, in view of the relation between the mean
photon number and the intensity shown above, the notion of
“small mean photon numbers” corresponds to field intensities
in the vicinity of I = 105 W/cm2. Although the loss of the
enhancement due to chaotic radiation, in a certain range of
intensities, had been noted in earlier works [16,17], finding
the same behavior for superbunched squeezed radiation could
not have been anticipated.

Before continuing with the rate equations’ results, we need
to clarify the issue regarding the possible efficiency of squeezed
vacuum radiation, in near-resonant few-photon ionization. It is
known that the N th-order correlation function of a field in a
strongly squeezed vacuum state is equal to (2N − 1)!!〈n〉N
[34]. For N = 2, this is equal to 3〈n〉2. One might be tempted
to infer that the strongly squeezed vacuum light is three times
more efficient than coherent light in two-photon ionization.
We should, however, keep in mind that the notion of strongly
squeezed vacuum refers to a squeezed vacuum state with
a high squeezing parameter r and therefore a high mean
photon number, according to 〈n〉 = (sinh r)2 [35]. In fact, the
enhancement factor 3 can also be seen by considering 〈n〉 

1 in the two-photon squeezed vacuum correlation function
GSV

2 = 〈n〉2(3 + 1
〈n〉 ). Due to the exponential character of the

sinh r function, small changes of the squeezing parameter are
equivalent to large changes in the mean photon number. For
example, an increase of r from 1 to 2 is equivalent to an
increase of the mean photon number from about 1.4 to 13.2.
Therefore, in view of the results of Fig. 4, we should not
expect to observe the (2N − 1)!! enhancement in near-resonant
ionization due to the rapid approach to the saturation limit. In
others words, the (2N − 1)!! enhancement requires intensities
in the range where the simple dependence of the process
on the N th-order intensity correlation function has already
become invalid near resonance. However, the near-resonant
process may be enhanced significantly if the atom is exposed
to weak squeezed vacuum radiation, assuming observability is
feasible.
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FIG. 5. Ratio of chaotic over coherent two-photon ionization rate
as a function of the mean photon number, for various detunings from
the intermediate resonance. The values of the dipole matrix element
and the cross section used are μ = σ = 0.0003 a.u. (1) Blue line:
�/ωα = 0.0001; (2) red line: �/ωα = 0.01; (3) olive line: �/ωα =
0.05; (4) green line: �/ωα = 0.1.

As discussed in the previous sections, apart from the
ionization probability using the time-dependent wave function,
a transition probability (rate) can also be derived with the help
of the density matrix equations. A sample of the results is
shown in Fig. 5, with parameters identical to those of Fig. 3.

The behavior of the various curves of Fig. 5 is in overall
agreement with the respective behavior of the curves of Fig. 3,
eventually reaching the value of unity. A difference can be
noticed, however, in that all curves, with the exception of the
blue one corresponding to detuning 0.0001 times the frequency
of the intermediate state, now will reach unity at much higher
mean photon numbers (〈n〉 � 800), which has been verified
numerically, although not shown in the figure; a result that
should be viewed with precaution because the derivation of
the two-photon rate is based on the assumption of a Rabi
frequency not much larger than the ionization rate � and/or
the detuning from the intermediate resonance. However, owing
to the linear dependence of the ionization rate on the photon
number, it increases much faster than the Rabi frequency,
which is proportional to the square root of the photon number.
Therefore, even if they are comparable for small mean photon
numbers, the necessary condition � < � can be reached fairly
quickly, as the intensity rises. However, since the detuning is
fixed, for large mean photon numbers the Rabi frequency will
eventually become larger than the detuning, with the validity
of the rate approximation breaking down.

In Fig. 6, we present results on the ratio WSV/Wcoh as a
function of the mean photon number as obtained through the
rate equations. Comparing the results of this figure to those of
Fig. 4, we note that now the ratio of the rates is more sensitive
to detuning than the ratio of the ionization probabilities. This
is reflected in the startling difference between the blue and
red lines (which in Fig. 4 are indistinguishable), as well as
in the different behavior of the green and olive lines, with
increasing intensity. Still, the overall trend of the curves in the
two figures is similar. We should point out that owing to the
specific form of Eq. (38), in averaging over a photon probability
distribution, the dipole matrix element and the ionization cross

