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Photoionization microscopy: Hydrogenic theory in semiparabolic coordinates
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Photoionization microscopy (PM) is an experimental method allowing for high-resolution measurements of the
electron current probability density in the case of photoionization of an atom in an external uniform static electric
field. PM is based on high-resolution velocity-map imaging and offers the unique opportunity to observe the
quantum oscillatory spatial structure of the outgoing electron flux. We present the basic elements of the quantum-
mechanical theoretical framework of PM for hydrogenic systems near threshold. Our development is based on
the computationally more convenient semiparabolic coordinate system. Theoretical results are first subjected to a
quantitative comparison with hydrogenic images corresponding to quasibound states and a qualitative comparison
with nonresonant images of multielectron atoms. Subsequently, particular attention is paid on the structure of
the electron’s momentum distribution transversely to the static field (i.e., of the angularly integrated differential
cross-section as a function of electron energy and radius of impact on the detector). Such 2D maps provide at a
glance a complete picture of the peculiarities of the differential cross-section over the entire near-threshold energy
range. Hydrogenic transverse momentum distributions are computed for the cases of the ground and excited initial
states and single- and two-photon ionization schemes. Their characteristics of general nature are identified by
comparing the hydrogenic distributions among themselves, as well as with a presently recorded experimental
distribution concerning the magnesium atom. Finally, specificities attributed to different target atoms, initial
states, and excitation scenarios are also discussed, along with directions of further work.
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I. INTRODUCTION

The quantum description of an atom or a molecule is based
on the key concept of the wave function. The wave func-
tion itself, however, is traditionally examined only indirectly
through a comparison between theoretically calculated and
experimentally measured expectation values of some selected
observables. Evidently, access to the electronic wave function
itself provides more insight into the structure of quantum
systems. The strategies followed for reaching this goal include
tomographic reconstruction of atomic orbitals in the field of ul-
trafast physics [1] or weak measurements [2] for reconstructing
the complete spatial wave function of a single photon [3]. A
common feature of these approaches is that the wave function,
or at least the corresponding probability density, is obtained
by means of a reconstruction procedure. However, the field of
STM or AFM microscopies [4] paved the way toward direct
wave function imaging methods. The so-called photoionization
microscopy (PM) is one of these very few methods allowing for
a direct measurement of the probability density of the electron
in the specific context of photoionization in the presence of
a static electric field. In this case the wave function of the
outgoing photoelectron in the direction of the field extends
over macroscopically large distances. Transversely to the field,
however, the wave function is bound, leading under appropriate
conditions to potentially visible structures in the photoelectron
flux. The latter is recorded by a position-sensitive detector and
reflects the squared modulus of the electronic wave function.

*Corresponding author: scohen@uoi.gr

The PM concept of direct wave function imaging was in-
troduced during the early 1980s by Fabrikant [5] and Demkov
et al. [6]. It was subsequently analyzed in deeper detail by
Kondratovitch and Ostrovsky in a series of papers dealing with
the semiclassical description of the hydrogenic Stark effect
[7,8]. A first partial experimental realization was achieved
in the framework of photodetachment [9], where the wave
function observation is limited to purely continuum ones,
bearing information on the electron affinity but not on the
negative ion target system. On the other hand, neutral atom
photoionization allows for the observation of both continuum
and quasibound state wave functions. The first PM experiment
was performed on xenon atoms [10] and later extended to
lithium [11,12], hydrogen [13], and helium [14] atoms.

The above experimental demonstrations were accompanied
by the development of theoretical approaches going beyond the
semiclassical [8,15] description of the hydrogenic Stark effect.
In fact, fully quantum mechanical nonperturbative treatments
of the subject were presented in many earlier [16–22] as
well as more recent [23–25] works. Present-day PM-oriented
theoretical studies [26–29] can be considered as appropriate
extensions of these works, while further extensions allowed
for their application to multi-electron atomic systems [30–32].
Of course, whenever possible, it is always desirable to obtain
insightful analytical results [7,8,25]. Nonetheless, for pho-
toionization studies near the ionization limit (the PM energy
range of interest), all-numerical computations appear to be
practical, efficient, and more suitable for a proper comparison
with experimental data.
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In the present paper we introduce yet another solution
of the Coulomb-Stark problem, where Schrödinger equation
is separated in semiparabolic coordinates. This coordinate
system appears to be quite advantageous for the given problem,
easily dealing with the wave function macroscopic extension
as well as its peculiarities at small distances. Nevertheless,
its employment for quantum calculations in the past was
rather limited [19,33], at least as compared to parabolic
[7,8,15,16,18,21,23–25,27,28] and mixed [20,22,26,29] co-
ordinates. We propose a numerical implementation based on
an array of robust variable-step integration techniques which
are simpler and generally more efficient than those employed
earlier.

Apart from the purely computational part, however, our
main task here is the introduction of the hydrogenic theoretical
framework of PM, including the specificities of differential
(radial and angular distribution) as well as of total photoion-
ization cross-sections. We particularly focus on the structure of
angularly integrated differential cross-sections as a function of
electron energy and radius of impact on the detector (in other
words, the electron’s momentum distribution transversely to
the field [27,28]). These 2D maps offer a complete landscape of
the relevant quantum interference effects whose gross features
remain unnoticed on single images. We present hydrogenic
maps corresponding to different initial states and excitation
schemes and discuss their general features. Furthermore, ex-
cluding specific resonant features of the excitation spectrum,
the hydrogenic PM framework can be reliably extended to
non-hydrogenic systems. We demonstrate this by a quantitative
comparison of computed PM images with resonant experi-
mental data for hydrogen [13] and a qualitative comparison
with non-resonant data for nonhydrogenic lithium [11,12] and
magnesium atoms. The extension to nonhydrogenic systems
is finally established by qualitatively identifying “universal”
similarities between an experimental 2D map recorded for
magnesium atom and the aforementioned hydrogenic maps.
We conclude by discussing the differences that may constitute
signatures of non-hydrogenic effects and the directions for
further work.

II. THEORY

A. Quantum mechanical Coulomb-Stark problem in
semiparabolic coordinates

The Schrödinger equation describing hydrogen atom in
the presence of a homogeneous and static electric field F of
strength F and oriented toward the positive z axis is written as
(in a.u. h̄ = e = me = 1),[

−1

2
∇2 − Z

r
+ Fz − E

]
ψ(r) = 0, (1)

with E the energy, Z the nuclear charge (for hydrogen Z =
1), and r = [x2 + y2 + z2]1/2. As is well known, Eq. (1) is
separable in either parabolic coordinates ξ = r + z, η = r−z

and ϕ = tan−1(y/x) [7,8,15,16], semiparabolic coordinates
[19,33],

χ = [r + z]1/2 � 0, υ = [r−z]1/2 � 0 and

ϕ = tan−1(y/x), (2)

or mixed coordinates (χ , η, ϕ) [20,22,26,29]. In the present
work we are primarily interested in the E � Ecl

sp energy range,
where the classical saddle point energy is [17]

Ecl
sp = −2[ZF ]1/2 a.u. (3)

The above range includes the field-free ionization limit,
E = 0, and it is generally characterized by the electron es-
cape to infinity, signaling the need to compute ψ(r) at large
(practically macroscopic) distances. To this purpose, it was
found computationally more convenient to solve Eq. (1) using
semiparabolic coordinates. For example, for a distance of
|z| ∼ 10 μm from the origin, the parabolic wave function needs
to be computed up to η ∼ 4 × 105 a.u., while the semiparabolic
one up to only υ = η1/2 ∼ 6 × 102 a.u.

In semiparabolic coordinates the wave function is written
in the form

ψ(r) = [2πχυ]−1/2X(χ )Y (υ)eimϕ, (4)

with m = 0, ± 1, ± 2, . . . the azimuthal quantum number.
From Eq. (4) it is evident that wave functions ψ of different |m|
are orthogonal to each other. By introducing Eq. (4) into Eq. (1),
we obtain the following decoupled differential equations:[

−1

2

d2

dχ2
+ 4m2 − 1

8χ2
+ Fχ4

2
− Eχ2 − 2Z1

]
X(χ ) = 0,

(5a)[
−1

2

d2

dυ2
+ 4m2 − 1

8υ2
− Fυ4

2
− Eυ2 − 2Z2

]
Y (υ) = 0,

(5b)

where the separation constants Z1 and Z2 are related through

Z1 + Z2 = Z. (6)

The numerical solution of Eqs. (5a) and (5b) is described in
Appendix A. Their structure reveals indeed that the electron is
bound along the χ coordinate, while it can escape to infinity
along the υ coordinate. The problem as a whole is, therefore, a
scattering problem and it is solved for a given, predetermined,
energy. Then, for fixed m, E, and F, Eq. (5a) has the form of a
radial Schrödinger equation with an “effective potential,”

