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Muonic molecular ions ppμ and pdμ driven by superintense VUV laser pulses:
Postexcitation muonic and nuclear oscillations and high-order harmonic generation
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The non-Born-Oppenheimer quantum dynamics of ppμ and pdμ molecular ions excited by ultrashort,
superintense VUV laser pulses polarized along the molecular axis (z) is studied by the numerical solution of
the time-dependent Schrödinger equation within a three-dimensional (3D) model, including the internuclear
distance R and muon coordinates z and ρ, a transversal degree of freedom. It is shown that in both ppμ and pdμ,
muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation
values 〈z〉, 〈ρ〉, and 〈R〉 demonstrate “post-laser-pulse” oscillations in both ppμ and pdμ. In the case of pdμ,
the post-laser-pulse oscillations of 〈z〉 and 〈R〉 appear as shaped “echo pulses.” Power spectra, which are related
to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the
acceleration form. For pdμ it is found that there exists a unique characteristic frequency ωpdμ

osc representing
both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest
themselves by very sharp maxima in the corresponding power spectra of pdμ. The homonuclear ppμ ion does
not possess such a unique characteristic frequency. The “exact” dynamics and power, and HHG spectra of the 3D
model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse
oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion.
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I. INTRODUCTION

Excitation of muonic atoms and molecular ions by very
intense laser pulses continues to attract considerable attention
[1–8]. While in muonic molecular ions the main empha-
sis is still made on the muon-catalyzed fusion [7,9], other
laser-induced processes are also very interesting for other
reasons.

In particular, power spectra of pμ and dμ muonic hydrogen
isotopes calculated in Ref. [1] showed the possibility to
generate harmonics of a very high order (more than 1200)
when the atoms were excited by a single VUV laser pulse
with a frequency h̄ωl = 59 eV and a peak intensity of I0 =
1.05 × 1023 W/cm2. There, also the role of finite-mass and
finite-size effects of the atomic nuclei was emphasized. Similar
work was done in Ref. [3] on muonic hydrogenlike systems
with increasing nuclear charge. Other phenomena addressed
in the context of strongly laser-driven muonic atoms are
the coherent excitation of nuclei [2] and zeptosecond pulse
generation [4,5].

In Ref. [8], laser-pulse driven muonic molecular ions ddμ

and dtμ were studied, including (along with laser-enhanced
fusion) coherent post-laser-pulse muonic oscillations and high-
order harmonic generation. For postlaser oscillations and the
energy uptake from the field by the molecule, strong non-Born-
Oppenheimer effects were found.

In the present work we address similar problems in muonic
molecular ions ppμ and pdμ which are excited by a single
VUV laser pulse similar to the one used in Ref. [1]. Due to the
smaller nuclear masses, even stronger non-Born-Oppenheimer
effects are to be expected than for ddμ and dtμ. Further,
HHG spectra and their dependence on nuclear motion are now

analyzed in greater detail. In particular, besides HHG due to
muonic degrees of freedom, which had been considered before,
we also report indirect and direct contributions to HHG due
to nuclear motion, with a special emphasis being made to
the difference of power and HHG spectra of homonuclear
ppμ and heteronuclear pdμ suggested by the concept of
inversion symmetry for nuclear motion, similar to that applied
previously to muonic motion in ddμ and dtμ [8]. On the other
hand, in contrast to our previous work [8], the problem of
laser-enhanced fusion is not addressed here due to a very small
fusion rate [9].

More specifically, we study the non-Born-Oppenheimer
quantum dynamics of ppμ and pdμ excited by a superintense
laser field linearly polarized along the molecular (z) axis
by means of the numerical solution of the time-dependent
Schrödinger equation within a three-dimensional (3D) model,
including the internuclear distance R and two muon coor-
dinates, z and ρ. The muon-nucleus and nucleus-nucleus
Coulombic interactions are treated, as in Ref. [1], by making
use of a nuclear drop model, while the muon is treated as
being pointlike. The models used in our simulations, equations
of motion, and numerical techniques are described in the
next section. In Sec. III, the laser-induced quantum dynamics
and the post-laser-pulse free evolution of ppμ and pdμ

are presented and compared to those obtained at a fixed
internuclear distance R, which is often referred to as the
Born-Oppenheimer approximation. Post-laser-pulse muonic
and nuclear oscillations on a long time scale are discussed
in Sec. IV. Section V is devoted to power spectra generated by
muonic and nuclear degrees of freedom. The results obtained
are summarized in the concluding section VI.
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FIG. 1. Three-body 3D model of pdμ excited by the laser field
linearly polarized along the z axis. The internuclear separation is R;
the distances between the muon μ and each of the two nuclei, p and
d , are r1 and r2, respectively. The coordinate z has its origin at the
center of mass of the two nuclei.

II. MODELS, EQUATIONS OF MOTION,
AND NUMERICAL TECHNIQUES

The three-body 3D model with the Coulombic interactions
representing the pdμ molecular ion excited by a laser field
linearly polarized along the z axis is shown in Fig. 1. The
nuclear motion is restricted to the polarization direction of the
laser electric field, while the muonμmoves in three dimensions
with conservation of cylindrical symmetry. Accordingly, two
coordinates of the muon, z and ρ, measured with respect to the
center of mass of proton p and deuteron d, are treated explicitly
together with the internuclear separation R.

The heteronuclear pdμ system has a permanent dipole
moment. The component of the dipole operator along the z

axis is a function of R and z and reads [10]

d̂z(R,z) = −e{R(Md − Mp)/(Md + Mp)

+ z[1 + Mμ/(Md + Mp + Mμ)]}, (1)

where e is the muon charge and Md, Mp, and Mμ are
the deuteron, proton, and muon masses, respectively. Mμ

is 206.768 times the electron mass Me, the latter defining
the atomic mass unit. Due to the permanent dipole moment,
vibrational motion in pdμ is excited both directly, by the
laser field, and also indirectly, due to the muon motion. At the
same time, the laser-driven muonic motion along the optically
active z degree of freedom induces muonic motion along the
optically passive transversal ρ degree of freedom due to the
wave properties of the muon.

In contrast, the homonuclear ppμ system does not have
a permanent dipole moment. The component of the dipole
operator of ppμ along the z axis is a function of z only and
reads

d̂z(z) = −ez[1 + Mμ/(2Mp + Mμ)]. (2)

Therefore, vibrational motion in ppμ is excited only
indirectly—due to the muonic motion induced by the laser field
along the z axis [11–13]. Muonic motion along the optically
passive transversal ρ degree of freedom occurs only due to the
wave properties of the muon.