FIG. 6. Ratio of squeezed vacuum over coherent two-photon
ionization rate as a function of the mean photon number, for various
detunings from the intermediate resonance. The values of the dipole
matrix element and the cross section used are μ = σ = 0.0003 a.u.
(1) Blue line: �/ωα = 0.0001; (2) red line: �/ωα = 0.01; (3) olive
line: �/ωα = 0.05; (4) green line: �/ωα = 0.1.

section appearing in the numerator of (38) are factored out
and cancel when the ratios are taken. This leads to ratios that
depend only on the detuning and the cross section appearing
in the denominator of (38). As a result, changes in the dipole
matrix element will not affect the ratio of the rates. But since the
derivation of the rate equations is based on the approximation
discussed above, the results would be meaningful only when
the intensities are such that they conform to a Rabi frequency
within the limits of the approximation. It is very interesting to
notice that Eq. (38) within the limit � 
 σ

2 (n − 1) reduces to
the second-order correlation function of a field in a number
state, multiplied by the factor σμ2

�2 . This suggests that the
(2N − 1)!! enhancement of the two-photon ionization under
squeezed vacuum radiation, over that under coherent, would
appear when the above condition is satisfied, according to
the ratio of the respective correlation functions. But we must
keep in mind that the summations over a photon probability
distribution include photon numbers up to infinity. Even if
the high photon number terms enter with less weight, when
high mean photon numbers are considered, the condition
� 
 σ

2 (n − 1) would no longer be satisfied. This actually
is another way to see why the simple proportionality of an
N-photon process to the field N th-order correlation field will
eventually break down with increasing intensity.

B. Three-photon results and discussion

In three-photon near-resonant ionization, there are two
intermediate states, which means a double near-resonance is
possible. In this work, we have chosen the photon frequency so
that the detuning �1 
 ωag of the first transition is sufficiently
large for the two-photon transition to the second intermediate
state to satisfy the nonresonant condition for all intensities
employed in the calculations. The reason is that we wanted
to explore the role of the nonlinearity in the bound-bound
transition, in contrast to the two-photon case where the bound-
bound transition depends linearly on the radiation. Thus we
have only one near-resonance state to study.
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FIG. 7. Ratio of chaotic over coherent three-photon ionization
probability as a function of the mean photon number, for various
detunings from the second intermediate resonance. The values of the
dipole matrix elements and the cross section used are μ1 = μ2 =
0.0004 a.u. and σ = 0.0008 a.u. (1) Blue line: �2/ωb = 0.0001; (2)
red line: �2/ωb = 0.01; (3) olive line: �2/ωb = 0.05; (4) green line:
�2/ωb = 0.1.

In direct analogy with the two-photon case, we have a Rabi
frequency coupling the bound states and an ionization cross
section. For the results of Fig. 7, we have chosen a cross section
σ = 0.0008 a.u. that is two times higher (expressed in atomic
units) than the dipole matrix elements μ1,μ2 = 0.0004 a.u.
of the transitions |g〉 ↔ |a〉 and |a〉 ↔ |b〉, respectively. At
low intensities, the ratio of chaotic over coherent ionization
transition probabilities is equal to 6, which is compatible with
the expected weak-field N ! enhancement for N = 3, arising
from the ratios of the respective correlation functions. With
increasing intensity, the ratio drops below N! rather rapidly,
approaching unity, as expected. The approach to unity turns out
to be faster, as the photon frequency is tuned closer to resonance
with the second transition. In contrast to the two-photon case,
the ratio does not drop below unity at any intensity. It appears
that the nonlinearity in the two-photon Rabi frequency, in this
case, is responsible for this behavior. Recall that now both
Rabi frequency and ionization rate have the same dependence
on intensity.

As in the two-photon case, the squeezed vacuum over
coherent ratio of ionization transition probabilities (Fig. 8)
exhibits a behavior similar to that of the chaotic over coherent
ratio, with the exception of the divergence for weak fields
noted also for two-photon ionization. Again, this is connected
to the form of the squeezed vacuum third-order correlation
function GSV

3 = 〈n〉3(15 + 9
〈n〉 ), which diverges in the vicinity

of 〈n〉 = 0 when divided by the coherent third-order correlation
function Gcoh

3 = 〈n〉3. For high mean photon numbers, the
correlation function is equal to 15〈n〉3, capturing the (2N −
1)!! strongly squeezed vacuum enhancement factor for N = 3.
However, if tuned near resonance, saturation is approached
much faster, with the observation of the expected enhancement
being problematic.

