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We analyze the doubly differential electron momentum distribution in above-threshold ionization of atomic
hydrogen by a linearly polarized mid-infrared laser pulse. We reproduce side rings in the momentum distribution
with forward-backward symmetry previously observed by Lemell et al. [Phys. Rev. A 87, 013421 (2013)], whose
origin, as far as we know, has not been explained so far. By developing a Fourier theory of moiré patterns,
we demonstrate that such structures stem from the interplay between intra- and intercycle interference patterns
which work as two separate grids in the two-dimensional momentum domain. We use a three-dimensional (3D)
description based on the saddle-point approximation (SPA) to unravel the nature of these structures. When
the periods of the two grids (intra- and intercycle) are similar, principal moiré patterns arise symmetrically as
concentric rings in the forward and backward directions at high electron kinetic energy. Higher order moiré
patterns are observed and characterized when the period of one grid is multiple of the other. We find a scale law
for the position (in momentum space) of the center of the moiré rings in the tunneling regime. We verify the SPA
predictions by comparison with time-dependent distorted-wave strong-field approximation calculations and the
solutions of the full 3D time-dependent Schrödinger equation.
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I. INTRODUCTION

In a typical photoionization process in the tunneling regime,
electrons are emitted by tunneling through the potential barrier
formed by the combination of the atomic potential and the
external strong field. Tunneling occurs within each optical
cycle predominantly around the maxima of the electric field’s
absolute value. According to the well-known three-step model,
photoelectrons can be classified into direct and rescattered
electrons [1–3]. After ionization, direct electrons can escape
without being strongly affected by the residual core potential.
The classical cutoff energy for this process is twice the pon-
deromotive energy. After being accelerated back by the laser
field, a small portion of electrons are rescattered by the parent
ion and can achieve a kinetic energy of up to ten times the
ponderomotive energy. Trajectories that correspond to direct
ionization are crucial in the formation of interference patterns
in photoelectron spectra. Quantum interference within an
optical cycle was firstly reported (as far as we know) in Ref. [4]
and theoretically analyzed and experimentally observed by
Paulus et al. in Ref. [5], both for negative ions. A thorough
saddle-point analysis with the strong-field approximation can
be found in the review of Becker et al. [6]. Nonequidistant
peaks in the photoelectron spectrum were firstly calculated for
neutral atoms by Chirila and Potvliege [7]. A temporal double-
slit interference pattern has been studied in near-single cycle
pulses both experimentally [8,9] and theoretically [6,10]. Near-
threshold oscillations in angular distribution were explained
as interferences of electron trajectories [11] and measured by
[12]. Diffraction fringes have been experimentally observed
in photoionization of He [9,13] and Ne atoms [13] and
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photodetachment in H− and [14] F− ions by femtosecond
pulses for fixed frequency [15] and theoretically analyzed
[16–19]. Diffraction patterns were also found in spectra of
laser-assisted XUV ionization, whose gross structure of side-
bands were explained as the interference between electrons
emitted within one period [20–24]. The interference pattern
in multicycle photoelectron spectra can be identified as a
diffraction pattern at a time grating composed of intra- and
intercycle interferences [16–19]. While the latter gives rise
to the well-known ATI peaks [25–27], the former leads to a
modulation of the ATI spectrum in the near-infrared regime
offering information on the subcycle ionization dynamics.

In previous papers we analyzed how the interplay between
the intercycle interference [factor B(k) in Eq. (25)] and the
intracycle interference [factor F (�k) in Eq. (25)] controls the
doubly differential distribution of direct above-threshold ion-
ization (ATI) electrons for lasers in the near infrared [17–19].
In a theoretical study about the quantum-classical correspon-
dence in atomic ionization by mid-infrared pulses, Lemell
et al. calculated the doubly differential momentum distribution
after the interaction of a strong mid-infrared laser pulse with a
hydrogen atom, which shows multiple peaks and interference
structures (see Fig. 1 of [28]). At both sides of the well-known
intercycle ATI rings, two distinct ringlike structures appear
(symmetrically) in the forward and backward directions. As
far as we know, the origin of these structures has not been
identified so far. In this paper, we extend the analysis of the
saddle-point approximation (SPA) to the mid-infrared regime.