The time-dependent Schrödinger equation describing the
quantum dynamics of pdμ in the classical laser field (Fig. 1)
reads

ih̄
∂

∂t
� = − h̄2

2mn

∂2�

∂R2
− h̄2

2mμ

(
∂2�

∂ρ2
+ 1

ρ

∂�

∂ρ

)
− h̄2

2mμ

∂2�

∂z2

+VC(R)�−VC(r1)�−VC(r2)�−dz(R,z)E(t)�.

(3)

In Eq. (3), �(R,z,ρ,t) is the total wave function, mn =
MdMp/(Md + Mp) is the nuclear reduced mass, and mμ =
Mμ(Md + Mp)/(Mμ + Md + Mp) is the muon reduced mass.
The Coulomb potentials VC are treated, similar to Ref. [1],
within the nuclear drop model as follows.

For the proton-deuteron interaction, the Coulomb potential

VC(R) = e2

rp + rd

[
3

2
− R2

2(rp + rd)2

]
if R � rp + rd (4)

and VC(R) = 1/R if R > rp + rd, where rp = 0.8751 fm and
rd = 2.1413 fm are the proton and deuteron charge radii,
respectively (1 fm = 10−15 m). The Coulomb potential VC(r)
for the muon-nucleus interaction reads

VC(r) = e2

rn

[
3

2
− r2

2 r2
n

]
if R � rn (5)

and VC(r) = 1/r if r > rn, where the nuclear radius rn stands
for rp or rd, specified above, and r stands for the muon-proton
r1 or muon-deuteron r2 distances, which read

r1(R,ρ,z) = {ρ2 + [z + RMd/(Md + Mp)]2}1/2 (6)

and

r2(R,ρ,z) = {ρ2 + [z − RMp/(Md + Mp)]2}1/2, (7)

respectively (see Fig. 1). In the case of homonuclear ppμ, the
deuteron mass Md should be replaced with the proton mass Mp

with straightforward modifications of Eqs. (3)–(7).
The laser field E(t) in Eq. (3) is chosen as a single five-cycle

pulse with a smooth shape,

E(t) = E0 S(t) sin(ωlt), (8)

where the shape S(t) comprises one cycle for the smooth sin2-
type turn-on, followed by three cycles with the amplitude E0

and one cycle for the smooth sin2-type turn-off of the pulse.
The laser-pulse amplitude is E0 = 1 × 103 a.u. (atomic electric
field unit, 1 a.u. = 5.14 × 1014 V/m), which corresponds to a
peak intensity I0 = 1

2cε0E2
0 = 3.51 × 1022 W/cm2. The laser

carrier frequency times h̄ is h̄ωl = 2.1682 a.u., where a.u. is
the atomic energy unit [1 a.u. = 1Eh(Hartree) = 27.2114 eV],
i.e., h̄ωl = 59 eV. The overall pulse duration is tp = 0.35 fs
(1 fs = 10−15 s). The pulse parameters are the same as those
used in Ref. [1], except for the intensity which was higher
there. The pulse is shown in Fig. 2(c) below. We also notice
that with the laser carrier frequency h̄ωl = 2.1682 a.u. used
in the present work, the laser wavelength, λl = 396.912 a.u.,
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FIG. 2. Laser-driven quantum dynamics and the initial stage of
post-laser-pulse free evolution of ppμ (a) and pdμ (b). Time-
dependent expectation values 〈z〉 of the laser-driven muonic degree
of freedom z: curves 1—the non-Born-Oppenheimer treatment;
curves 2—the Born-Oppenheimer approximation. (c) The five-cycle
shaped laser pulse: E0 = 1 × 103 a.u. (I = 3.51 × 1022 W/cm2),
ωl = 2.1682 a.u. (h̄ωl = 59 eV), and tp = 0.35 fs.

is by more than three orders of magnitude larger than the size
of diatomic muonic ions, which was estimated from above in
Ref. [13] as 0.1 a.u. Hence the electric dipole approximation
used in the equation of motion (3) is well justified.

Numerical techniques used to solve the 3D equation of
motion (3) have been described in detail in previous works
[13,14]. Specific details are given in Appendix A. Besides
undergoing bound motion, the molecules may also dissociate
or ionize. The dissociation probability was calculated with
the time- and space-integrated outgoing flux for the nuclear

coordinate R; the ionization probabilities were calculated with
the respective fluxes separately for the positive and the negative
direction of the z axis as well as for the outer end of the ρ

axis. The other decay process occurring in muonic molecules,
nuclear fusion at a very small internuclear separation, can be
neglected in ppμ and pdμ due to a very small fusion rate [9].
Therefore, nuclear fusion was not taken into account in our
present work.

Initially, at t = 0, ppμ and pdμ were assumed to be in
their ground vibrational states. The wave functions of the
initial states were obtained by the numerical propagation of the
equation of motion (3) in imaginary time without the laser field
(E0 = 0). The energy of the ground states was E = −102.2251
a.u. (Eh) for ppμ and E = −106.0146 a.u. for pdμ. Con-
sidering the ground-state energy of muonic H and D, of
Epμ = −0.5(Mμ · Mp)/(Mμ + Mp) a.u. = −92.9202 a.u. and
Edμ = −0.5(Mμ · Md)/(Mμ + Md) a.u. = −97.8707 a.u., re-
spectively, we have binding energies Ebind of these ground
states with respect to the dissociation limit, of Ebind =
102.2251 − 92.9202 = 9.3050 a.u. (or 253.2 eV) and 8.1439
a.u. (or 221.6 eV) for ppμ and pdμ, respectively. Further,
the maximal R-probability density of these states was at R =
0.011 a.u. (ppμ) and at R = 0.015 a.u. (pdμ), respectively
(1 a.u. = 1 Bohr unit a0 = 0.5292 × 10−10 m).

To put these numbers and also the laser parameters in a
broader context, we note that a Born-Oppenheimer potential-
energy surface of a muonic hydrogenic molecular ion can be
estimated from simply using the analogy to the correspond-
ing electronic molecular ion, H2

+, and replacing there the
Bohr unit a0 by the corresponding muonic Bohr unit aμ =
a0Me/Mμ = 0.0048a0 [9]. Similarly, the electronic atomic
energy unit Eh should be replaced by Eμ = EhMμ/Me =
206.768Eh. The H2

+ has a ground-state potential-energy
surface with a classical minimum at R0 � 2a0, about 0.1Eh

(2.7 eV) deeper than the dissociation limit (H+H+), with an
energy of −0.5Eh. A corresponding muonic species, ppμ,
has therefore R0 � 0.0097a0 � 5.1 × 10−13 m, and a (clas-
sical) dissociation energy of ∼20.7Eh ∼ 563 eV. According
to Ref. [9], both ppμ and pdμ have only a single bound
vibrational state, with (nonclassical) dissociation energies of
253.15 eV (ppμ) and 221.55 eV (pdμ), respectively. These
values are in very good agreement with our computed binding
energies and, considering the potential-energy picture, show
that the zero-point energy is about half of the classical disso-
ciation energy. Further, from our calculations above we note
that the maxima of the R distributions of the ground states
are located at slightly higher R than the classical value R0 as
expected. Finally, the laser energy of 59 eV is clearly below
the dissociation and ionization energies of the molecular ions,
so that these events can only occur via multiphoton processes.