UX,eff (χ ) = 4m2 − 1

8χ2
+ F

2
χ4 − Eχ2, (7)

while 2Z1 serves as the eigenvalue. An m = 0 example is given
in Fig. 1(a). The small-χ asymptotic behavior of wave function
X is

X(χ )
χ→0

→ AXχ |m|+ 1
2 [1 + O(χ2)], (8)

where the χ -normalization constant AX is by definition posi-
tive. On the other extreme, the large χ form of UX,eff forces X

to decay as [18],

X(χ )
χ→∞

→ 1

χ
exp

[
−F 1/2

3
χ3 + E

F 1/2
χ

]
. (9)

The solution of Eq. (5a) leads to the quantization of Z1,
thus fixing also Z2 through Eq. (6). The obtained Z

n1,|m|
1 set is

characterized by the quantum number n1 = 0,1,2 . . ., which
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FIG. 1. Semiparabolic “effective potentials” UX,eff (χ ) and UY,eff (υ) (black line) along the χ and υ coordinates, respectively,
Xn1,|m|(χ ),Yn1,|m|(υ) wave functions normalized as described in the text (orange lines) and 2Z

n1,|m|
1 and 2Z

n1,|m|
2 eigenvalues (horizontal blue

lines) for fixed F = 808 V/cm,E/|Ecl
sp | = −0.9565 and m = 0. Note that for m = 0 the (4m2−1)/(4x2), x = χ,υ term is a centripetal one.

(a, b) The n1 = 0 case for which 2Z
0,0
2 lies above the barrier of UY,eff and Y00 is a continuum wave function. (c, d) The n1 = 2 case for which

2Z
2,0
2 lies slightly below the barrier and, for this particular energy, Y20 corresponds to a quasibound state (resonance, with n2 = 27) where

the electron is trapped within the inner well. For n1 > 2, 2Z
n1,|m|
2 also lies below the barrier, but these states do not necessarily correspond to

resonances and the amplitude of Yn1,|m| within the inner well is negligible. The matching points χm and υm noted in (a) and (b), respectively,
which are employed in the computational procedure, are discussed in Appendix A. In (b) the smooth Milne function enveloping Yn1,|m| is drawn
with brown dashed lines.

is the number of nodes of the corresponding wave functions
Xn1,|m| in the interval (0,∞). For convenience these wave
functions are normalized to unity∫ ∞

0
Xn1,|m|Xn′

1,|m|dχ = δn1n
′
1
, (10)

and examples of them are given in Figs. 1(a) and 1(c). For the
υ coordinate the corresponding “effective potential” writes

UY,eff (υ) = 4m2 − 1

8υ2
− F

2
υ4 − Eυ2 (11)

[see Fig. 1(b)], and the small-υ behavior of wave function Y is

Y
υ→0

→ AY υ |m|+ 1
2 [1 + O(υ2)] (12)

(AY � 0). At large distances the large υ form of UY,eff leads
to [18,26]

Y
υ→∞

= CY M(υ) sin [θ (υ) + φ], (13)

where M > 0 denotes the Milne function. The latter is obtained
from the solution of the Milne equation [34],[

d2

dυ2
+ k2

]
M − 1

M 3
= 0, (14)

into which Eq. (5b) may be transformed [20,26] and

k2(υ) = 2
[
2Z

n1,|m|
2 − UY,eff (υ)

]
(15)

is the squared wavenumber function. In fact, at very large
distances the (4m2−1)/(4υ2) term in Eq. (11) can be safely
neglected and for υ → ∞ we have M ≈ k−1/2 and the Milne
function decreases monotonically and becomes practically
independent of both n1 and |m|. Finally, in Eq. (13),

θ (υ) =
∫ υ

υm

1

M 2(υ ′)
dυ ′, (16)

and φ is a constant phase that depends on the lower integration
limit υm in Eq. (16). The wave function Y is energy-normalized
and the value of CY = [2/π ]1/2 is determined by apply-
ing standard energy normalization procedures [16–18,22,26].
Nevertheless, in accordance with other authors [17,18], we
term AY as the υ-normalization constant.

The importance of the normalization constants AX,Y can
be appreciated by the fact that they provide the probability of
finding the electron near the nucleus, i.e., the density of states
(DOS). For a given state ψE,F

n1,m
, we have [22]

DOSn1,|m|(F,E) ≡
X2

n1,|m|(χ )
χ→0

Y 2
n1,|m|(υ)

υ→0

χ2|m|+1υ2|m|+1

= A2
X,n1,|m|(F,E)A2

Y,n1,|m|(F,E), (17)

and for a given |m| the total DOS is given by the incoherent sum
over all values of n1. AX is slowly varying with energy and be-
comes negligible when Z1(E) < 0. Similarly, AY is negligible
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when Z2(E) < 0 (Z1 > Z). Thus, for a particular n1 channel
the DOS can be of appreciable magnitude solely within the
energy range imposed by the conditions 0 � Z

n1,|m|
1 � Z, i.e.,

the classically allowed range for Z1. However, the transition to
negligible amplitude forAX andAY in the neighborhoodsZ1 ≈
0 and Z1 ≈ Z, respectively, is not that abrupt. It is therefore
advisable for any calculation to additionally include at least a
few n1 terms for which the above conditions are just violated.

Let us finally note that each n1 channel is associated with a
threshold E

n1,|m|
thr , found by solving the equation [12,15]

E = −2
[
Z

n1,|m|
2 (E,F )F

]1/2
. (18)

For E > E
n1,|m|
thr [Fig. 1(b)] the electron escapes over the

barrier of UY,eff , and the electron state is a continuum one,
characterized only by the pair (n1, m). However, for E <

E
n1,|m|
thr (i.e., below the UY,eff barrier) the electron may escape

solely via tunnelling through UY,eff . In this case there are
specific values of Z

n1,|m|
2 , which match the eigenvalues of

the inner well of UY,eff . Then, the wave function Y and
consequently AY acquire large magnitudes within the well
[see Fig. 1(d)], reflecting thus the fact that the electron is
trapped at short distances and the state exhibits an appreciable
lifetime. These so-called quasibound states (resonances) are
then characterized by an enlarged set of three quantum numbers
(n1, n2, m), where n2 is the number of nodes of Y within the
UY,eff well. Hence, the structure of DOS as a function of energy
is dictated mainly by the energy dependence of AY , which for
E � Ecl

sp and Z1 < Z may exhibit zero magnitude, resonant
structure due to the presence of resonances, or almost constant
nonzero magnitude (continuum). Therefore, the DOS has the
appearance of a “spectrum,” which is nonetheless independent
of any particular initial state or excitation process.

B. Transition matrix elements

Let us consider the radiative excitation of the final states
ψE,F

n1,m
out of an initial state ψi (of energy Ei and azimuthal

quantum number mi) via the single-photon dipole transition
operator T̂ = ε · r, where ε is the polarization vector of the ex-
citing laser beam. For calculating the relevant matrix elements,

dn1,m = 〈
ψE,F

n1,m

∣∣ε · r
∣∣ψi

〉
, (19)

we assume that ψi is either the ground or a low-lying excited
state and that for relatively small fields (of the order of a few
kV/cm) it is not influenced by its presence. Consequently, the
field is neglected for ψi , the latter being a bound unperturbed
(F = 0) state of free hydrogen. Furthermore, fine-structure
effects are not considered here. Since the field-free hydrogenic
Hamiltonian is separable in semiparabolic coordinates, ψi

is also written in the form of Eq. (4), which lacks spherical
symmetry and has no definite parity. For convenience it will be
labeled hereafter as |n,n1,n2,m〉, where the principal quantum
number n = n1 + n2 + |m| + 1 [16,17]. The components of
ψi are denoted as Xi and Yi , respectively. The static field
z axis is chosen as the quantization axis. When the linear
polarization vector is parallel to the field (π polarization)
we have ε · r = z = (χ2−υ2)/2 and the selection rule

�m ≡ m−mi = 0 applies. Then,

d
π
n1,m

= δm,mi D
π
n1,|m| , (20)

where

D
π
n1,|m| =

∫ ∞

0
dχ

∫ ∞

0
dυXiYiXn1,|m|Yn1,|m|

(χ4 − υ4)

2
.

(21)

Despite the oscillatory large-υ behavior of Yn1,|m| the υ

integrals appearing in Eq. (21) do not diverge because of the
fast decay of the bound wave functions Xi and Yi at infinity.

For linear polarization perpendicular to the field (σ polariza-
tion) we consider the quite common experimental arrangement
of a laser beam propagating perpendicularly to the field (say,
along the x axis). Therefore, ε · r = y = χυ sin ϕ, the relevant
selection rule is �m = ±1 and the matrix elements are given
by

dσ
n1,m

= δm,mi+1 − δm,mi−1

2i
D

σ
n1,|m| , (22)

with

D
σ
n1,|m| =

∫ ∞

0
dχ

∫ ∞

0
dυXiYiXn1,|m|Yn1,|m|χυ(χ2 + υ2).