Large-scale interference patterns can be produced when a
small-scale grid is overlaid on another similar grid [29,30].
These patterns are named moiré [29,30] and appear in art,
physics, mathematics, etc. They show up in everyday life such
as a striped shirt seen on television, in the folds of a moving
curtain, when looking through parallel wire-mesh fences, etc.
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More than a rareness, moiré is widely used in projection
interferometry complementing conventional holographic in-
terferometry, especially for testing optics used at long wave-
length. The use of moiré for reduced sensitivity testing was
introduced by Lord Rayleigh in 1874 to determine the quality
of two identical gratings even though each individual grating
could not be resolved under a microscope [31]. Moiré patterns
have been extremely useful to help the understanding of basic
interferometry and interferometric test results [32–34].

In the present paper, we theoretically investigate the origin
of side-ring structures that appear in the doubly differential
momentum distribution for atomic ionization by laser pulses in
the mid-infrared spectral region [28]. We demonstrate that such
structures stem from the interplay between intra- and intercycle
interference patterns which work as two separate grids in the
two-dimensional momentum domain. When the periods of the
two grids (intra- and intercycle) are similar, principal moiré
patterns arise as concentric rings at high electron kinetic energy
in the forward and backward directions symmetrically. In addi-
tion, we show that a whole family of secondary moiré patterns
with less visibility than the principal one is also present. We
characterize these structures within the Fourier theory of the
moiré patterns finding simple scale laws for the position of
their center in the momentum distribution. In order to do that,
we previously discard the formation of spurious (nonphysical)
moiré patterns due to the presence of the numerical grid
of the momentum map. We use a three-dimensional (3D)
description based on the SPA [17–19] to unravel the nature
of these structures. Our SPA predictions are corroborated by
comparison with time-dependent distorted-wave strong-field
approximation (SFA) [3,7,35–37] calculations and the solu-
tions of the full time-dependent Schrödinger equation (TDSE).

The paper is organized as follows. In the first part of
Sec. II, we develop the Fourier theory of moiré patterns.
We continue by scheming the semiclassical model for atomic
ionization by laser pulses showing that the separation of
intracycle and intercycle interferences can be interpreted in
terms of diffraction at a time grating when studying the doubly
differential distributions within the SPA. In the last part of
the section we show how moiré patterns are formed from
inter- and intracycle interferences in view of this Fourier
theory. In Sec. III, we analyze the ringlike structures in the
doubly differential momentum distribution within the SPA and
compare them with the SFA and TDSE ab initio calculations.
We also characterize the moiré structure by analyzing the
dependence of the position of the center as a function of
laser parameters finding a scale law. Atomic units are used
throughout the paper, except when otherwise stated.

II. THEORY

A. Fourier theory of moiré patterns

We define a one-dimensional (1D) grating (vertical stripes)
as a periodic function G(x ′), where p is the period of the grat-
ing. Due to its periodicity, the function G(x ′) can be thought
as a sum of different harmonic terms of discrete frequency,

G(x ′) =
∞∑

n=−∞
an exp[i2πnf0x

′], (1)

where an is the Fourier coefficient and f0 = p−1.

Gratings with a general geometrical layout can be con-
sidered as extended coordinate-transformed structures which
can be obtained by applying geometric transformations to a
standard 1D grating. By replacing x ′ with a certain function
T (x,y), the 1D grating of Eq. (1) can be transformed into
another curvilinear grating GT (x,y) = G[T (x,y)]. Therefore,
in the same way, the latter can be expressed as

GT (x,y) =
∞∑

n=−∞
an exp[i2πnf0T (x,y)]. (2)

Moiré fringes appear in the overlay of repetitive structures
and vary in terms of the geometrical layout of two (or more)
superposed structures. The two gratings with the extended
layout can be obtained by applying the transformations T1(x,y)
and T2(x,y) to two 1D gratings of frequencies f1 and f2,
respectively. The generalized gratings can be expressed as in
Eq. (2):