III. LASER-DRIVEN DYNAMICS AND FREE EVOLUTION
OF ppμ AND pdμ AFTER THE END

OF THE LASER PULSE

Excitation of ppμ and pdμ by the 0.35 fs laser pulse and
the initial stage of their free evolution after the end of the pulse
(up to 0.5 fs) are presented in Fig. 2 by the time-dependent
expectation values 〈z〉 of the optically active muonic degree of
freedom z. The non-Born-Oppenheimer quantum dynamics of
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ppμ and pdμ are shown in Figs. 2(a) and 2(b), respectively,
by curves 1. For the sake of comparison, results obtained at
fixed internuclear distances, R = 0.0125 a.u. for ppμ and R =
0.015 a.u. for pdμ, which are close to the respective classical
equilibrium value R0 (and the maximum of R distributions; see
above), are presented in Figs. 2(a) and 2(b) by curves 2. Results
obtained at fixed internuclear distances are referred to as
those obtained within the Born-Oppenheimer approximation.
Finally, the driving shaped five-cycle laser pulse is shown in
the bottom, Fig. 2(c).

From Fig. 2 it is clear that there are pronounced dif-
ferences between the non-Born-Oppenheimer and the Born-
Oppenheimer treatments. We see that the muon treated beyond
the Born-Oppenheimer approximation follows the applied
laser field out of phase (expectation values 〈z〉 increase when
the field strength decreases) only approximately. At the end
of the pulse the muonic motion along the z coordinate is still
excited, which results in post-laser-pulse muonic z oscillations
occurring in both ppμ and pdμ [see curves 1 in Figs. 2(a)
and 2(b)]. In case of pdμ, 〈z〉 values become more and
more negative in average after the pulse is off, indicating
the onset of a large-amplitude motion of the muon. In con-
trast, within the Born-Oppenheimer approximation a perfect
muon-field out-of-phase following takes place during the laser
pulse. At the end of the pulse, expectation values 〈z〉 return
back to their initial equilibrium ones and the post-laser-pulse
muonic oscillations do occur neither in ppμ nor in pdμ [see
curves 2 in Figs. 2(a) and 2(b)]. Similar differences were
obtained in previous work [8] for ddμ and dtμ, albeit less
striking. However, also there oscillations were present after
the pulse only in the non-Born-Oppenheimer case, such that
the existence of post-laser-pulse muonic oscillations in small
muonic molecular ions can be considered entirely a non-Born-
Oppenheimer phenomenon.

IV. DISSOCIATION, IONIZATION, AND POSTLASER
MUONIC AND NUCLEAR OSCILLATIONS

ON A LONGER TIME SCALE

Since very intense laser pulses were used for the initial
excitation of ppμ and pdμ, it is important to estimate first
a possible role of ionization and dissociation with respect
to the post-laser-pulse free evolution on a long time scale.
Time-dependent ionization and dissociation probabilities of
ppμ and pdμ are plotted in Fig. 3 on a longer time scale of 43
fs. Dissociation probabilities are presented by curves D(t) and
ionization probabilities for the positive or negative directions of
the z axis are presented by curves Iz(±), respectively. Ionization
probabilities for the outer end of the ρ axis at t = 43 fs
are comparatively very small, Iρ = 0.57 × 10−5 for ppμ and
0.11 × 10−4 for pdμ, and are not plotted in Fig. 3.

It is seen from Fig. 3 that both ionization and dissociation of
pdμ is significantly higher as compared to ppμ. Nevertheless,
the respective probabilities are rather small: the overall disso-
ciation and ionization yield (including that for the ρ degree of
freedom) is about 0.38% for pdμ and only about 0.12% for
ppμ. Hence post-laser-pulse muonic and nuclear oscillations
of ppμ and pdμ are practically not affected by ionization and
dissociation.
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FIG. 3. Time-dependent ionization and dissociation probabilities
of ppμ and pdμ. Curves Iz(+)(t) and Iz(−)(t) present ionization
probabilities in the positive and in the negative direction of the z

axis, respectively. Curves D(t) present the dissociation probabilities.

Returning to the laser-induced muonic z oscillations already
reported in Fig. 2, we now discuss their evolution on the
longer time scale up to �43 fs. This is done for ppμ and
pdμ in Fig. 4(a). The time-dependent expectation values 〈z〉
shown there demonstrate quite complicated fast oscillations
with various modulations which are more clearly seen in a
shorter time interval [29,30] fs in Fig. 4(b).

We also may identify characteristic frequencies of z oscilla-
tions which often play the role of a “carrier” frequency of post-
laser-pulse oscillations in muonic [8] and electronic [15,16]
molecular ions. In order to do so, we consider even shorter
time intervals. In Figs. 4(c) and 4(d), the time-dependent
expectation values 〈z〉 of ppμ and pdμ are presented on a
very narrow time interval of 0.3 fs in the range [30.4,30.7] fs.
It is possible to reveal from there that the period of muonic
z oscillations is τ osc

z � 8.25 × 10−3 fs in ppμ and τ osc
z �

4.69 × 10−3 fs in pdμ, implying the characteristic frequencies
of ωosc

z � 18.421 a.u. for ppμ and ωosc
z � 32.406 a.u. for pdμ.

The ratios of characteristic frequencies of muonic z oscillations
to the laser carrier frequency ωl = 2.1682 a.u. are about 8.496
for ppμ and 14.946 for pdμ in the chosen interval. One can
conclude, therefore, that both ppμ and pdμ may generate
frequencies of z oscillations which are not equal to pure integer
multiples of the laser carrier frequency. By Fourier analyzing
the 〈z(t)〉 curves of Fig. 4(a), we find also other frequencies,
not necessarily integer multiples of ωl (not shown). It can be
imagined that characteristic oscillations translate into signals
in power (or HHG) spectra. The fact that single atoms and
molecules may emit harmonics that are different from pure
integer multiples of the laser carrier frequency can be explained
by resonance effects, as it was already discussed earlier [17,18].
It will be interesting to see, therefore, if such resonance effects
will manifest themselves in power and HHG spectra related to
the z degree of freedom of ppμ and pdμ to be discussed in
the next section.