(23)

In the present work we also consider two-identical-photon
excitation of ψE,F

n1,m
out of the ground state ψg(|1,0,0,0〉) of

energy Eg and mg = 0. Assuming there is no one-photon
resonant intermediate state, the two-photon transition matrix
elements are, in fact, one-photon matrix elements d (2)

n1,m
=

〈ψE,F
n1,m

|ε · r|ψv〉 connecting ψE,F
n1,m

to a virtual state ψv. The
latter may be obtained perturbatively via the Dalgarno-Lewis
method [35,36], that is, by solving the inhomogeneous equa-
tion, [

−1

2
∇2 − Z

r
− Ev

]
ψv(r) = −ε · rψg(r), (24)

with Ev = (E + Eg)/2 the virtual state’s energy. The static
electric field is again neglected for the ground and virtual states.
For solving Eq. (24), the virtual state is written as

ψv = (2πχυ)−1/2
∑
N1,M

XN1,|M|(χ )YN1,M (υ)eiMϕ, (25)

where the M sum runs over positive and negative values
of M and N1 = 0,1,2, . . . . The permissible values for the
azimuthal quantum number M are determined by selection
rules concerning the transition ψg → ψv, as imposed by the
dipole operator in Eq. (24). The solution of Eq. (25) reduces
to the calculation of the boundlike wave functions XN1,|M|
and YN1,M which is described in Appendix B. Once these
wave functions have been determined the two-photon matrix
elements write

d
(2)
n1,m

=
∑
N1,M

[ ∫ ∞

0
dχ

∫ ∞

0
dυXN1,|M|YN1,MXn1,|m|Yn1,|m|

× (χ2 + υ2)
∫ 2π

0
ε · r

ei(M−m)ϕ

2π
dϕ

]
, (26)
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and they are subjected to further selection rules concerning the
transition ψv → ψE,F

n1,m
.

C. Electron current probability density and related observables

Since the electron can escape to infinity solely via the υ

coordinate, we are interested in the electron flux over the
surface of a paraboloid of constant υ → ∞. By projecting the
electron current probability density vector J over the υ-unit
vector eυ we obtain

Jυ ≡ J·eυ = iπαω

[χ2+υ2]1/2

[
ψ+

out
∂(ψ+

out)
∗

∂υ
− (ψ+

out)
∗ ∂ψ+

out

∂υ

]
,

(27)

with α the fine structure constant and ω the frequency of the
photoexciting laser field.

The outgoing wave function ψ+
out can be calculated via the

time-dependent Schrödinger equation by employing first-order
perturbation theory. For a laser field of time-independent
amplitude, ψ+

out obeys the Dalgarno-Lewis equation [26],[
−1

2
∇2 − Z

r
+ Fz − E

]
ψ+

out(r) = −ε · rψi(r), (28)

where the initial state ψi can be either a physical state (single-
photon excitation) or a virtual state (two- or multiphoton
excitation). For ψ+

out we adopt the form

ψ+
out = (2πχυ)−1/2

∑
n1,m

Xn1,|m|(χ )y+
n1,m

(υ)eimϕ, (29)

where the wave functions Xn1,|m| are the solutions of Eq. (5a).
In Eq. (29), the m sum runs over positive and negative values
of m. By plugging Eq. (29) into Eq. (28) and following the
derivation described in Ref. [26] (as adapted to semiparabolic
coordinates) it turns out that the asymptotic, large-υ, form of
the outgoing wave functions y+

n1,m
can be expressed as

y+
n1,m

υ→∞
= − 2

CY

dn1,mMn1,|m|(υ)ei[θn1 ,|m|(υ)+φn1 ,|m|], (30)

i.e., in terms of the Milne functions Mn1,|m|, the phases
[θn1,|m|(υ) + φn1,|m|] and the matrix elements dn1,m, all deter-
mined by the solution of Eq. (5b). As mentioned above, for
υ → ∞ the Milne functions become practically independent
of both n1 and |m|. This does not hold for the phases and matrix
elements, carrying information concerning the inner part of the
wave function. After appropriate manipulations, the υ → ∞
form of the electron current probability density is written as

Jυ
υ→∞

= 2παω

χυ[χ2 + υ2]1/2

×
∣∣∣∣∣
∑
n1,m

ei[θn1 ,|m|(υ)+φn1 ,|m|]dn1,meimϕXn1,|m|(χ )

∣∣∣∣∣
2

(31)

and incorporates the angular distribution of the outgoing
electron flux. By integrating Eq. (31) over the whole surface
of the υ-paraboloid (0 � χ < ∞ and 0 � ϕ � 2π ) we obtain
the total electron signal, i.e., the total cross-section σtot.

Indeed, the surface element along the χ and ϕ coordinates
is dS = χυ[χ2 + υ2]1/2dχdϕ and by taking into account the
normalization of wave functions Xn1,|m| [Eq. (10)] and the
orthogonality between states of different m we find

σtot =
∫

Jυ(ϕ,χ )dS = 4π2αω
∑
n1,m

∣∣dn1,m

∣∣2
. (32)

Let us now assume that an electron detector whose plane is
perpendicular to z axis is placed at zdet = −υ2

det/2. The radius
ρ of electron impacts on the constant υ = υdet paraboloid is
given by ρ = [x2 + y2]1/2 = χυdet. The difference between
the detector’s plane and this paraboloid results to a variation of
z = zdet{1 + [ρ/(2zdet)]2}. Because of the bound character of
wave functions Xn1,|m| there is a maximum finite value χmax and
a corresponding radius ρmax = χmaxυdet, after which they have
all practically decayed. For this maximum radius the largest z

variation is �zmax = (χmax/υdet)2. For υdet → ∞ this variation
is negligible while in practice one has to ensure that υdet �
χmax. Then, [χ2 + υ2

det]
1/2 ≈ υdet and Eq. (31) is simplified to

Jυdet (ϕ,ρ) ∝ 1

χ

∣∣∣∣∣
∑
n1,m

ei[θn1 ,|m|(υdet )+φn1 ,|m|]dn1,meimϕXn1,|m|(χ )

∣∣∣∣∣
2

.

(33)

By angularly integrating Eq. (33) we may obtain the radial
distribution,

R(ρ) ∝ R(χ ) =
∫ 2π

0
Jυdet (ϕ,χ )dϕ (34)

which is of primary interest in the present work. Since ρ ∝ k⊥,
where k⊥ denotes the norm of the photoelectron’s momentum
transversely to the field, R(ρ) can be regarded as the electron’s
transverse momentum distribution [28]. Note, however, that
the term “radial distribution” is more frequently employed for
ρR(ρ), which is proportional to the number of electrons hitting
the detector within the [ρ, ρ + dρ] interval.

Finally, another important quantity that can be extracted
from Eq. (33) is the signal at the center of the image (χ = 0).
Using Eq. (8) we find that only m = 0 waves contribute to this
so-called glory signal (clarified in more detail below), which
is then given by

Jυdet,Glory ∝
∣∣∣∣∣
∑
n1

dn1,0AX,n1,0e
i[θn1 ,0(υdet )+φn1 ,0]

∣∣∣∣∣
2

. (35)

The phases and AX,n1,0 coefficients are characteristic of the
final Stark states and independent of the excitation process.
However, the glory signal depends strongly on the specifics
of the initial state and excitation scheme through the transition
matrix elements. Furthermore, one should keep in mind that the
glory signal, as well as all other observables presented above,
exhibits a pronounced dependence on the electron excitation
energy. For convenience, in our discussion below this energy
is expressed in terms of the dimensionless reduced energy
variable

ε ≡ E∣∣∣Ecl
sp

∣∣∣ , (36)
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and, when required, it will be explicitly denoted in the relevant
observables [Jυdet (ε,ϕ,ρ),R(ε,ρ),σtot(ε), etc.].

D. Classical aspects of electronic transverse momentum
distribution

For facilitating the discussion on the energy evolution of
R(ε,ρ), it would be instructive to briefly remind the reader of
its features of classical origin, as emerged from classical sim-
ulations [8,37–40] and numerous experimental verifications
[10–13,41].

The classical treatment of the Coulomb-Stark problem deals
solely with open n1-channels, since tunnelling is classically
forbidden. A particular characteristic of slow photoelectron
imaging is the appearance of two concentric structures and
a high intensity central peak in the recorded images. The
outer structure stems from classical source-to-detector electron
trajectories (hereafter called indirect trajectories), which are
complicated, they intersect the negative z axis at least once and
appear for ε � −1. The inner structure appears only for ε �
εdir ≈ −0.775 and stems from simple quasi-parabolic (direct)
trajectories that do not intersect the z axis. A first classification
of the two types of trajectories may be provided via the
electron’s initial ejection angle β with respect to the external
electric field, where β = 0 denotes uphill ejection (+z) and
β = π downhill ejection (−z) toward the detector. Let us recall
that β is related to the separation constants Z1,2 (for example,
Z1 = Zcos2[β/2] [37,38]). For −1 � ε � 0 both types of
trajectories correspond to launch angles β � βc ≡ arcsin[|ε|]
(for β < βc the electron does not escape from the atom).
There is no such restriction for ε � 0 (βc = 0). The indirect
trajectories are distinguished from the direct ones through
another critical angle βo for which the corresponding trajectory
intersects z axis at infinity. Thus, the indirect trajectories
correspond to launch angles within the [βc, βo] interval and the
direct ones to the [βo, π ] one. Note that βo = π for ε = εdir,
while for ε < εdir βo is meaningless.