G1(x,y) =
∞∑

n=−∞
an exp[i2πnf1T1(x,y)], (3a)

G2(x,y) =
∞∑

m=−∞
bm exp[i2πmf2T2(x,y)]. (3b)

The two superimposed gratings can be written as the
multiplication of the two general gratings G1 and G2, in
respective Eqs. (3a) and (3b):

G(x,y) = G1(x,y)G2(x,y)

=
∞∑

n=−∞

∞∑
m=−∞

anbm exp{i2π [nf1T1(x,y)

+mf2T2(x,y)]}. (4)

From Eq. (4), we can extract the partial sum∑∞
n=−∞

∑∞
m=−∞ anbm(· · · ) → ∑∞

j=−∞ ajk1bjk2 (· · · ), with
k1 and k2 integer numbers different from zero, where we have
renamed n = jk1 and m = jk2 [38]. Then, we express this
partial sum in the same way as in Eq. (2), namely,

G̃k1,k2 (x,y) =
∞∑

j=−∞
ajk1bjk2 exp{i2πjf [k1(f1/f )T1(x,y)

+ k2(f2/f )T2(x,y)]}, (5)

where f is a standardized frequency. In this way, the twofold
sum of Eq. (4) can be decomposed into many partial sums.
The partial sum G̃k1,k2 (x,y) does not reproduce the function
G(x,y) of Eq. (4) fully since it is simpler than the latter. Thus,
there is no one-to-one relation between G̃k1,k2 (x,y) andG(x,y).
Equation (5) can be regarded as the transformation of a 1D
grating with a compound transformation function

Tk1,k2 (x,y) = k1

(
f1

f

)
T1(x,y) + k2

(
f2

f

)
T2(x,y), (6)

applied to the 1D grating

G̃k1,k2 (x ′) =
∞∑

j=−∞
ajk1bjk2 exp(i2πjf x ′). (7)
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For every pair (k1,k2), the partial sum in Eq. (7) converges to
a periodic-distributed pattern similar to the layout of standard
1D gratings. By transforming the partial sum of Eq. (7) with
the transformation function of Eq. (6), we get the (k1,k2)-
order moiré pattern of Eq. (5). Summing up, we can say that
two geometrically transformed 1D gratings exhibit equivalent
patterns to the one obtained by application of a compound
transformation to a certain 1D-distributed moiré pattern.

In general, moiré fringes generated by two superposed
gratings are transformed from two standard 1D gratings with
different frequencies by different transformations. However, in
the following section, we restrict our investigation to the special
case of moiré fringes generated from 1D gratings with the same
frequency, i.e., f1 = f2 = f , and different transformations,
i.e., T1(x,y) �= T2(x,y). Therefore, the moiré pattern of Eq. (5)
can be written as

G̃k1,k2 (x,y)

=
∞∑

j=−∞
ajk1bjk2 exp{i2πjf [k1T1(x,y) + k2T2(x,y)]}. (8)

The lowest frequency pattern corresponds to the pair (k1,k2) =
(1,−1), which is usually the most visible one. We name pair
(1,−1) as the principal moiré pattern with transformation
T1,−1(x,y) = T1(x,y) − T2(x,y). Higher order or secondary
moiré patterns are also present with less visibility. Later, we
will see how the side-ring structure can be thought of as the
principal moiré pattern arising from the superposition of intra-
and intercycle interferences, each considered as a separate grid
G1 and G2. Previous to this, in the next subsection, we pose
the semiclassical theory of inter- and intracycle interference in
the electron yield after atomic ionization by a short laser pulse.

B. Semiclassical model

In this subsection we repeat the theory of the semiclassical
model for atomic ionization in the single active electron
approximation interacting with a linearly polarized laser field
�F (t) firstly posed in Refs. [17–19]. The reader familiar with the

semiclassical model can skip this subsection and go directly to
the analysis of the formation of the moiré patterns in the next
subsection.