In order to illustrate cases that are in contrast to the above
results, in Figs. 9 and 10 we show the behavior for the
relatively large detuning of �2/ωb = 0.5 from two-photon

FIG. 8. Ratio of squeezed vacuum over coherent three-photon
ionization probability as a function of the mean photon number,
for various detunings from the second intermediate resonance. The
values of the dipole matrix elements and the cross section used are
μ1 = μ2 = 0.0004 a.u. and σ = 0.0008 a.u. (1) Blue line: �2/ωb =
0.0001; (2) red line: �2/ωb = 0.01; (3) olive line: �2/ωb = 0.05; (4)
green line: �2/ωb = 0.1.

resonance. These results have been obtained through the rate
equations by taking averages of Eq. (48) over the respective
photon probability distributions. Although a detuning of this
magnitude may be a bit too large, within the constraints of
our model, let us nevertheless examine the dependence of
ionization as a function of intensity.

For σ = 0.0003 a.u. corresponding approximately to a
cross section about 10−20 cm2, the ratios tend to stabilize to
values with the enhancements factors 6 and 15, reflecting the
chaotic and squeezed vacuum correlation functions, respec-
tively. Eventually, even the off-resonant curves will fall to
unity, but much more slowly than the near-resonant ones. As
in the two-photon case, the specific form of the three-photon
ionization rate (48) implies that the ratios will only depend

FIG. 9. Ratio of chaotic over coherent three-photon ionization
rate as a function of the mean photon number, for various detunings
from the second intermediate resonance. The value of the cross section
used is σ = 0.0003 a.u. (1) Blue line: �2/ωb = 0.0001; (2) red line:
�2/ωb = 0.01; (3) olive line: �2/ωb = 0.05; (4) green line: �2/ωb =
0.5.
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FIG. 10. Ratio of squeezed vacuum over coherent three-photon
ionization rate as a function of the mean photon number, for various
detunings from the second intermediate resonance. The value of the
cross section used is σ = 0.0003 a.u. (1) Blue line: �2/ωb = 0.0001;
(2) red line: �2/ωb = 0.01; (3) olive line: �2/ωb = 0.05; (4) green
line: �2/ωb = 0.5.

on σ and �2. The effective two-photon dipole matrix element
μ(2) does not appear in the ratios, but has to be such that it does
not invalidate the rate approximation. If the cross section σ is
chosen, for example, one order of magnitude larger than 0.0003
a.u., even the green curves approach unity very rapidly. But for
cross sections smaller than 0.0003 a.u., the ratios do indeed
stabilize to the theoretical enhancement factors for a broad
range of intensities in the nonresonant limit. Since the values
of the parameters we have chosen in the above illustrations are
not unphysical, the message that emerges is that the conditions
satisfying the nonresonant assumption are quite sensitive to the
interplay between intensity and parameters.

VI. CONCLUSION AND CLOSING REMARKS

An N-photon transition from a bound state to a continuum,
such as ionization, involves summation over intermediate
states. As long as it may be justified to assume that all of
them are “sufficiently” far from resonance with the absorption
of one or more photons, a transition probability proportional
to the Nth-order intensity correlation function is meaningful.
Theoretically, the matter stops there, as has been the case with
much of the related literature [1–6,19,25]. Given, however,
that any nonlinear process is observable only if the intensity is
sufficiently strong, the nonresonant condition cannot be taken
for granted beyond a theoretical academic exercise or, at best,
proof of principle.

A two- or three-photon process should be optimal for
nonresonant ionization, as it may be possible to select the
photon frequency so as to satisfy the nonresonant requirement,
up to some intensity enabling observability. For four- or
higher-order processes, it is practically impossible to avoid
near resonance with intermediate states because, with in-
creasing energy, their spacing becomes progressively denser.
As we have shown in this paper, however, even for two-
and three-photon ionization, it is only at quite low intensity
that the condition of nonresonance can be taken for granted.
As a consequence, the enhancement expected for chaotic or

squeezed radiation will more often than not be smaller than
predicted on the basis of the relevant intensity correlation
function. This may well be the reason that over the 50 years or
so that have elapsed since the first predictions of the chaotic
enhancement [1–6], even for two-photon ionization a definitive
enhancement by the expected factor of 2 has been very difficult
to observe, let alone for order of three or higher. There is, of
course, always the nagging issue of whether the radiation is
truly chaotic or truly coherent [10–12], which in the light of
our results poses a dilemma. On the one hand, an N-photon
process would be an ideal tool for the measurement of an
Nth-order intensity correlation function. On the other hand,
the possible influence of intermediate near resonances are apt
to be misleading as to the underlying reason for departure from
the expected enhancement factor. It seems to us that given the
specific atomic system employed in an experiment, only the
quantitative evaluation of the role of intermediate states can
offer a way out of the dilemma.