Before doing so, we now consider degrees of freedom other
than z. In contrast to the laser driven z degree of freedom,
the transversal ρ degree of freedom of ppμ and pdμ is
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FIG. 4. Time-dependent expectation values 〈z〉 of ppμ and pdμ on a time scale from 0 to �43 fs (a) and in a short-time interval [29, 30]
fs (b). The same on a very short-time interval [30.4, 30.7] fs for ppμ (c) and pdμ (d).

optically passive and excited only due to the wave properties
of the muon. Time-dependent expectation values 〈ρ〉 of ppμ

and pdμ are shown in Fig. 5(a) on the time scale including
their excitation by the 0.35 fs laser pulse followed by the
stage of free evolution, up to 1.6 fs. It is seen that both ppμ

and pdμ demonstrate after the end of the pulse coherent
ρ oscillations—temporarily shaped in the case of pdμ and
with nearly permanent amplitude in the case of ppμ. Such a
behavior can be explained by the Coulombic interaction of the
muon and nuclei.

Time-dependent expectation values 〈R〉 of the internuclear
distance of ppμ and pdμ are presented in Fig. 5(b). Since
pdμ has a permanent dipole moment, its internuclear distance
changes much more substantially as compared to ppμ. Indeed,
it is clearly seen from Fig. 5(b) that the internuclear distance in
pdμ has a well pronounced minimum at t ≈ 1.2 fs, which is
well correlated with the maximum of ρ oscillations in Fig. 5(a).
The physical reason is that when nuclei in pdμ come close
to each other, the component of the Coulomb force on the
transversal ρ degree of freedom increases and the amplitude
of ρ oscillations in pdμ rises accordingly. In contrast, since
the internuclear distance in ppμ does not change substantially
[Fig. 5(b)], the amplitude of ρ oscillations in ppμ remains
nearly unchanged [Fig. 5(a)].

It can be found from the results presented in Fig. 5(a)
on the time interval 0.6 fs � t � 0.9 fs that the period of
muonic ρ oscillations is τ osc

ρ � 1.087 × 10−2 fs in ppμ and
τ osc
ρ � 4.65 × 10−3 fs in pdμ, implying the characteristic

frequencies of ωosc
ρ � 13.981 a.u. for ppμ and ωosc

ρ � 32.684
a.u. for pdμ. The ratios of characteristic frequencies of
muonic ρ oscillations to the laser carrier frequency ωl =
2.1682 a.u. are about 6.448 for ppμ and 15.074 for pdμ.

Again, for this time regime at least we can conclude that
both ppμ and pdμ may generate frequencies of ρ oscillations
that are not equal to integer multiples of the laser carrier
frequency [18].

Needless to add that nuclear motion strongly influences the
post-laser-pulse oscillations of the optically active z degree
of freedom as well, which is especially prominent on a
long time scale in the case of pdμ [see Fig. 5(c)]. It goes
without saying that muonic motion along the z axis influences
nuclear motion in its turn, and the non-Born-Oppenheimer
quantum dynamics and free evolution of any degree of freedom
represents the combined effect of all degrees of freedom. In
Fig. 5(c), time-dependent expectation values 〈R〉 and 〈z〉 of
pdμ are plotted on the long time scale of ca. 43 fs. Both curves
presented in Fig. 5(c) have a very complicated fine structure
as a consequence of the fact that both expectation values, 〈R〉
and 〈z〉, demonstrate rather complicated fast oscillations with
various modulations similar to those presented in Fig. 4 and
discussed above. The characteristic feature of the “coarse-
grained” expectation values 〈R〉 and 〈z〉 presented in Fig. 5(c)
is that they evolve out of phase with each other, as indicated by
vertical arrows therein. Indeed, local minima of the bond length
〈R〉 correspond to the local maxima of 〈z〉 and vice versa.
Such muon-nuclei correlations can be explained, similar to the
temporal shaping of muonic ρ oscillations in pdμ [Fig. 5(a)]
due to contraction and elongation of the bond length of
pdμ [Fig. 5(b)], by the muon-nuclei Coulombic interactions.
Similar electron-nuclei correlations in the electronic molecular
ion H2

+ were explained in detail in previous works [15,16]
both in terms of time-dependent expectation values 〈R〉 and
〈z〉 and in terms of the time-dependent electron acceleration
〈−∂V/∂z〉.
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FIG. 5. (a) Time-dependent expectation values 〈ρ〉 of ppμ and
pdμ on a short-time scale [0,1.6] fs revealing the period of muonic ρ

oscillations. (b) Corresponding time-dependent internuclear distances
〈R〉. (c) Time-dependent expectation values 〈R〉 and 〈z〉 of pdμ on a
long time scale in a “coarse-grained” representation. Vertical arrows
illustrate the fact that 〈R(t)〉 and 〈z(t)〉 evolve out of phase with each
other.

It is clearly seen from Fig. 5(c) that sequential contractions
and elongations of the bond length and substantial muonic
excursions in the positive-negative direction of the z axis are
especially prominent at around t ≈ 30 fs where they appear
as “full-length” shaped pulses presenting the “echo pulses” of
“half-length” pulses that appeared earlier on the time interval
0 � t � 4 fs. Note that such echo pulses do not appear in the
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FIG. 6. Power spectra Az(ω) of ppμ (a) and pdμ (b) in a wide
frequency domain, up to ω/ωl = 100.

homonuclear ppμ ion excited by the same laser pulse as pdμ

under discussion. On the other hand, it was shown in previous
work [8] that similar shaped echo pulses appeared in the
homonuclear ddμ ion but did not appear in the heteronuclear
dtμ ion when both were excited by identical superintense
attosecond x-ray laser pulses at λl = 5 nm. We can conclude,
therefore, that the appearance of echo pulses, similar to those
presented in Fig. 5(c), strongly depends on the type of the laser
pulse used to excite a system under study.

V. POWER AND HHG SPECTRA GENERATED
BY ppμ AND pdμ

In this section we present the power spectra generated by
muonic degrees of freedom z, ρ and by the nuclear degree
of freedom R of ppμ and pdμ calculated in the acceleration
form, i.e.,

Ak(ω) = ∝
∣∣∣∣
∫ tf

0
e−iωt d2

dt2
〈�(t)|k|�(t)〉 dt

∣∣∣∣
2

, (9)

where k = z, ρ, or R, and tf � 43 fs is the total propagation
time. The integrand in Eq. (9) was resolved with a time step
of 	t = 7.0097 × 10−4 fs. The maximal frequency in Ak(ω)
we can represent is then ωmax = 2π/	t , or h̄ωmax � 217
a.u. We can, therefore, resolve up to Nmax = ωmax/ωl � 100
harmonics. All power spectra are presented below as functions
of frequency ω in units of the laser carrier frequency ωl =
2.1682 a.u. (h̄ωl = 59 eV), with the proportionality constant
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FIG. 7. Power spectra Az(ω) and Aρ(ω) of ppμ (left panel) and pdμ (right panel) in a narrow frequency domain.

in (9) set to 1 and the amplitude given in atomic units. Some
HHG spectra are presented in both acceleration and length form
(see Fig. 10 below). Although the acceleration form is more
time consuming, since accelerations are calculated at every
time step of propagations, it is preferable for power spectra
because any acceleration is directly related to the force acting
along the corresponding degree of freedom.