The Hamiltonian of the system in the length gauge is

H = �p 2

2
+ V (r) + �r · �F (t), (9)

where V (r) is the atomic central potential and �p and �r are
the momentum and position of the electron, respectively. The
term �r · �F (t) couples the initial state |φi〉 to the continuum
final state |φf 〉 with momentum �k and energy E = k2/2. The
TDSE for the Hamiltonian of Eq. (9) governs the evolution
of the electronic state |ψ(t)〉. We calculate the photoelectron
momentum distributions as

dP

d�k = |Tif |2, (10)

where Tif is the T -matrix element corresponding to the
transition φi → φf .

The transition amplitude within the time-dependent
distorted-wave theory in the SFA in the post form is expressed

as [39]

Tif = −i

∫ +∞

−∞
dt〈χ−

f (t)|z F (t)|φi(t)〉, (11)

where χ−
f (t) is the final distorted-wave function and the

initial state φi(t) is an eigenstate of the atomic Hamiltonian
without perturbation with eigenenergy equal to minus the
ionization potential Ip. If we choose the Hamiltonian of a free
electron in the time-dependent electric field as the exit-channel
distorted Hamiltonian, i.e., i ∂

∂t
|χ−

f (t)〉 = [p2

2 + zF (t)]|χ−
f (t)〉,

the solutions are the Volkov states [40]

χ
(V )−
�k (�r,t) = exp[i(�k + �A) · �r]

(2π )3/2 exp[iS(t)], (12)

where S denotes the Volkov action

S(t) = −
∫ ∞

t

dt ′
[

[�k + �A(t ′)]2

2
+ Ip

]
. (13)

In Eqs. (12) and (13), �A(t) = − ∫ t

−∞ dt ′ �F (t ′) is the vector
potential of the laser field divided by the speed of light.
Equation (11) together with Eq. (12) leads to the SFA transition
matrix. Accordingly, the influence of the atomic core potential
on the continuum state of the receding electron is neglected
and, therefore, the momentum distribution is a constant of
motion after conclusion of the laser pulse [3,41].

To solve the time integral in Eq. (11), we closely follow the
SPA [3,7,37,42], which considers the transition amplitude as a
coherent superposition of electron trajectories

Tif (�k) = −
M∑
i=1

G(t (i)
r ,�k)eiS(t (i)

r ). (14)

Here, M is the number of trajectories born at ionization times
t (i)
r reaching a given final momentum �k, and G(t (i)

r ,�k) is the
ionization amplitude,

G
(
t (i)
r ,�k) =

[
2πiF

(
t (i)
r

)∣∣�k + �A(
t

(i)
r

)∣∣
]1/2

d∗[�k + �A(
t (i)
r

)]
, (15)

where d∗(�v) is the dipole element of the bound-continuum
transition.

The release time t (i)
r of trajectory i is determined by the

saddle-point equation,

∂S(t ′)
∂t ′

∣∣∣∣
t ′=t

(i)
r

=
[�k + �A(

t (i)
r

)]2

2
+ Ip = 0, (16)

yielding complex values since Ip > 0. The condition for differ-
ent trajectories to interfere is to reach the same final momentum
�k to satisfy Eq. (16) with release times t (i)

r (i = 1,2, . . . ,M).
Whereas the interference condition involves the vector poten-
tial �A, the electron trajectory is governed by the electrical field
�F . We now consider a periodic laser linearly polarized along

the z axis whose laser field is �F (t) = F0ẑ sin(ωt), where F0 is
the field amplitude. Accordingly, the vector potential is given
by �A(t) = F0

ω
ẑ cos(ωt). There are two solutions of Eq. (16) per

optical cycle. The first solution in the j th cycle is given by

t (j,1)
r = 2π (j − 1)

ω
+ 1

ω
cos−1 [−κ̃], (17)
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where κ̃ denotes the complex final momentum defined by

κ̃ = κz + i

√
γ 2 + κ2

⊥, (18)

and κz and κ⊥ are the respective longitudinal and transversal
components of the dimensionless scaled final momentum of
the electron �κ = ω�k/F0. In Eq. (18) γ = √

2Ip ω/F0 is the
Keldysh parameter. The second solution fulfills

t (j,2)
r =

{
4π
ω

(
j − 1

2

) − t
(j,1)
r if κz � 0

4π
ω

(j − 1) − t
(j,1)
r if κz < 0.