The very recent achievement in measuring the enhancement
in harmonic generation due to superbunched squeezed radia-
tion reported by Spasibko et al. [31] appears to be in contrast
to the above dilemma. Actually, for two reasons, the contrast
may be only apparent. First, owing to the long wavelength
of the radiation in that experiment, the few-photon absorption
was within the bound spectrum, satisfying the nonresonant
condition. Second, the intensity was quite low; too low to
induce a Rabi frequency comparable to the detuning. And
the observation of up to the fourth harmonic at such low
intensity attests to the elegance of that experiment. Actually,
in the medium of that experiment, even the absorption of
four photons was energetically well below the first possible
resonance. Considering therefore the intensities and structure
of the medium, there is no contradiction with our results.
On the other hand, even in harmonic generation, at shorter
wavelengths reaching into the continuum [36], the issue of
intermediate states is of extreme importance. Hoping that it will
eventually be possible to explore the effect of superbunching
on nonlinear processes at shorter wavelengths and higher
intensities, our results can serve as a guide to the planning
of relevant experiments.

Departing for the moment from transitions to a continuum,
the effect of superbunching on a strongly driven two-photon
bound-bound transition, i.e., an extension of its single-photon
counterpart solved quite some time ago by Ritsch and Zoller
[28,29], poses a daunting theoretical challenge. In early work
[16,17], it has been found that in contrast to bound-continuum
transitions, chaotic radiation is less effective than coherent
radiation in saturating a two-photon bound-bound transition.
Would superbunched squeezed radiation be even less effective
in that situation? It may well be that squeezed light at wave-
lengths and intensities appropriate for the strong driving of a
bound-bound two-photon transition may be available not too
long from now.

Finally, aside from using multiphoton ionization as a “detec-
tor” of an intensity correlation function, from the standpoint of
enhancing the process induced by bunched radiation, the exact
factor of enhancement may not be as important, especially for
higher-order processes. Regarding that aspect, the results by
Lecompte et al., reported quite some time ago [15], may well be
the most dramatic example on record in which, and in line with
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our analysis, the enhancement was not exactly 11. Still, it was
less than two orders of magnitude lower. The enhancement of
multiphoton ionization under chaotic radiation has reemerged
during the last ten years or so for systems driven by free-
electron-laser sources, which are known to exhibit strong
intensity fluctuations, similar to those of chaotic radiation
[37], and references therein]. The theoretical problem, using
realistic simulation of the free-electron-laser (FEL) radiation,
has been addressed to some extent [38]. Given that in several
experiments fairly high-order ionization processes have been
observed [38, and references therein], the intensity fluctuations
must surely have played a very significant role. Up to this
point, however, there has not been any systematic investigation
aiming at the quantification of the effect on experimental data.
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APPENDIX: TWO- AND THREE-PHOTON IONIZATION
RESOLVENT-OPERATOR FORMALISM

In this Appendix, we present the procedure by which the
two- and three-photon ionization probability can be obtained
in terms of the resolvent operator.

The resolvent operator is defined via G(z) ≡ (z − H )−1,
where H is the system Hamiltonian. For two-photon ionization
(Sec. III), the equations of motion of the relative resolvent
operator matrix elements are

(z − ωI )GII = 1 + VIAGAI , (A1)

(z − ωA)GAI = VAIGII +
∑
F

VAF GFI , (A2)

(z − ωF )GFI = VFAGAI . (A3)

We could have taken into account that the intermediate state
has a spontaneous decay rate γa by making the substitution
ωA → ω̃A = ωA − iγa; however, such a substitution does not
account for the repopulation of |g〉. In fact, the only way to
properly describe the spontaneous decay of excited states is
via a theoretical formulation in terms of the density operator.
Therefore, in this approach, we neglect the spontaneous decay
in the sense that it is negligible compared to the ionization rate
for the combination of parameters considered in our problem.