From the point of view of classical particle scattering [38],
photoionization of the electron is treated as a half collision
process whose main features can be found by analyzing the
radius of impact on the detector as a function of ejection
angle. In other words, ρ(β) can be regarded as a generalized
scattering deflection function. Restricting ourselves to m = 0
outgoing electrons, within the [βc,π ] interval ρ(β) exhibits
several maxima and several zeros. The latter give rise to glory
scattering which is responsible for the high intensity central
peak of the images. Moreover, the maxima of ρ(β) give rise to
rainbow scattering. For ε � εdir where direct trajectories exist,
there is a single maximum ρI within the interval [βo,π ], the
so-called primary rainbow radius. All other (secondary bow)
maxima ρII , ρIII , etc., occur within the [βc,βo] interval. It
additionally holds that ρI < ρII < . . . < ρcl

max, where ρcl
max is

the maximum radius of impact, given by a simple analytical
expression [37,38]. In practice all secondary maxima are in-
distinguishable from ρII . Moreover, ρII is somewhat different
from ρcl

max only at low energy (ε ∼ –1), while all (direct
and indirect) bow radii progressively merge together at high
positive energy. Note finally that the primary bow is the most
intense among all bows and that the glory peak is more intense
than any bow.

III. EXPERIMENTAL SET-UP AND PROCEDURE

Many of the results of theoretical calculations described
above are compared in the next section to experimental data
obtained with lithium and magnesium atoms. The lithium
experimental set-up has already been described in detail
[11,12,42]. In the magnesium set-up, Mg vapor is produced
in an electrically heated stainless-steel oven mounted at the
top of the laser-atom interaction region. The thermal beam of
ground-state Mg atoms interacts with the frequency-doubled
radiation delivered by a pulsed Nd:YAG-pumped dye laser
operating at a repetition rate of 10 Hz. The fundamental
visible (610–670 nm) radiation pulses have ∼5-ns duration
and a linewidth of ∼0.2 cm−1. The frequency-doubled UV
radiation is produced by a KDP crystal and its pulse energy
amounts to ∼1 mJ. It is separated from the visible one by an
appropriate filter, its linear polarization may be rotated by a
λ/2-retarder and it is focused to the vacuum chamber via a
∼20-cm focal length lens. The visible beam is guided toward
a wavelength calibration system consisting of a Fabry-Perot
interferometer providing relative calibration (free spectral
range 0.4729(2) cm−1) and a discharge lamp offering absolute
calibration via the one-photon optogalvanic spectrum of Ne.

In both the Li and Mg experiments the atomic and laser
beams are both perpendicular to the electron spectrometer (and
electric field) axis and the achieved background pressure in the
interaction region is in the range 2−7 × 10−7 mbar. In the case
of Li the final Stark states are single-photon excited out of the
2s 2S1/2 lithium ground state (wavelength range 228−232 nm).
In the case of Mg, the final Stark states are two-photon excited
out of the 3s2 1S0 ground state (305−335 nm, no near-resonant
single-photon intermediate levels). For linear laser polarization
along the direction of the static electric field (�m = 0) we
excite m = 0 final states. For laser polarization perpendicular
to the field (|�m| = 1/per photon) we excite |m| = 1 final
states in Li and |m| = 0, 2 states in Mg.

The electron spectrometer (microscope) is based on a
standard three-electrode velocity-map imaging (VMI) spec-
trometer design [43]. Photoionization takes place in the center
between a solid repeller plate and an extractor plate with a
hole in its center. These electrodes are biased at voltages VR

and VE, respectively. The following grounded third electrode
is identical to the extractor plate. The holes of the last two
electrodes create an inhomogeneous electric field allowing the
fulfilment of the VMI condition for a given VE/VR ratio [42,43].
In the vicinity of the limited laser-atom interaction volume,
however, the field may be considered as nearly constant within
±0.1%.

Photoionized electrons are accelerated by the field toward
the end of a field-free drift tube. An electrostatic magnifying
Einzel lens is placed about midway the tube [42,44]. The
lens consists of three identical and equally-spaced electrodes
with holes at their centers. The two outer electrodes are
grounded, while the middle one is biased to a voltage VL.
The electrons are detected at the end of the drift region by a
two-dimensional position-sensitive detector made of a tandem
microchannel plate assembly followed by a phosphor screen.
A CCD camera records the 2D distribution of light spots on this
screen. Recorded images are transferred to a PC, where they
are accumulated over several thousand laser shots. The entire
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spectrometer is shielded by a double µ-metal layer, resulting
to a residual magnetic field <1 μT in its interior.

The ratio VE/VR ensuring VMI conditions depends on the
spectrometer design and (moderately) on whether the Einzel
lens is on or off. Typical electric field values between 500 and
1000 V/cm are applied in the interaction region and the lens
allows for an up to ∼20-fold magnification of the images. For
∼20 meV electrons such a magnification leads to typical image
sizes of ∼20 mm.

IV. RESULTS AND DISCUSSION

A. Photoionization microscopy images

Before proceeding to the discussion of radial distributions
it is worth testing the above formulation of the Stark effect
through a comparison between its predictions and the exper-
iment. For the resonant phenomena the comparison should
inevitably involve hydrogenic data, while nonresonant effects
afford a qualitative comparison with nonhydrogenic data.

1. Hydrogenic resonant and nonresonant m = 0 images and
radial distributions

Experimental images of hydrogenic Stark resonances
were presented in Ref. [13] and were recently reproduced
theoretically by employing mixed (χ , η, ϕ) coordinates
[29]. We examine here the vicinity of the quasibound
(n1, n2,m) = (2,27,0) Stark state, whose presently calculated
X2,0 and Y2,0 wave functions are given in Fig. 1. This state
was experimentally reached via a single-photon transition
out of an excited m = 0 state of hydrogen with principal
quantum number n = 2 and expected to exhibit mixed s

and p characters in the presence of the field [13]. Here, the
mixed character is taken into account by the semiparabolic
form [Eq. (4)] of the two relevant zero-field wave functions,
namely |n,n1,n2,m〉 = |2,0,1,0〉 = 2−1/2[|2s〉 + |2pm=0〉]
and |2,1,0,0〉 = 2−1/2[|2s〉 − |2pm=0〉]. Calculations were
carried out for F = 808 V/cm [13], and υdet = 1000 a.u.
(zdet ≈ −25 μm).

Figure 2 shows the results concerning the |2,0,1,0〉 initial
level. The total excitation cross section σtot(ε) is plotted in
Fig. 2(a) and consists of a weak background upon which
the much more intense (2, 27, 0) Stark resonance is super-
imposed. Figure 2(b) shows the resonant Jυdet (ϕ,χ ) image,
as well as nonresonant images lying below and above it
by energy differences equal to the experimental ones (see
Fig. 4 in Ref. [13]). All computed images accurately reproduce
the experimental data and show no angular dependence (as
expected for m = 0). It is evident from Eq. (33) that, even
on resonance, Jυdet (ϕ,χ ) incorporates contributions from both
the (2, 27, 0) resonance (E < E

n1,|m|
thr ) and the (n1,m) = (0,0)

and (1, 0) continuum channels ( E > E
n1,|m|
thr ). However, due

to the much larger excitation strength of the resonance, its
characteristics dominate the image. Noteworthy is the abrupt
on-resonance change of the number of nodes and image
radius increase. The latter is attributed to electron escape via
tunneling, which characterizes the quasibound states [8,26,30].
The present calculations are also in perfect agreement with
the aforementioned earlier theoretical efforts [29] where fine-
structure effects were also taken into account for the initial

FIG. 2. (a) Hydrogenic total cross section for one-photon excita-
tion out of the |2,0,1,0〉 initial state to m = 0 final states in the vicinity
of the (n1, n2, m) = (2, 27, 0) Stark resonance at ε = −0.9564. The
field value is F = 808 V/cm. (b) Selected Jυdet (ϕ,χ ) images, below,
on, and above the resonance. The images, computed for υdet = 1000
au, accurately reproduce the experimental results of Ref. [13] and
are in perfect agreement with earlier calculations employing mixed
coordinates [29]. Note the abrupt on-resonance fringe number change
and image radius increase. (c) Linear scale contour map of the radial
distribution R(ε,ρ) in the vicinity of the resonance. Hatched areas
denote intensity cuts. Note the stepwise increase of the nonresonant
outer radius at ε ≈ −0.96 and ε ≈ −0.94, signaling the n1 = 1
and n1 = 2 channel transformations to continua, respectively. Also
shown are the maximum classical radius ρcl

max (white dashed line) and
secondary bow radius ρII (white dotted line) [37,38], calculated under
the same conditions used for R(ε,ρ).

state. For simulating the effect of the field, these authors
employed an initial state of the form c1|2s1/2〉 + c2|2p1/2〉
(while |2p3/2〉 was ignored) and observed that their results were
insensitive to the variation of c1 and c2. In our case, excitation
via the |2,1,0,0〉 initial level (instead of the |2,0,1,0〉 one)
revealed that, while the resonance still appears in σtot(ε), its
manifestations on Jυdet (ϕ,χ ) almost disappear. In particular,
the resonant image hardly shows any fringe number change,
while its radius only slightly increases with respect to the
nonresonant images of its immediate vicinity. Since the initial
state employed in Ref. [29] is a linear combination of both
|2,0,1,0〉 and |2,1,0,0〉 levels irrespective of the choice of
c1 and c2, this is not an alerting observation. It nevertheless
implies that resonant manifestations on the images are highly
sensitive to the chosen initial state and excitation scheme.