(19)

In Eqs. (17) and (19), t
(j,α)
r with α = 1 (2) denotes the early

(late) release times within the j th cycle.
For a given value of �k, the field strength for ionization at

t
(j,α)
r is independent of j andα, then |F (t (j,α)

r )| = F0|
√

1 − κ̃2|.
The ionization rate �(�k) = |G(t (j,α)

r ,�k)|2e−2Im[S(t (j,α)
r )] is iden-

tical for all subsequent ionization bursts (or trajectories)
and, therefore, only a function of the time-independent final
momentum �k provided the ground-state depletion is negligible.
As there are two interfering trajectories per cycle, the total
number of interfering trajectories with final momentum �k is
M = 2N , with N being the number of cycles involved in
the laser pulse. Hence, the sum over interfering trajectories
[Eq. (14)] can be decomposed into those associated with two
release times within the same cycle and those associated with
release times in different cycles [17–19]. Consequently, the
momentum distribution [Eq. (10)] can be written within the
SPA as

dP

d�k = �(�k)

∣∣∣∣∣∣
N∑

j=1

2∑
α=1

ei Re[S(t (j,α)
r )]

∣∣∣∣∣∣
2

, (20)

where the second factor on the right-hand side of Eq. (20)
describes the interference of 2N trajectories with final
momentum �k, where t

(j,α)
r is a function of �k through Eqs. (17)

and (19).
The semiclassical action along one electron trajectory with

release time t
(j,α)
r can be calculated within the SPA from

Eq. (13) up to a constant,

S
(
t (j,α)
r

) = 2Up

[(
|κ̃|2 + 1

2

)
t (j,α)
r + sin

(
2ωt

(j,α)
r

)
4ω

+ 2
κz

ω
sin

(
ωt (j,α)

r

)]
, (21)

where the ponderomotive energy is given by Up = F 2
0 /4ω2,

and |κ̃|2 = |�κ|2 + γ 2 [see Eq. (18)]. The sum in Eq. (20) can
be written as

N∑
j=1

2∑
α=1

eiRe[S(t (j,α)
r )] = 2

N∑
j=1

eiS̄j cos

(
�Sj

2

)
, (22)

where S̄j = Re[S(t (j,1)
r ) + S(t (j,2)

r )]/2 is the average action
of the two trajectories released in cycle j, and �Sj =
Re[S(t (j,1)

r ) − S(t (j,2)
r )] is the accumulated action between the

two release times t
(j,1)
r and t

(j,2)
r within the same j th cycle.

The average action depends linearly on the cycle number j ,
so S̄j = S0 + j S̃, where S0 is a constant which will drop out

when the absolute value of Eq. (22) is taken, and

S̃ = (2π/ω)(E + Up + Ip). (23)

In turn, due to discrete translation invariance in the time
domain (t → t + 2jπ/ω), the difference of the action �Sj

is independent of the cycle number j , which can be expressed
(dropping the subscript j ) as

�S = −2Up

ω
Re[(1 + 2|κ̃|2)sgn(κz) cos−1[sgn(κz)κ̃]

− (4κz − κ̃)
√

1 − κ̃2], (24)

where sgn denotes the sign function that accounts for positive
and negative longitudinal momentum kz.

After some algebra, Eq. (20) can be rewritten as an equation
of a diffraction grating of the form [17–19,43,44]

dP

d�k = 4 �(�k) cos2

(
�S

2

)
︸ ︷︷ ︸

F (�k)

[
sin(NS̃/2)

sin(S̃/2)

]2

︸ ︷︷ ︸
B(k)

, (25)

where the interference pattern can be factorized into two
contributions: (i) the interference stemming from a pair of
trajectories within the same cycle (intracycle interference),
governed by F (�k) and (ii) the interference stemming from
trajectories released at different cycles (intercycle interfer-
ence) resulting in the well-known ATI peaks given by B(k)
(see Ref. [45]). The intracycle interference arises from the
superposition of pairs of trajectories separated by a time slit
�t = t

(j,1)
r − t

(j,2)
r of the order of less than half a period of the

laser pulse, i.e., Re(�t) < π/ω, while the difference between
t

(j,α)
r and t

(j+1,α)
r is 2π/ω, i.e., the optical period of the laser.