Solving Eq. (A3) for GFI and substituting back to Eq. (A2)
yields (

z − ωA −
∑
F

|VFA|2
(z − ωF )

)
GAI = VAIGII . (A4)

If the continuum of states is smooth, z can be replaced by ωA

in the denominator of |VFA|2
(z−ωF ) , in the sense that this term is a

slowly varying function of z and its value is significant only for

z � ωA. After some standard algebra [20,21], one finds that the
sum over all final states is reduced to a complex number whose
real and imaginary parts represent the shift and the width of
state |a〉 due to its coupling with the continuum, respectively.
For the sake of simplicity, we neglect the effect of the shift and
focus on the width introduced, which is related to the coupling
of the discrete state to the continuum via

�A = 2π |VFA|2. (A5)

In view of the above, the system of equations can be written as

(z − ωI )GII = 1 + VIAGAI , (A6)

(z − ωA + i�A)GAI = VAIGII , (A7)

(z − ωF )GFI = VFAGAI , (A8)

whose solution is

GII = z − ωA + i�A

(z − ωI )(z − ωA + i�A) − |VAI |2
, (A9)

GAI = VAI

(z − ωI )(z − ωA + i�A) − |VAI |2
, (A10)

GFI = VFAVAI

(z − ωF )[(z − ωI )(z − ωA + i�A) − |VAI |2]
.

(A11)

The denominator in the equation can be factorized as follows:

(z − ωI )(z − ωA + i�A) − |VAI |2 = (z − z1)(z − z2),

(A12)

with

z1,2 = 1
2 {(ωI + ωA − i�A) ± [(� + i�A)2 + 4|VAI |2]

1/2}.
(A13)

Therefore, GFI can be written as

GFI = VFAVAI

(z − ωF )(z − z1)(z − z2)
. (A14)

The matrix elements Uij (t) of the time evolution operator are
related to the respective resolvent operator’s matrix elements
via

Uij (t) = − 1

2πi

∫ +∞

−∞
e−ixtGij (x+)dx, (A15)

where x+ = x + iη, with η → 0+.
In view of Eq. (A15), it is easy to show that the matrix

element of the time evolution operator between the initial and
final state of the system is

UFI (t) = VFAVAI

[
exp(−iωF t)

(ωF − z1)(ωF − z2)

+ exp(−iz1t)

(z1 − ωF )(z1 − z2)
+ exp(−iz2t)

(z2 − ωF )(z2 − z1)

]
.

(A16)

Similar expressions can also be found for UAI (t) and UII (t)
using the same procedure. The probability of ionization at

053413-11



G. MOULOUDAKIS AND P. LAMBROPOULOS PHYSICAL REVIEW A 97, 053413 (2018)

times t > 0 is

Pion(t) =
∫

dωF |UFI (t)|2 = 1 − |UAI (t)|2 − |UII (t)|2. (A17)

In the case of three-photon ionization (Sec. IV), the equations of motion of the resolvent operator’s matrix elements are four,
but using the same procedure as described before, the elimination of the continuum leads to the following set of equations:

(z − ωI )GII = 1 + VIAGAI , (A18)

(z − ωA)GAI = VAIGII + VABGBI , (A19)

(z − ω̃B)GBI = VBAGAI , (A20)

where ω̃B = ωB − i�b, and �b is the ionization width. Note that the spontaneous decay of the intermediate states has been
neglected.

Solving for GBI , one gets

GBI = VBAVAI

(z − ω̃B)(z − ωA)(z − ωI ) − |VAI |2(z − ω̃B) − |VBA|2(z − ωI )
. (A21)

If z1,z2,z3 are the three roots of the denominator,

(z − z1)(z − z2)(z − z3) ≡ (z − ω̃B)(z − ωA)(z − ωI ) − |VAI |2(z − ω̃B) − |VBA|2(z − ωI ), (A22)

we can express GBI as

GBI = VBAVAI

(z − z1)(z − z2)(z − z3)
. (A23)

Inversion of resolvent transformation using Eq. (A15) leads to the transition amplitude,

UBI (t) = VBAVAI

[
e−iz1t

(z1 − z2)(z1 − z3)
+ e−iz2t

(z2 − z1)(z2 − z3)
+ e−iz3t

(z3 − z1)(z3 − z2)

]
. (A24)

The same procedure leads to the corresponding expressions for the amplitudes UAI (t) and UII (t). The probability of ionization
at times t > 0 is given by

Pion(t) = 1 − |UII (t)|2 − |UAI (t)|2 − |UBI (t)|2. (A25)
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