It is interesting to examine the relevant radial distribution
R(ε,ρ) given in the contour plot of Fig. 2(c). The thresholds
of interest are ε

0,0
thr = E

0,0
thr /|Ecl

sp| ≈ −0.99 (not shown), ε
1,0
thr ≈

−0.97 (below the resonance) and ε
2,0
thr ≈ −0.95 (above it). The

plot reveals that for values of ε just above each threshold the
outer radii of nonresonant R(ε,ρ) distributions initially increase
abruptly within a range �ε ∼ 0.005 and subsequently remain
practically constant. In other words, the range ε ∼ −1 is
characterized by a stepwise increase of the non-resonant outer
radii, in the vicinity of each ε

n1,|m|
thr threshold. In contrast, the

classical radii ρII and ρcl
max [37,38], included in Fig. 2(c) and
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FIG. 3. Comparison between an experimental, nonresonant m =
1 lithium image (left) and a calculated hydrogenic one (right).
The horizontal and vertical axes refer to the x and y coordinates,
respectively, of electron impact on the detector. Li atoms were
single-photon excited out of the 2s ground state with σ -polarization
(laser beam propagating along x axis and with its linear polarization
directed along y axis) and for an estimated field F = 1000 ± 10
V/cm [12]. For this field and polarization, the hydrogenic image
was calculated for single-photon excitation out of the initial |2,0,1,0〉
state, for υdet = 1000 au and for a slightly different reduced energy
(see text), to reproduce as close as possible the experimental bright
fringe intensity distribution. Both images show the expected sin2ϕ

angular dependence.

calculated under the same conditions, do not exhibit this step-
wise increase. Moreover, ρcl

max systematically overestimates the
nonresonant radii. However, after some experimentation we
have verified that ρII matches to an excellent approximation
the outer turning point of R(ε,ρ), when the latter is calculated at
ε = ε

n1,|m|
thr + �ε. Given that, for the field strengths of interest

here, the ε
n1,|m|
thr thresholds are expected to be practically

independent of the atomic target, this behavior could be useful
for a more accurate determination of the field strength in studies
devoted to multielectron atoms.

2. Lithium nonresonant m = 1 images

The above discussion suggests that nonresonant PM images
produced by the hydrogenic theory near ε ∼ −1 could be
compared, at least qualitatively, with those recorded on non-
hydrogenic atoms. Our first nonhydrogenic example concerns
an (n1,m) = (4,1) continuum Stark state of lithium atom
excited from the 2s ground state in the presence of a field
F = 1000 ± 10 V/cm [11,12]. To somehow simulate the em-
ployed excitation scheme the hydrogenic image was computed
assuming σ -polarization and single-photon ionization out of
the |2,0,1,0〉 hydrogenic state. Figure 3 shows the image
resembling the most the experimental one, found by scanning
the reduced energy within the [ε4,1

thr ,ε
5,1
thr ) interval. The small

difference of reduced energies corresponding to the two images
is compatible with the reported field uncertainty. The sin2ϕ

angular dependence expected for an |m| = 1 final state is
evident. The lower spatial resolution of the experimental image
is to be expected since the computed data are not convoluted
with the resolution of the detector. Such an operation was
avoided because it is unnecessary for a qualitative compar-
ison. The most interesting common feature between the two

FIG. 4. Comparison between experimental non-resonant magne-
sium images (a, c) and hydrogenic theoretical images (b, d). The hor-
izontal and vertical axes refer to the x and y coordinates, respectively,
of electron impact on the detector. The laser beam propagates along
x axis. Mg final states were two-photon excited out of the 5s2 ground
state for an estimated static field value F = 680 ± 10 V/cm. The
hydrogenic calculation refers to two-photon excitation from the 1s

ground state, for the same field, υdet = 1000 au and a slightly different
reduced energy, to reproduce as close as possible the experimental
bright fringe intensity distribution. The light polarization vector is
either parallel to the field and z axis [m = 0 final states (a, b)] or
perpendicular to it and directed along y axis [simultaneous |m| = 0,
2 final state excitation (c, d)].

images is their quite similar bright fringe intensity distribution;
particularly the rather unexpected high intensity of the second
bright fringe (counting from the image center). By using the
|2,1,0,0〉 initial state (not shown) we observe a quite different
bright fringe intensity distribution and this particular fringe
has the lowest intensity among all others. This is also a clear
indication of the sensitivity of Jυdet (ϕ,χ ) on the initial state.

3. Magnesium nonresonant m = 0 and m = 0, 2 images

A second nonresonant example refers to the present mea-
surements of two-photon ionization of ground state magne-
sium in the presence of a field F = 680 ± 10 V/cm. The
experimental images were recorded using either π − [m = 0
final Stark states—Fig. 4(a)] or σ -polarization [|m| = 0 and
2 final states—Fig. 4(c)]. Experimental data are compared
with the theoretical images of Figs. 4(b) and 4(d), computed
via two-photon excitation of hydrogen ground state |1,0,0,0〉.
The slightly different reduced energies at which recorded and
computed images better resemble to each other are again
compatible with our field uncertainty. In fact, despite the
different characteristics of the initial states, the π -polarization
images bear many similarities, namely (i) the very intense
central glory spot, (ii) a quite intense outer bright (rainbow)
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fringe, and, more interestingly, (iii) the rather faint and low
contrast inner bright fringes. Although this last observation
may not be generalized, it characterizes the m = 0 magnesium
images recorded by two-photon excitation, as long as the
reduced energy is lower than the onset of the direct trajectories
(εdir ≈ −0.755).

As for the σ -polarization images, they also have many
features in common. First of all, they both exhibit the expected
cos2(2ϕ) angular dependence, which implies the dominance of
the m = 2 waves over the m = 0 ones. Nevertheless, the m = 0
contribution manifests itself in a number of ways. First, by the
very bright glory signal at the center of each image, whose
origin cannot be other than the m = 0 wave [Eq. (35)]. Second,
by an m-beating effect [30] [see the coherent summation over
different values of m in Eq. (33)], resulting to ϕ-dependent
bright fringe intensities and radii. The effect is present in both
experimental and theoretical images, but more evident in the
latter ones. One may notice in Fig. 4(d) that the fringe pattern in
the horizontal direction is different and fainter than that in the
vertical one. Since, the transition matrix elements may change
sign and magnitude as a function of energy, the image direction
where the fringes are brighter may also change. Finally, in
general, quite complex radial patterns are not uncommon at
higher energy.