It is worth noting that whereas the intracycle factor F (�k)
depends on the angle of emission, the intercycle factor B(k)
depends only on the absolute value of the final momentum (or
energy). Equation (25) may be viewed as a diffraction grating
in the time domain consisting of N slits with an interference
factor B(k) and diffraction factor F (�k) for each slit. In the
following subsection we make use of the Fourier theory of
the last subsection to analyze the moiré patterns in the doubly
differential momentum distribution [Eq. (25)].

C. Formation of moiré patterns from inter-
and intracycle interference

The intercycle principal maxima fulfill the equation S̃ =
2nπ, leading to the ATI energies En = nω − Up − Ip in
agreement with the conservation of energy for the absorption
of n photons. Therefore, in the doubly differential momentum
distribution, the two-dimensional (2D) intercycle grid follows
the relation between the parallel and perpendicular momenta

kinter
⊥ (n) =

√
2(nω − Ip − Up) − [kinter

z (n)]2
. The spacing be-

tween two consecutive maxima can be easily calculated for
En = k2

z /2 (provided k⊥ = 0) as[
kinter
z (n + 1)

]2 − [
kinter
z (n)

]2

2

� kz�kinter
z ⇒ �kinter

z � ω

kz

= 1

α κz

, (26)
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where α = 4Up/F0 = F0/ω
2 is the quiver amplitude of the

escaping electron, �κ = (ω/F0)�k; and in the last line we have
used that En+1 − En = ω.

The intracycle maxima correspond to the equation �S =
2mπ with integer m. Equivalently to the intercycle case, the
intracycle spacing can be calculated as

�S(kz + �kz)

2
− �S(kz)

2

� 1

2

∂�S(kz)

∂kz

∣∣∣∣
k⊥=0

�kintra
z ⇒ �kintra

z � 2π∣∣ ∂�S(kz)
∂kz

∣∣
k⊥=0

.

(27)

After a bit of algebra, the derivative of the accumulated action
with respect to the parallel momentum can be written in a close
form and, thus, the intracycle spacing reads

�kintra
z = π

α|Re[κz cos−1(κz + iγ ) −
√

1 − (κz + iγ )2]| .

(28)

In Eq. (28) we have considered forward emission, i.e., kz � 0.

We have an analogous result for backward emission.
According to Eq. (25), the transformations from the 1D

grating to the inter- and intracycle 2D grating are T1(kz,k⊥) =
S̃/2 given by Eq. (23) and T2(kz,k⊥) = �S/2 given by
Eq. (24). Therefore, we can write the (k1,k2)-order compound
transformation T (kz,k⊥) = k1T1(kz,k⊥) + k2T2(kz,k⊥) as

T (kz,k⊥) = k1
S̃

2
+ k2

�S

2
. (29)

By eye inspection [at least for the lowest orders (k1,k2) =
(1,−1), (2,−1), and (1,−2)] function T (kz,k⊥) exhibits one
global minimum for forward (and backward) emission, which
corresponds to the center of the side ring. The minimum can
be easily found as

�∇T (kz,k⊥) =
(

∂T (kz,k⊥)

∂kz

,
∂T (kz,k⊥)

∂k⊥

)
= 0. (30)

k⊥ = 0 is a solution of ∂S̃/∂k⊥ = 0 and ∂�S/∂k⊥ =
0, separately, and independently of the value of kz.