Note that the power spectra Ak(ω) are closely related to
HHG spectra. For instance, for ppμ, the z component of
the dipole operator is given by Eq. (2) as d̂z = az (where
a = −e1.0533), d2

dt2 〈�(t)|z|�(t)〉 ∝ d2

dt2 〈�(t)|d̂z|�(t)〉, and,
therefore, the signal Az(ω) is directly proportional to the z

component of the HHG spectrum of that molecule. For pdμ,
the situation is slightly more complicated as shown below,
with both Az(ω) and AR(ω) contributing to a z-polarized HHG
signal of the molecule.

In Fig. 6, power spectra Az(ω), generated due to the laser-
induced muonic motion along the z coordinate of ppμ and
pdμ, are presented in a wide frequency domain, up to ω/ωl =
100.

For pdμ (b) we first of all note a a rapid decay of the HHG
signal up to ω/ωl � 20, followed by a more slowly decaying
plateau region and a further decay around ω/ωl � 90. For
ppμ similar behavior is found, with slightly less structured
transitions. We should note that according to classical estimates
of the cutoff in HHG spectra, based on the three-step model
and a continuous-wave driving field [19], one has

h̄ωcut = IP + 3.17Up, (10)

where IP is the ionization potential of the system and Up the
ponderomotive energy. The latter is defined, for an electronic
system, in atomic units as Up = E2

0 /(4Meω
2
l ). As shown in

Appendix B, a very simple estimate of h̄ωcut based on a vertical

ionization potential and a ponderomotive energy where Me is
simply replaced by Mμ gives (i) a cutoff Ncut = ωcut/ωl around
470, (ii) with (ii) small differences between ppμ and pdμ.
Therefore, the “true” cutoff regions of HHG spectra of ppμ

and pdμ are not yet reached in Fig. 6 and some differences
are to be expected for the overall shape of HHG spectra of
both isotopomers. The latter is in agreement with our findings.
Differences in (the cutoff region of) HHG spectra of atomic
pμ and dμ have also been observed in Refs. [1,3].

The main, striking difference between the power spectra
generated by the optically active z degree of freedom of ppμ

[Fig. 6(a)] and pdμ [Fig. 6(b)], however, is the appearance in
the latter case of even harmonics due to inversion symmetry
breaking in the heteronuclear pdμ system, similar to dtμ [8]
and the electronic HD molecule [18].

In Figs. 7(a) and 7(c), we analyze the HHG spectra of ppμ

and pdμ for the muonic z mode in some more detail, focusing
on harmonics up to �36. Further, we analyze HHG spectra
of ppμ and pdμ for the muonic ρ coordinate in Figs. 7(b)
and 7(d). It is now also more clearly seen from Fig. 7(a) that
only odd harmonics of muonic z oscillations (harmonic order
Nz = 2n − 1, n = 1,2,3, . . .) are generated in ppμ, while for
pdμ also even harmonics occur [Fig. 7(c)].

The transversal ρ degree of freedom of the muon in ppμ

and pdμ is optically passive if the laser field is aligned along
the z axis and muonic ρ oscillations can be excited only due to
the wave properties of the muon and muonic z oscillations.
Nevertheless, ρ oscillations are clearly seen as shown in
Figs. 7(b) and 7(d). Considering ppμ in Fig. 7(b), in contrast
to the case of z oscillation leading to only odd harmonics, now
only even harmonics (harmonic order Nρ = 2n) are generated
due to muonic ρ oscillations. Such a “frequency doubling”
of laser induced muonic z oscillations by optically passive
muonic ρ oscillations can be explained on the basis of previous
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FIG. 8. Power spectra Az(ω) and Aρ(ω) of ppμ (left panel) and pdμ (right panel) in a narrow frequency domain, now in the Born-
Oppenheimer approximation (“fixed R”).

works [13,14] as follows. During the laser-induced muonic
z oscillations, the muonic density is delocalized also in the
transversal ρ direction due to the wave properties of the muon.
This happens twice per each cycle of muonic z oscillations at
every turning point of the muon, thus giving rise to muonic ρ

oscillations at ωosc
ρ ≈ 2ωosc

z . Indeed, at a close look at Fig. 5(a),
it can be concluded from the time intervals between the first
lowest minima of the ρ curve of ppμ that the second harmonic,
ωρ ≈ 2ωl , appears already during the 0.35 fs laser pulse. It
is easy to see that the effect of frequency doubling gives rise
initially to ρ harmonics with harmonic number N (i)

ρ = 4n − 2,
while the other positions in the Aρ(ω) spectrum of Fig. 7(b)
can be filled in due to combined effects of any two initial
N (i)

ρ harmonics. Note that similar results were obtained for
the homonuclear ddμ ion in previous work [8].

From Fig. 7(d), where the Aρ(ω) spectrum for pdμ is shown
it is seen that, in contrast to ppμ, both odd and even harmonics
are generated due to the muonic motion along the ρ coordinate.
While the existence of even harmonics in the Az(ω) spectrum
[Fig. 7(c)] can be explained by inversion symmetry breaking
in the heteronuclear pdμ ion [18], as it was just discussed
above, the appearance of both even and odd harmonics in the
Aρ(ω) spectrum of pdμ requires a more detailed explanation.
On the one hand, it is easy to see that, similar to ppμ, only
even harmonics N (i)

ρ = 2n are generated in the Aρ(ω) spectrum
of pdμ due to the effect of frequency doubling of muonic z

oscillations. On the other hand, at a close look at Fig. 5(a), it
can be concluded from the time intervals between the four
first highest maxima of the ρ curve of pdμ that the first
harmonic, ωρ ≈ ωl , appears already during the 0.35 fs laser
pulse. Therefore, the appearance of the odd harmonics in
the Aρ(ω) spectrum of pdμ [Fig. 7(d)] can be explained by
combined effects of the first harmonic Nρ = 1 that appeared

during the laser pulse and even harmonics N (i)
ρ = 2n that

appeared due to the effect of frequency doubling. Similar
results—the existence of both odd and even harmonics in
power spectra generated due the 2D muonic motion in the
heteronuclear dtμ ion—were obtained in previous work [8].