B. Hydrogenic R(ε,ρ) maps

We now proceed to the subject of primary interest in the
present work, namely the energy evolution of the radial distri-
butions R(ε,ρ). To compare with the magnesium experimental
map to be discussed in the next subsection, all theoretical
maps presented here were computed for a field F = 680 V/cm
and within the energy range −1 � ε � +1. To facilitate the
discussion, we employ solely m = 0 initial and final states
(π -polarization). The detector is placed at υdet = 1000 a.u.
The graphs of Figs. 5–7 show the total cross sections σtot(ε)
and maps R(ε,ρ) for, respectively, single-photon excitation out
of the |1,0,0,0〉 ground state (Fig. 5), single-photon excitation
out of the |2,1,0,0〉 excited state (Fig. 6) and two-photon
excitation out of the ground state (Fig. 7). As it is observable
in Figs. 5(a)–7(a), for −1 < ε < 0 σtot(ε) is characterized by
a non-resonant background exhibiting an occasional steplike
increase and by superimposed resonances of various spectral
widths, reflecting their lifetime and tunneling probability.
These so-called tunneling states (TS) [24,28] are present in
all the spectra with more or less comparable line strengths
and profiles. On the contrary, for positive energies σtot(ε) is
characterized by oscillations which are attributed to so-called
Freeman resonances [45] and have been recently termed as
static-field-induced-states (SFIS) [24,28]. The contrast of these
oscillations depends on the initial state and excitation scheme.
For example, it appears to be much larger for single-photon
excitation of the |2,1,0,0〉 state than of the |2,0,1,0〉 one
(this is consistent with experimental observations [46] and
earlier calculations [21,22] at fairly higher fields, which have
been also successfully reproduced by the present formulation).
The data concerning the |2,0,1,0〉 initial state are not shown
here because, though not identical, the corresponding σtot(ε)
and R(ε,ρ) observables present many similarities with the
two-photon case of Fig. 7. The resemblance is not accidental,

(a)

(b)

ε

10-6

10-3

1
R(ε,ρ)

FIG. 5. (a) Hydrogenic total cross section within the −1 � ε �
+1 range and F = 680 V/cm for single-photon excitation of the
|1,0,0,0〉 ground state to m = 0 final states. (b) Logarithmic-scale
contour map of the radial distribution R(ε,ρ) computed for the above
field and υdet = 1000 au. The classical maximum radius ρcl

max (white
dashed line) and primary bow radius ρI (white dashed-dotted line),
computed as described in Refs. [37,38], are also drawn. The map
radius ρ is scaled to ρcl

max(ε = 0) as described in the text.

since for ε//F the final Stark states are (one-photon) excited
from an N1 = M = 0 virtual state, whose X and Y wave
function components have the same number of nodes with
the corresponding |2,0,1,0〉 state components and bear a close
functional form similarity with them.

The radial distributions of TS exhibit much larger radial ex-
tensions as compared to continuum Stark states [see Fig. 2(c)].
The most intense of these negative-energy TS resonances are
visible in the maps of Figs. 5(b)–7(b). It is not so obvious for
the weaker ones, due to the logarithmic false colour magnitude
scale of the maps, used to bring out all of their details without
any intensity cuts. Apart from these resonances, the general
energy evolution of the radial extensions of the maps evidently
presents the aforementioned features of classical origin. This is

10-5

10-2

10

ε

(b)

(a)

R(ε,ρ)

FIG. 6. (a) Hydrogenic total cross-section and (b) logarithmic-
scale contour map of R(ε,ρ) for the same field and υdet as in Fig. 5,
but for single-photon excitation out of the |2,0,1,0〉 initial state.
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FIG. 7. (a) Hydrogenic total cross-section and (b) logarithmic-
scale contour map of R(ε,ρ) for the same field and υdet as in Figs. 5
and 6, but for two-photon excitation out of the |1,0,0,0〉 ground state.
(c) Detail of the map of (b) within the −1 � ε � −0.7 range. (d)
The scaled radial distribution map R(ε,ρ)/σtot(ε) for the same range
of (c). The scaling slightly affects the n1-channel opening structures
near ε ∼ −1 and reduces the strength of resonant manifestations.
However, it leaves unaltered the nonresonant fringe patterns over the
whole map.

shown in Fig. 5(b) by drawing the maximum radius of impact
ρcl

max and the primary-bow radius ρI of the direct contribution
[37,38,40]. In fact, the radius ρ of all the maps is scaled
to ρcl

max(ε = 0). At ε ≈ 0 this radius is slightly larger than
the classical secondary-bow radius ρII (ε = 0) by a factor of
≈ 1.01. However, the quasiperiodic stepwise increase of the
nonresonant outer turning points of R(ε,ρ) discussed earlier
[Fig. 2(a)] is seen to persist over the whole −1 � ε � 1
range. These oscillating outer turning point radii differ from
ρII (ε ≈ 0) or ρcl

max(ε ≈ 0) by at most 0.5%.
The nature of quantum interferences differs for different

parts of the maps. These parts, therefore, deserve a separate
discussion. Let us discuss first the zones between 0 � ρ �
ρcl

max for −1 � ε � εdir ≈ −0.775 and ρI � ρ � ρcl
max for ε �

εdir, for which the interference pattern is attributed exclusively
to the indirect contribution. This pattern is rather simple and,
excluding the resonant effects, it basically reflects the nodal
structure of the dominant continuum n1 channel at a particular
energy. This structure is further modulated by the aforemen-
tioned channel transformations to continua, which do not cause
solely the variation of the outer turning point radii, but they are
also responsible for an accompanying quasiperiodic intensity
variation of the corresponding radial distributions. The indirect
contribution is quite intense at ε ∼ −1 and gradually becomes
fainter as energy increases. Furthermore, this part of the maps
is characterized by slanted quasinodal lines, which create some
sort of discontinuity in the behavior of the outer distribution

radius as a function of energy. We may notice in Fig. 5(b)
that there is a single ρ > ρI nodal line located within the
−0.8 � ε � −0.6 range, while in Figs. 6(b) and 7(b) we
observe two nodal lines, but not at the same locations. The
origin of this indirect-waves-only cancellation effect is at
present not fully understood. Nevertheless, since all computed
maps deal with the same final Stark states, it is obvious that it
should be attributed entirely to the energy evolution of the
magnitudes of the relevant excitation matrix elements. We
may conclude that the different numbers and locations of
nodal lines are a consequence of different energy evolutions
of these matrix elements. In turn, these differences originate
from the different initial states and excitation schemes. This
interpretation explains the absence of these quasinodal lines in
semiclassical hydrogenic PM simulations where, as formulated
so far [39], excitation matrix elements are not taken into
account.

Let us finally turn our attention to the most interesting
parts of the maps, ε � εdir and ρ < ρI , which exhibit much
more complicated quantum interference patterns. The latter
reflect the coexistence and subsequent beating effects between
direct and indirect contributions, each one characterized by
its own fringe “frequencies.” Note first the strong quantum
oscillations along the classical primary-bow radius ρI , which is
common in all maps. Hence, there is no clear boarder between
indirect-only and direct-plus-indirect regions, and ρI serves
merely for guiding the eye. Moreover, the gradual transition
from the one map range to the other differs in the maps of
Figs. 5(b)–7(b). The same holds for the various fringe systems
which are formed. Similar structures were observed in recent
theoretical calculations [28] and were attributed mainly to
the presence of SFIS states. Due, however, to the extreme
static fields employed in that work (F = 0.03−0.1 a.u.), most
of the presently revealed details were usually washed out.
Nevertheless, the ε > 0, ρ = 0 oscillating glory signal [see
Eq. (35)] persists also in our weak fields and it is indeed
related to the positive energy oscillations of σtot(ε) attributed to
SFIS. However, although the quasiperiodicity of cross-section
oscillations and glory oscillations is practically identical, a
closer look reveals that the two signals are dephased and,
moreover, that their phase difference varies with energy. This is
easily explained by a comparison between Eqs. (32) and (35),
which shows that, unlike σtot(ε), the glory signal is not simply
related to the energy-varying transition matrix elements, but
it additionally contains important information on the wave
function phase.

Another, most noteworthy, effect of the ε > εdir and ρ <

ρI map region is the beating pattern observed within the
−0.6 � ε � 0 range, which resembles a checkerboard. First
experimental evidence of the structure was quite recently
communicated in Ref. [39] for the hydrogen atom, singly
excited from the |2,0,1,0〉 state under the presence of an F ≈
796 V/cm field and within the −0.45 � ε � −0.2 range. The
checkerboard structure was explained on the basis of classical
and semiclassical calculations. It was, moreover, proposed
that the structure could be of use for extracting time delays
between specific classes of interfering classical trajectories
by means of the Eisenbud-Wigner time-delay definition [47].
The semiclassical calculations satisfactorily reproduced the
basic characteristics of the checkerboard pattern, buy they were
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FIG. 8. (a) Experimental total two-photon excitation cross section
of Mg out of its 5s2 ground state and under the presence of an F =
680 ± 10 V/cm static field. Laser polarization ε//F(m = 0). The
scan covers the range −165 cm−1 � E < +145 cm−1 (−1.03 � ε <

+0.91, upper x axis). Near Ecl
sp ≈ 159.6 cm−1 we may note the abrupt

rise of the Mg+ signal and a considerable number of resonances.
On the contrary, positive energy Freeman resonances (or SFIS [28])
are not observed, probably because their small modulation depth is
comparable to signal’s noise. (b) Scaled radial distribution contour
map R(ε,ρ)/σtot(ε) over the full energy range −165 cm−1 � E <

+145 cm−1. The quasizero σtot(ε) values near ε ∼ −1 are responsible
for the noise observed in that energy range, which is additionally
amplified by the color log-scale of the graph. The y axis radius ρ

is scaled to ρcl
max, whose expected behavior (as well as that of ρI ) is

evident. (c) Negative energy detail of (b). The dominant direct-indirect
beating feature is the checkerboard structure [39], observed in the
range −0.6 � ε < −0.2. At higher energy this structure evolves
into systems of beating fringes. Also noticeable are the indirect-bow
magnitude oscillations. The inset shows an image at a given energy
(denoted by the black dashed line) and the corresponding radial

unable to fully account for the presently revealed complexity
of the structure. A drawback of the employed semiclassical
approach [10] is that it takes no account of either the particular
initial state or the excitation scheme. For example, the −0.6 �
ε � 0 range of the map of Fig. 5(b) is not characterized
by isolated and distinct beating maxima, and, in fact, the
observed pattern is not a simple checkerboard structure. The
above findings provided the motivation for recordings of
experimental maps in the nonhydrogenic magnesium atom.
Although it is not our intention here to make an exhaustive
analysis of the emerging theoretical and experimental beating
patterns, the data presented below may validate or discard our
expectations on the emergence of the (nonresonant) complex
structures predicted by the hydrogenic theory.