Therefore, k⊥ = 0 is a solution of the second com-
ponent of Eq. (30), ∂T (kz,k⊥)/∂k⊥ = (k1/2)(∂S̃/∂k⊥) +
(k2/2)(∂�S/∂k⊥) = 0, irrespective of the values of k1, k2, and
kz. This means that the center of the moiré rings lay along the
kz axis (k⊥ = 0).

Now, with the restriction k⊥ = 0,we formally solve the first
component of Eq. (30),

∂T (kz,k⊥)

∂kz

= k1

2

∂S̃

∂kz

+ k2

2

∂�S

∂kz

= 0. (31)

The derivative in the first term in the right -hand side of Eq. (31)
can be easily written as ∂S̃/∂kz = 2πkz/ω = 2π/�kinter

z ,
where we have used Eqs. (23) and (26). Doing the same with
the derivative in the second term of Eq. (31), we get that
∂�S/∂kz = 2π/�kintra

z , using Eq. (27). Therefore, Eq. (31)
can be written as

∂T (kz,k⊥)

∂kz

= π

(
k1

�kinter
z

+ k2

�kintra
z

)
= 0, (32)

FIG. 1. Momentum distributions (linear gray scale) after inter-
action of a mid-infrared laser pulse with a hydrogen atom. (a) SFA
and (b) TDSE [28,46]. The cosinelike pulse has a peak field F0 =
0.0533 (I = 1014 W/cm2), frequency ω = 0.014 24 (λ = 3200 nm)
and a sin2 envelope with total pulse duration of eight cycles. Both
distributions have been normalized.

which is equivalent to

k1�kintra
z = −k2�kinter

z . (33)

The principal moiré rings are given by the lowest order
(k1,k2) = (1,−1), which means that the intra- and intercycle
spacings should be the same, i.e., �kintra

z = �kinter
z . This result

provides the position of the center of the principal moiré
pattern. Higher order moiré patterns, i.e., (k1,k2) = (2,−1)
and (1,−2), denote the secondary moiré rings whose centers
are positioned along the kz axis at the kz value which makes
the intercycle spacing the double of the intracycle one, i.e.,
2�kintra

z = �kinter
z , and the intracycle spacing the double of

the intercycle one, i.e., �kintra
z = 2�kinter

z , respectively.
In order to discard possible artifacts or spurious (nonphys-

ical) patterns generated by the grating inherent to the data
grid, we have analyzed the moiré patterns stemming from the
interplay between the intercycle factor B(k) and the numerical
grid. When the numerical spacing is much lower than the
intercycle spacing there is no formation of moiré rings (not
shown). The same can be done with the intracycle pattern. In
all our figures in the paper, the numerical grid is much denser
than the inter- and intracycle grids, avoiding, in this way, the
formation of nonphysical moiré patterns.

III. RESULTS AND DISCUSSION

In Figs. 1(a) and 1(b) we show the doubly differential
electron momentum distribution within the SFA [Eqs. (10) and
(11)] and TDSE [28,46] after ionization of atomic hydrogen
by an intense (I = 1014 W/cm2) mid-infrared (λ = 3200 nm
or equivalently ω = 0.01424 a.u.) sine pulse of eight-cycle
total duration with a sin2 envelope. The intercycle pattern
appears as concentric (ATI) rings centered at the threshold. In
the TDSE momentum distribution, the characteristic bouquet-
shape structure due to interference of electron trajectories
oscillating about the Kepler trajectory is clearly observed
[11,47]. The bouquet-shape structure is absent in the SFA since
it lacks the effect of the Coulomb potential on the escaping
trajectories. At both sides of the ATI rings, two symmetrical
annular structures at |kz| � 0.82 are observed in both (SFA and
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FIG. 2. SPA doubly differential momentum distribution (linear
gray scale) of Eq. (25). (a) Intercycle interference: 4�(�k)F (�k);
(b) intracycle interference: 4�(�k)B(k) for N = 2 cycles; and (c)
total (intra- and intercycle) interference 4�(�k)F (�k)B(k) for N = 2
cycles. The laser parameters are F0 = 0.0533 (I = 1014 W/cm2)
and frequency ω = 0.01424 (λ = 3200 nm). Distributions have been
normalized.