It is also seen from Fig. 7 that some harmonics of the
power spectra generated by the muonic motion in ppμ and
pdμ have quite a complicated structure, including, e.g., very
sharp maxima at around Nz = 9 and Nρ = 6 in ppμ [Figs. 7(a)
and 7(b)], as well as at around the 15th harmonics in both
Az(ω) and Aρ(ω) spectra of pdμ [Figs. 7(c) and 7(d)]. Such
spectral features can be explained by resonance effects in
isolated atoms and molecules [17,18]. In particular, all three
aforementioned sharp maxima in power spectra, whose exact
positions are ω/ωl = 8.5879, 6.4676, and 15.149, respec-
tively, are related quite well to characteristic frequencies of
muonic z and ρ oscillations estimated in the previous section
as follows: ωosc

z /ωl � 8.496 and ωosc
ρ /ωl � 6.448 for ppμ;

ωosc
z /ωl � 14.946 and ωosc

ρ /ωl � 15.074 for pdμ. We can
conclude, therefore, that characteristic frequencies of muonic
post-laser-pulse oscillations manifest themselves by very sharp
maxima in the corresponding power spectra.

Again, it is interesting to quantify the effect of nuclear
motion on power and HHG spectra. In Fig. 8 the analogous
information to Fig. 7 is given, however, with the internuclear
distance R fixed: to R = 0.0125 a.u. for ppμ and to R = 0.015
a.u. for pdμ, respectively, as above.

When comparing the two figures, Figs. 7 and 8, we note
that the overall shape and the general “selection rules” (i.e.,
the occurrence of odd or even or both harmonics) do not
change under the Born-Oppenheimer approximation. This is
already interesting because in Ref. [18] for a model of (also
asymmetric) HD (in which electrons and nuclei were allowed
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to move along the molecular axis only), it had been found that
even harmonics were only seen beyond the Born-Oppenheimer
approximation.

However, we find also differences between the power
spectra of ppμ and pdμ molecular ions in important details.
The most striking difference is that the intensity ratio between
the lowest visible harmonic (the first or the second) and the
following, higher-order harmonics increases substantially in
the Born-Oppenheimer case. In fact, the intensity of almost all
harmonics higher than the first ones, lose substantially in inten-
sity when the nuclei don’t move, for all cases studied. A simple
explanation of the lower intensity in the Born-Oppenheimer
case can already be drawn from Figs. 2(a) and 2(b): there it is
clearly seen that, for instance, the amplitudes of 〈z〉 are smaller
and the whole curves are much smoother (and zero after the
pulse) in the Born-Oppenheimer case. The Fourier transform of
these low-amplitude, smooth curves (or, more precisely, their
acceleration form d2〈z〉/dt2) must lead to smaller intensities,
in particular of the higher-order harmonics. In other words and
as already stated, the nuclear motion along R has an influence
on 〈z〉; as a consequence, the power spectra are indirectly
affected. Another, less striking difference between non-Born-
Oppenheimer and Born-Oppenheimer spectra is that the sharp
resonances mentioned earlier occur at different positions.

Nuclear motion not only affects HHG emitted light indi-
rectly through its influence on 〈z〉 (or d2〈z〉/dt2), it also gives,
for pdμ at least, a direct contribution to the HHG signal
through AR(ω) as will be argued shortly. Power spectra AR(ω)
of ppμ and pdμ, calculated in the acceleration form, are
presented in Figs. 9(a) and 9(b), respectively.

It is seen from Fig. 9 that, similar to the power spectra
Az(ω) related to muonic motion along z as presented in Figs. 6
and 7, the power spectrum AR(ω) of the homonuclear ppμ

ion contains only odd harmonics [Fig. 9(a)], while in the
case of heteronuclear pdμ, it contains both odd and even
harmonics [Fig. 9(b)]. This can be explained along similar
lines as above. Specifically in the case of nuclear motion
under consideration, we can invoke the concept of inversion
symmetry of nuclear motion with respect to the center of
nuclear mass. Indeed, while in the homonuclear ppμ ion, two
protons are always at the same distances from their center
of mass, performing a “symmetric” motion; this symmetry
is broken in the heteronuclear pdμ ion which results in the
appearance of even harmonics in the AR(ω) spectrum of pdμ.

It is also seen from Fig. 9 that rather high-order harmonics
of nuclear motion can be efficiently excited in both ppμ and
pdμ. The strongest harmonic in the AR(ω) spectrum of ppμ

[Fig. 9(a)] corresponds to the harmonic order N
ppμ

R = 23 and
the photon energy of h̄ω = 1.357 × 103 eV. The strongest har-
monic in the AR(ω) spectrum of pdμ [Fig. 9(b)] corresponds
to N

ppμ

R = 15 and the photon energy of h̄ω = 885 eV. We see
that the maximum excitation of heavier nuclei is lower than that
of lighter ones, being in a good agreement with a reasonable
relation

N
ppμ

R

N
pdμ

R

≈ m
pdμ
n

m
ppμ
n

, (11)

where NR is the number of the strongest harmonic and mn

stands for the nuclear reduced mass. On the other hand, since
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FIG. 9. Power spectra AR(ω) generated in ppμ (a) and pdμ (b)
due to the nuclear motion.

the nuclear motion in the heteronuclear pdμ ion is excited
by the laser pulse directly, the average level of vibrational
excitation of pdμ is substantially higher than that of ppμ,
as clearly seen from the comparison of the two 〈R〉 curves
in Fig. 5(b). Obviously, this translates into a higher average
intensity of the HHG signals for pdμ compared to ppμ, at
least in the frequency range shown in Fig. 9.

For pdμ, we may quantify the direct nuclear (R) contribu-
tion to a measurable, muonic HHG spectrum (polarized along
z), in comparison to the purely muonic contribution. Namely,
considering that the dipole operator of pdμ is d̂z = bz + cR

according to Eq. (1), now with factors b = −e1.0362 and
c = −e0.3331, we can compute a HHG signal, polarized along
z, in the dipole acceleration form as [18]

IA
HHG(ω) ∝

∣∣∣∣
∫ tf

0
e−iωt d2

dt2
〈�(t)|bz + cR|�(t)〉dt

∣∣∣∣
2

. (12)

Similarly, we can alternatively compute it in the dipole length
form as

IL
HHG(ω) ∝

∣∣∣∣
∫ tf

0
e−iωt 〈�(t)|bz + cR|�(t)〉dt

∣∣∣∣
2

. (13)

Now, the direct contribution of nuclear motion to the muonic
HHG spectrum, related indirectly to the power spectrum
AR(ω), can be estimated by simply neglecting the R term
in Eq. (12) [assuming that d2〈�(t)|R|�(t)〉/dt2 = 0], or, in
Eq. (13), to fix R to the “fixed R” value of pdμ, which we used
for previous Born-Oppenheimer calculations. In both cases, the
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FIG. 10. Comparison of HHG signals in the dipole acceleration form (left panels) and dipole length form (right panels). Panels (a) and (d)
give the HHG signals IA

HHG(ω) and IL
HHG(ω) obtained from Eqs. (12) and (13), respectively (on a logarithmic scale). Panels (b) and (e) give these

signals with the direct contribution from nuclear motion removed (“fixed R”). Panels (c) and (f) show the differences 	 = log10IHHG − log10IHHG

(fixed R) between the HHG signals with and without the R term.

indirect effect of nuclear motion on dipole expectation values
is still included, but the direct contribution of the moving nuclei
isn’t.