C. Experimental magnesium R(ε,ρ) map

The m = 0 experimental total cross-section and radial-
distribution map recorded in magnesium atom in almost the full
−1 � ε � 1 range is shown in Figs. 8(a) and 8(b), respectively.
Parts of the same map are given in greater detail in Figs. 8(c)
and 8(d). The images [an example of which is shown in the
inset of Fig. 8(c)] were recorded at a constant energy step
of �E ≈ 0.4 cm−1 (�ε ≈ 2 × 10−3). The static electric field
was estimated via a number of different methods. A first
estimate was provided by the n1 = 0 and n1 = 1 channels
openings. Next, at positive energies we have compared the
observed “frequency” of glory oscillations to the one predicted
by hydrogenic theory. Finally, the outermost turning point
radius of the high energy (E > −50 cm−1) radial distributions
were fitted to the analytical expression for ρcl

max(ε) [37,38].
All the methods converged to a field value of F = 680 ± 10
V/cm, which is used for calculating the reduced energy ε,
given in the upper x axes of Figs. 8(a)–8(d). By employing
the aforementioned 1.01 ratio between the outermost turning
point (ρII ) and ρcl

max at ε = 0 we found a refined experimental
value for ρcl

max(ε = 0) and scaled our radius ρ to it.
Due to the small energy step employed for the measure-

ments, the recording of the map was accomplished within
several days. Special care was taken to record unsaturated
electron and ion signals, by keeping the laser intensity to the
lowest acceptable level (pulse energy <100 μJ, pulse intensity
<1010 W/cm2). However, we were unable to avoid a small
gradual decrease of pulse energy with time. For avoiding map
magnitude variations attributed to this drift, each experimental
radial distribution R(ε,ρ) is scaled by the total electron signal.
Thus, Figs. 8(b)–8(d) do not actually show R(ε,ρ), but the
quantity R(ε,ρ)/σtot(ε). By comparing nonscaled to scaled parts
of the maps we have verified that this operation does not affect
the details of the interference and beating patterns. This is also
true for the calculated hydrogenic maps and an example is
given in Figs. 7(c) and 7(d). The scaling slightly diminishes
the visibility of the steplike outer radius increase for ε ∼ −1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
distribution, where beating effects leading to magnitude modulation of
the finer fringes are clearly observed. (d) Positive energy detail of (b).
The beating effects mentioned in (c) are amplified. Also noteworthy
is the strong oscillation of the glory (ρ = 0) signal discussed in the
text.
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and reduces the importance of tunneling resonances. Yet, the
manifestation of such resonances in magnesium is restricted to
the vicinity of the saddle point energy.

One may first notice that for the 0 � ρ � ρcl
max ,−1 � ε �

εdir, map zone of Fig. 8(b) the faint and low contrast inner
bright fringes discussed above for the indirect contribution
[see Fig. 4(a)] makes their observation difficult (also due to the
logarithmic signal colour scale). However, the channel opening
oscillations are quite apparent over the whole indirect contri-
bution. Using scattering terminology [38], we may describe
this effect as indirect-bow oscillations. Finally, another char-
acteristic of this section of the map is the quasinodal line (or
surface) near −50 cm−1 and the accompanying discontinuity
of ρcl

max, visible also in the hydrogenic maps.
Passing now to the inner, ε > εdir and ρ < ρI region of

the map, its most striking feature is the intense checker-
board structure, observed within the −100 cm−1 � E �
−20 cm−1 (−0.6 � ε � −0.1) range. This range is shown in
more detail in Fig. 8(c), where the absence of a sharp ρI boarder
discussed in hydrogenic maps is additionally noticeable. As hy-
drogenic theory and magnesium experimental results imply, if
the checkerboard structure is clearly formed, it always appears
within the same ε range. At higher energy it is much less intense
and evolves to various beating fringe systems [or lines—see
Figs. 8(c) and 8(d)], which are expected to be atom-, initial
state-, and excitation scheme-dependent. At ε > 0 we may
identify in Fig. 8(d) a typical system of slanted fringes, which
are also observed in the present theoretical hydrogenic maps
and also predicted by the semiclassical theory [39]. Another
positive energy feature of the magnesium map that is common
with the computed hydrogenic maps concerns the strongly
oscillating glory (ρ = 0) signal [see Fig. 8(d)]. Certainly these
oscillations are related to SFIS resonances [24,28], despite the
fact that the resonances themselves are not evident in σtot(ε)
[Fig. 8(a)], apparently due to their poor contrast. As mentioned
above, the “frequency” of the glory signal has been employed
for estimating the field strength. To that purpose we made
use of the fact that the (dephased) oscillations of the glory
signal and the total cross section share the same field-dependent
“frequency,” and, additionally, the cross-section “frequency”
is the same for either hydrogen or nonhydrogenic atoms
[15]. Interestingly, however, the magnesium map shows an
additional beating pattern that has not been observed in the
present theoretical hydrogenic results. This pattern consists of
curved, quasivertical beating lines, persisting also to positive
energies. The visual effect of these fringes can be noticed in the
image and corresponding radial distribution given in the inset
of Fig. 8(c). They are responsible for the amplitude modulation
of the finer fringes of the image. Such effects were also seen
in lithium images [12], but their recording was not as detailed
as the present one and they were not discussed in detail. For
concluding whether this last fringe pattern is of nonhydrogenic
origin, theoretical and further experimental efforts devoted to
complex atoms are required.

V. CONCLUSION

We have presented a description of photoionization mi-
croscopy utilizing the computationally advantageous semi-
parabolic coordinate system. Theoretically calculated electron

probability current density distributions have been successfully
compared with experimentally recorded images, resonant for
hydrogen atom and nonresonant for more complex atoms.
Subsequently, attention has been focused to m = 0 transverse
momentum distributions R(ε,ρ) of the outgoing electron com-
puted for static electric fields whose strength is small and
compatible with current photoionization microscopy studies.
Calculations included single- and two-photon excitation out of
the ground state of hydrogen, as well as single photon excita-
tion out of an n = 2, m = 0 excited state. The maps revealed
quite complex interference and beating patterns whenever
the direct and indirect contributions to R(ε,ρ) overlap. Most
noticeable is the emergence of the so-called “checkerboard”
pattern, experimentally observed in hydrogen quite recently
using a different n = 2, m = 0 excited state. More importantly,
this structure appears also in our experimental R(ε,ρ) map,
obtained by two-photon ionization of the ground state of
magnesium.

The above analysis has suggested that near the ionization
threshold a number of gross features of R(ε,ρ) are common
to all Rydberg atoms in the presence of a static electric field,
appear irrespective of the initial state and excitation scheme
and may be predicted by fairly simple semiclassical theoret-
ical treatments [39]. That latter work provided a first global
classification of direct-indirect beating phenomena. Moreover,
recent quantum calculations linked a number of beating fringe
systems with positive energy field-induced resonances [28], but
many important details of the R(ε,ρ) maps were washed out
by the extreme static field strengths employed in that work.
These details have emerged in the present low-field work,
revealing a much richer fringe structure, which depends fairly
strongly on the initial state, excitation scheme, and as the Mg
experiment has shown, the target atom. These observations call
for additional experiments and extended calculations devoted
to several multielectron atoms (along with extensions of the
present calculations on hydrogen). In fact, it appears that even
if R(ε,ρ) has been recorded for a given target and under given
conditions, its different parts (checkerboard structure, glory
and bow oscillations, positive energy beating lines, just to name
a few) may provide different kind of information and deserve
a separate and more detailed analysis than the one provided
here. This analysis will be the subject of further work.
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APPENDIX A: COMPUTATIONAL DETAILS

1. Numerical computation along the χ coordinate

The bound wave functions Xn1 ,|m| are obtained by the
solution of the Schrödinger equation [Eq. (5a)] along the χ

coordinate. This equation is numerically solved for a given
set of |m|, E, and F values. In order to avoid instabilities
occurring at large χ distances, Eq. (5a) is integrated in both
the outward and inward directions for a given value of Z1
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and the logarithmic derivatives of two un-normalized solutions
(X̃′/X̃) are compared at some matching coordinate χm. The
latter is slightly larger than the corresponding outer turning
point. The value of Z1 is modified until the two logarithmic
derivatives are equal within a prespecified tolerance. This
procedure determines the values of Z

n1,|m|
1 and n1 [number of

zeros of X̃ within the (0, ∞) interval], and, after normalization,
the full Xn1,|m| wave function and the constant AX,n1,|m|. The
outward integration, starts at χi ∼ 10−7 au and the initial
conditions are chosen by making use of the small-χ asymptotic
form of Eq. (7). The inward integration starts at a distance
χout ensuring that X̃(χout)/X̃(χm) ∼ 10−10−10−20 [48] and
the initial conditions are chosen by making use of the χ →
∞ asymptotic form of Eq. (8). Due to the complications
arising from the fractional power dependence of Eq. (7), most
authors proceed to the outward integration of Eq. (5a) by first
performing a small-χ Taylor expansion of X [18–20,26] and
by subsequently propagating it via the renormalized Numerov
algorithm [22,26,49]. Here, we preferred to employ an adaptive
stepsize algorithm using the Stoermer’s rule as core integrator
[50] for solving in both the outward and inward directions. The
latter approach is found to be quite robust, reliable, and much
simpler, as it does not require the Taylor expansion step.

2. Numerical computation along the υ coordinate

Along the υ coordinate, Eq. (5b) is solved for fixed values
of |m|,E, and F and Z

n1,|m|
2 = Z − Z

n1,|m|
1 . We proceed again

by outward and inward integrations and matching of the two
solutions at some intermediate point υm. Outward integration
begins again at υi ∼ 10−7 a.u. and the initial conditions are
chosen by making use of the small-υ asymptotic form of
Eq. (10). The inward integration starts at υdet ∼ 500−1000
a.u. These relatively small values correspond to (macroscopic)
physical distances of ∼10−20 μm. This fact underlines the
advantage of using semi-parabolic coordinates, as compared
to the parabolic ones. However, due to the rapid oscillations
exhibited by Y at large distances we do not perform the inward
integration using Eq. (5b). Instead, we solve the equivalent
Milne Eq. (12) [34] and the initial conditions are chosen
by making use of M (υdet) ≈ k−1/2(υdet). These initial values
(along with a sufficiently large υdet) are crucial, in the sense
that small departures from them lead to an oscillating Milne
function. Furthermore, while the equation is frequently solved
with fixed and relatively large stepsizes [20,22], we have found
it preferable to use also for its solution the same adaptive
stepsize algorithm.

The choice of the matching point υm is made by consid-
eration of the divergence of the Milne function when it is
propagated within classically forbidden regions of space [20].
This concerns the E < 0 range where the “potential” UY,eff

along the υ coordinate [Eq. (11)] presents a barrier. In this
case, υm is chosen as the point where Ueff crosses υ-axis
after ignoring the diving (4m2−1)/(8υ2) term, i.e., at υm =
[−2E/F ]1/2. This point is always larger than any turning point;
it depends solely on E and F and it corresponds to Z2 = 0,
i.e. after (roughly) considering zero attraction of the electron
by the nucleus (as in photodetachment). The only drawback
of this choice is that υm becomes very small or even zero near
and at E = 0, respectively. Even more, it cannot be defined

for E > 0 because in this case Ueff is not crossing the υ axis
at large distances. After some experimentation, the minimum
allowed value of υm is [−2Eυ/F ]1/2 with Eυ ≈ −0.2F 1/2.
This value is also used for E > 0.

The matching procedure proceeds along the lines described
in Ref. [22], as adapted for the semiparabolic coordinates. The
procedure provides Yn1,|m| over the whole υ axis. Particularly,
it provides the normalization constant AY,n1,|m| and the phase
factor ei[θ(υdet )+φ] at the detector location υdet. The phase φ

depends on υm, but it is not explicitly determined. Finally,
having computed the wave functions Xn1,|m| and Yn1,|m|, all
required integrals and matrix elements with respect to χ and
υ are numerically evaluated by applying appropriate adaptive
stepsize algorithms [51].

APPENDIX B: COMPUTATION OF VIRTUAL STATES

Let us now assume two-photon excitation of final Stark
states of energy E out of the ground state of energy Eg and
mg = 0. The necessary step for calculating two-photon matrix
elements is the solution of the inhomogeneous differential
Eq. (21), that is [35,36][

−1

2
∇2 − Z

r
− Ev

]
ψv(r) = −ε · rψg(r), (B1)

with Ev = (E + Eg)/2 the virtual state energy. As mentioned
above, the static electric field is neglected for the ground and
virtual states, the latter written as

ψv = (2πχυ)−1/2
∑
N1,M

XN1,|M|(χ )YN1,M (υ)eiMϕ. (B2)

For the cases of interest here we have Ev < 0. Plugging
Eq. (B2) to Eq. (B1) and after separation of variables we arrive
at the following differential equations:[
−1

2

d2

dχ2
+ 4M2 − 1

8χ2
+ �2

2
χ2 − 2Z

N1,|M|
1

]
XN1,|M|(χ ) = 0,

(B3)[
−1

2

d2

dυ2
+ 4M2−1

8υ2
+ �2

2
υ2 − 2

(
Z−Z

N1,|M|
1

)]
YN1,M (υ)

= −gN1,M (υ), (B4)

where the functions gN1,M write

gN1,M (υ) = Yg(υ)
∫ ∞

0
dχXgXN1,|M|(χ2 + υ2)

×
∫ 2π

0
ε · r

ei(mg−M)ϕ

2π
dϕ. (B5)

In Eqs. (B3) and (B4) we have defined the “circular
frequency,”

�2 = 2|Ev|, (B6)

while Xg and Yg in Eq. (B5) are the χ and υ components
of the ground-state wave function ψg = |1,0,0,0〉, which are
written as

Xg = X1,0,0,0(χ ) = (2Z)1/2χ1/2e− Z
2 χ2

, (B7a)

Yg = Y1,0,0,0(υ) = Zυ1/2e− Z
2 υ2

. (B7b)
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Since mg = 0 and depending on the dipole operator ε·r, the
angular integral in Eq. (B5) allows excitation to virtual states
with |M| = 0,1. Therefore, below we examine solely these
two cases. Equation (B3) is a harmonic oscillator Schrödinger
equation, whose bound orthonormal solutions are

XN1,|M|(χ ) = AN1,|M|χ |M|+1/2e− �
2 χ2

1F1(−N,|M|+1,�χ2),

(B8)

where 1F1 denote confluent hypergeometric functions of
the first kind [52], which reduce to Laguerre polynomials
LN1(�χ2) for M = 0. The normalization constants are given
by AN1,0 = [2�]1/2 and AN1,1 = [2(N1 + 1)]1/2� and the
corresponding eigenvalues are written as

Z
N1,|M|
1 = �

(
N1 + 1 + |M|

2

)
. (B9)

It turns out that by imposing Z
N1,|M|
1 � Z = 1 and for the

energy range of interest here N1,max = 0 in the sum of Eq. (B2).
Due to the fact that there is no resonant intermediate state

at the first photon level Eq. (B4) can be solved by expanding
YN1,M into the set of eigenfunctions uN1,M of the relevant
homogeneous differential equation,[

−1

2

d2

dυ2
+ 4M2 − 1

8υ2
+ �2

2
υ2 − �

|M|
N1

]
uN1,M = 0, (B10)

with �
|M|
N1

the corresponding eigenvalues. This approach pro-
vides analytic forms of YN1,M , albeit in the form of a series.
To this purpose we first set

YN1,M = a±|M|yN1,|M|, (B11)

with the factors a±|M| stemming from the appropriate selection
rules. Thus, for π -polarization (M = 0) we have a0 = 1 and
for σ -polarization (|M| = 1) a±1 = ±1/2i. The N1 = 0

functions which are relevant to the examined excitation scheme write

X0,0(χ ) = (2�)1/2χ1/2e−�
χ2

2 , (B12)

y0,0(υ) = 24�5/2Z3/2υ1/2e− �
2 υ2

[ ∞∑
n=0

n(Z − �)n−2[(n + 1)� − 2Z]

[(n + 1)� − Z](Z + �)n+4 Ln(�υ2)

]
, (B13)

X0,1(χ ) = 21/2�χ3/2e− �
2 χ2

, (B14)

y0,1(υ) = 25�3Z3/2υ3/2e− �
2 υ2

[ ∞∑
n=0

(n + 1)(Z − �)n−1[(n + 2)� − 2Z]

[(n + 2)� − Z](Z + �)n+5 1F1(−n,2,�υ2)

]
. (B15)

The infinite sums appearing in Eqs. (B13) and (B15) are in practice restricted to the largely sufficient maximum values
nmax ≈ 15 for M = 0 and nmax ≈ 25 for |M| = 1.
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