In Figs. 10(a) and 10(d), we show the HHG signals IA
HHG(ω)

and IL
HHG(ω), respectively, obtained from Eqs. (12) and (13)

(when setting proportionality constants = 1 and giving intensi-
ties in atomic units). In Figs. 10(b) and 10(e), the corresponding
spectra are shown when the R terms were neglected or set
constant (called fixed R for both, not to be confused with
a full Born-Oppenheimer approximation now). Note that in
this case the HHG intensity in acceleration form is, apart
from the prefactor b2 = 1.0737, the same as Az(ω) of pdμ

in Fig. 7(c). We observe the following. (i) At first glance,
apart from the different scale, the HHG spectra obtained
from the dipole acceleration or the dipole length forms are
qualitatively similar, in particular up to ω/ωl � 20. (ii) Also
the direct contribution of nuclei to the dipole (acceleration)
seems small, because the respective fixed R HHG signals with
the R term removed or set constant are quite close to those
where this was not the case. However, taking the difference
between the HHG signals with and without the (constant) R

term, i.e., 	IHHG = IHHG − IHHG(R fixed), reveals differences
between the two as shown in Figs. 10(c) and 10(e), respectively.
Referring to the acceleration form, for example [Fig. 10(c)],
closer inspection shows that up to the 20th harmonic intensities
themselves (the intensity at integer ω/ωl values) is hardly
affected, and the biggest changes are between the harmonics,
at ω/ωl � 0.5,1.5,2.5, . . . . For ω/ωl > 20, on the other hand,
the intensities of the entire fixed R spectra are reduced,
resulting in 	I > 0. Similar, but less clear, trends are observed
for HHG signals computed in the dipole length form.

In summary, from comparison of Figs. 7 and 8 we saw
that nuclear motion has some effect on muonic power spectra
Az(ω), for example, which in turn will affect measurable
HHG spectra indirectly. From Fig. 9 we note that also clear
oscillations exist in power spectra of nuclear motion, AR(ω),
which, as can be seen from Fig. 10, will translate also into a
small direct contribution to measurable, muonic HHG spectra.

Returning to power spectra, an interesting further obser-
vation that can be made from the comparison of spectra of
pdμ shown in Figs. 7(c), 7(d), and 9(b) is as follows. In all
the three aforementioned power spectra, the 15th harmonic
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has a very sharp maximum exactly at ω = 15.149ωl , i.e., at
ω = 32.846 a.u. (h̄ω � 894 eV). On the one hand, it was just
shown above that the frequency corresponding to this sharp
maximum represents characteristic frequencies ωosc

z and ωosc
ρ

of muonic z and ρ oscillations. On the other hand, it can be
found from a detailed analysis of the data presented in Fig. 5(b)
for the time-dependent expectation value 〈R〉 of pdμ that the
same frequency corresponds to the characteristic frequency
ωosc

R of nuclear vibrations. We can conclude, therefore, that
the heteronuclear pdμ ion possesses a unique characteristic
frequency ω

pdμ
osc that represents both characteristic frequencies

of muonic z and ρ oscillations and the characteristic frequency
of nuclear vibrations, which manifest themselves by very
sharp maxima in the corresponding power spectra. In contrast,
the homonuclear ppμ ion does not possess such a unique
characteristic frequency.

VI. CONCLUSIONS

In the present work, the non-Born-Oppenheimer quantum
dynamics of muonic molecular ions ppμ and pdμ excited by
a superintense, short five-cycle laser pulse linearly polarized
along the molecular axis has been studied by the numerical
solution of the time-dependent Schrödinger equation within a
three-dimensional model, including the internuclear distance
R and muon coordinates z and ρ, which have been treated
explicitly. Several simulations have been also performed at a
fixed internuclear distance R, such as to check the applicability
of the Born-Oppenheimer approximation.

The main results obtained in the work can be summarized
as follows.

(i) During the laser pulse, the heavy muon approximately
follows the laser field out of phase—the expectation value 〈z〉
of the optically active z degree of freedom decreases when the
strength of the applied laser field increases.

During the free evolution after the end of the pulse, expec-
tation values 〈z〉, 〈ρ〉, and 〈R〉 demonstrate rather complicated
free oscillations. The post-laser-pulse oscillations of 〈z〉 and
〈R〉 occur out of phase and appear as shaped echo pulses in the
case of pdμ.

The post-laser-pulse oscillations of 〈z〉 and 〈ρ〉 do not
occur if the internuclear distance R is fixed, implying that the
appearance of post-laser-pulse muonic oscillations is a purely
non-Born-Oppenheimer phenomenon.

(ii) Power spectra related to the nuclear motion and those
related to muonic motion along both optically active z and
optically passive ρ degrees of freedom have been calculated in
the acceleration form.

It has been found that the power spectrum of muonic z

oscillations inppμ contains only odd harmonics, as anticipated
by the concept of inversion symmetry of muonic motion in the
homonuclear ppμ ion (on the analogy with inversion symme-
try of electronic motion in the homonuclear H2 molecule [18]).
In contrast, the power spectrum of muonic ρ oscillations in
ppμ contains only even harmonics, which can be explained
by the effect of frequency doubling of optically passive ρ

oscillations induced by the laser driven z oscillations due to
the wave properties of the muon [8].

The power spectrum of muonic z oscillations in pdμ

contains both odd and even harmonics, which is explained

by the fact that inversion symmetry of muonic motion in
the heteronuclear pdμ ion is broken. The power spectrum
of muonic ρ oscillations in pdμ also contains both even and
odd harmonics, which is explained by the effect of frequency
doubling of ρ oscillations, on the one hand, and by the
combined effects of the frequency-doubled even harmonics
of ρ oscillations and the first harmonic of ρ oscillations
that appears already during the laser pulse due to the wave
properties of the muon, on the other hand.

Similar to power spectra of muonic z oscillations in ppμ

and pdμ, the power spectrum related to nuclear motion in ppμ

contains only odd harmonics, while that of the heteronuclear
pdμ ion contains both even and odd harmonics. This is
explained on the basis of the concept of inversion symmetry
of nuclear motion in ppμ and pdμ, which is invoked in our
work, on the analogy of inversion symmetry of electronic and
muonic motion in the homonuclear and heteronuclear systems.

Finally, it is found that the heteronuclear pdμ ion possesses
a unique characteristic frequency that represents two character-
istic frequencies of muonic oscillations and the characteristic
frequency of nuclear vibrations, which manifest themselves by
very sharp maxima in the corresponding power spectra of pdμ.
The homonuclear ppμ ion does not possess such a unique
characteristic frequency.

(iii) Power spectra and HHG spectra are influenced by
nuclear motion. Both for ppμ and pdμ the nuclear motion
affects muonic motion, which has an indirect influence on
power and HHG spectra. In the case of pdμ, also a non-
negligible direct contribution of nuclear motion to the HHG
spectrum can be expected.

In general, muonic molecular ions driven by intense, short
laser pulses offer not only a way to enhanced nuclear fusion
[8,9], they could also serve as fascinating microlabs for
creating very high-energy harmonics and for evaluating basic
concepts of molecular quantum mechanics, such as the Born-
Oppenheimer approximation.
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APPENDIX A: NUMERICAL METHODS TO SOLVE
THE 3D SCHRÖDINGER EQUATION

In the very first theoretical works [20,21] where the explicit
treatment of the electron motion with the time-dependent
Schrödinger equation was employed, single-electron model
atoms excited by linearly polarized laser fields were numeri-
cally investigated. Subsequently, more complicated problems,
such as the 3D hydrogen atom excited by a strong elliptically
polarized laser field [22], were addressed. The non-Born-
Oppenheimer quantum dynamics of molecules in very strong
laser fields introduced a challenge to numerical techniques due
to the appearance of a new degree of freedom, the internuclear
distance R, which had to be treated explicitly. In the first works
along these lines [23,24], the laser-driven quantum dynamics
of simple molecular ion H2

+ was studied. Subsequently, the
problem of laser-enhanced fusion in muonic molecular ions
ddμ and dtμ was also addressed [11–13].
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Numerical techniques used to solve the 3D equation of
motion (3) have been described in detail in our previous
works [13,14]. In particular, muonic motion along the z and
ρ degrees of freedom has been treated by making use of the
polynomial expansion of the wave function over the Hermite
Hn(z) and the Laguerre Lm(ρ) polynomials, respectively, and
subsequent integration on the corresponding quadrature points
for calculation of the expectation values.

Specifically, the z grid is defined by the quadrature points
of the Hermite polynomials and is not equidistant. Our z grid
has 200 points and ranges from z = −1.2092 a.u. to +1.2093
a.u., where z = 0 is not a quadrature point. The size of the
z grid was chosen such as to be larger than the maximum
excursion of the muon along the z axis, α = E0/(Mμω2

l ). With
the electric-field amplitude E0 = 1 × 103 a.u., the laser carrier
frequency h̄ωl = 2.1682 a.u., used in the present work, and
the muon mass Mμ = 206.768 a.u., one gets α = 1.029 a.u..
The choice of the z grid was based on this value and the size
of the ρ grid has been chosen accordingly. Specifically, the 3D
wave packet was damped with the imaginary smooth optical
potentials, adapted from [25], at z < −1.2 a.u., at z > 1.2 a.u.,
and at ρ > 1.15 a.u. for the muonic motion and at R > 1.1 a.u.
for the nuclear motion.

The ρ grid is also nonequidistant and defined by the quadra-
ture points of the Laguerre polynomials on a 100-point grid.

Nuclear motion has been treated with the split-operator
method and FFT (fast Fourier transform) on the equidistant
grid for the R degree of freedom, using a time step of
3.505 × 10−6 fs. The R grid is equidistant with 1024 points and
a spacing of 0.00125 a.u., the last point being R = 1.27875 a.u.
The first point is defined within the nuclear drop model as
R(1) = 2(rd + rp)/3 for pdμ and 4rp/3 for ppμ, respectively,
giving R(1) = 0.22049 × 10−4 a.u. for ppμ, for example.

Within the nuclear drop model used in the present work,
corrections to the ground-state energies of ppμ and pdμ

caused by nuclear size effects are accounted for automatically.
Other relativistic and quantum electrodynamical corrections,
see e.g. [26,27], have not been taken into account in the present
work since they are very small compared to the ground-state
energies. Indeed, playing the leading role vacuum-polarization
corrections to the ground-state energies are really small:
−0.295 eV (−0.0108 a.u.) and −0.305 eV (−0.0112 a.u.) for
ppμ andpdμ, respectively [26]. In both cases, aforementioned

corrections are less than 0.01% of the ground-state energies
and, in fact, do not influence neither the laser-driven dynamics
nor the power and HHG spectra presented above.

Finally, in order to control the accuracy of our simulations,
we used the time-dependent consistency check,

N (t) + D(t) + Iz(+)(t) + Iz(−)(t) + Iρ(t) = 1, (A1)

where N (t) is the norm remaining on the 3D grid between
the absorbing boundaries, D(t) is the dissociation probability,
Iz(±)(t) are ionization probabilities in the positive and in the
negative direction of the z axis, and Iρ(t) is the ionization
probability from the outer end of the ρ axis. The consistency
check of Eq. (A1) was fulfilled in out simulations to better than
0.01% accuracy.

APPENDIX B: ESTIMATE OF THE HHG CUTOFF
ENERGY BASED ON THE THREE-STEP MODEL

The HHG cutoff energy h̄ωcut according to the classical
three-step model [19] is given by Eq. (10). Let us estimate
very roughly for the muonic systems the latter by replacing
Me by Mμ and taking for IP the vertical ionization potential,
given by Ebind + IP(atom) + 1/R0. Here, Ebind is the binding
energy with respect to dissociation as defined earlier, IP(atom)
the atomic ionization energy of pμ or dμ, respectively, and
1/R0 the nuclear repulsion in pp (or pd) at the equilibrium
distance of ppμ (or pdμ), for which we take R0 = 0.0097 a.u.
of above. We then get IP � 205.5 a.u. (for ppμ) and IP �
209.4 a.u. (for pdμ), and for Up � 257.5 a.u. This gives,
for ppμ, an expected cutoff energy of h̄ωcut � 1021.8 a.u.,
corresponding to a highest-order harmonic of Ncut =
ωcut/ωl = � 471. A similar estimate for pdμ gives Ncut �
473. Of course, in a more elaborate treatment nuclear motion
should be taken into account, which would reduce IP substan-
tially. Also, reduced (rather than pure) muon masses should be
used for the ponderomotive energy Up [3], which would lead to
different Up for ppμ and pdμ. Finally, quantum-mechanical
effects and effects due to the pulsed (rather than continuous
wave) nature of the exciting laser field may be of importance.
Still, the main conclusions formulated in the main text should
hold, that (i) the “true” cutoff regions of HHG spectra of ppμ

and pdμ are not yet reached in Fig. 6 and (ii) some (small)
differences are to be expected for the overall shape of HHG
spectra of both isotopomers.
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