TDSE) approaches. As far as we know, the physical nature of
these side rings has not been studied. As the SFA does not
consider rescattering electrons, we must discard this effect as
a possible explanation for the formation of the side rings. In the
rest of the paper we identify the origin of these rings with the
aid of the semiclassical model and the theory of moiré patterns.

The interplay between the intercycle interference [factor
B(k) in Eq. (25)] and the intracycle interference [factor F (�k)
in Eq. (25)] controls the doubly differential distribution of
direct ATI electrons for lasers [17–19]. Firstly, we examine the
intercycle interference within the SPA by setting the intracycle
factor to be F (�k) = 1 in Eq. (25) for the same laser parameters
as in Fig. 1, except the duration and envelope, where we use
N = 2 cycles of duration. The factor B(k) reduces to the two-
slit Young interference expression B(k) = 4 cos2[π/ω(S̃/2)],
where S̃ is given by Eq. (23). We plot the corresponding
SPA doubly differential momentum distribution in Fig. 2(a),
where we can observe concentric rings with radii kn = √

2En.
The intracycle interference arises from the superposition of
two trajectories released within the same optical cycle, i.e.,
α = 1,2 and N = 1 in Eq. (25) or, equivalently, 4 �(�k)F (�k),
since B(k) = 1 in this case. In Fig. 2(b), we see that the SPA in-
tracycle interference pattern gives approximately vertical thin
stripes which bend to the higher energy region as the transverse
momentum grows. The width of the stripes increases with the
energy. In order to analyze the complete pattern stemming
from all four interfering trajectories in the two-cycle pulse,
the composition of the intercycle and intracycle interference
patterns of Figs. 2(a) and 2(b) gives the SPA momentum
distribution of Fig. 2(c). We can see that a grosser structure
emerges as two side rings centered at kz � ±0.83 and k⊥ � 0,
and two less visible rings centered at kz � ±0.5 and k⊥ � 0.
If we consider longer pulses, the contrast of intercycle factor
B(k) will grow as N will increase. For example, the ATI rings
will become narrower and N−2 secondary rings will appear
between two consecutive principal ATI rings. On the other

0.7 0.8 0.9 1.0
0.0

0.1

0.2

parallel momentum (a.u.)

pe
rp

en
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cu
la

r m
om
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.)

FIG. 3. Magnification of SPA doubly differential momentum
distribution in Fig. 2(c) (linear gray scale). On top of it we have
drawn the different intercycle maxima, i.e., S̃ = 2nπ (with integer
n) in green (gray) and the different intracycle interference maxima,
i.e., �S = 2mπ (with integer m) in blue (black). The local maxima
of the doubly differential momentum distribution coincide with the
intersection of the inter- and intracycle maxima.

hand, the intracycle factor F (�k) is independent of the number
of cycles N involved in the laser pulse and, in consequence,
the intracycle interference pattern remains unchanged. This is
strictly valid provided we consider a flattop pulse in the SPA.
Moreover, we have checked that the position of the side rings
is independent of the pulse duration (not shown).

In Fig. 3, we show in green (gray) the maxima of the
intercycle interference pattern, i.e., S̃ = 2nπ with n integer,
given by the conservation of energy relation, and in blue (black)
the maxima of the intracycle interference pattern, i.e., �S =
2mπ with m integer, on top of the SPA doubly differential
momentum distribution of Fig. 2(c) in the region of the main
side ring in the forward direction. We clearly see how the
intersections of the inter- and intracycle grids coincide with the
different local maxima of the distribution forming an annular
structure. Contrarily to the intercycle grid, the intracycle grid
does not have an explicit form and must be solved numerically.

In Fig. 4(a) we show a close-up of the SPA doubly differen-
tial momentum distribution for the same laser parameters as in
Figs. 2 and 3. The side ring centered at (kz,k⊥) � (0.83,0) is
clearly seen. In Fig. 3(b) we plot the principal moiré ring, i.e.,
cos2[T (kz,k⊥)], where the transformation T (kz,k⊥) is given
by Eq. (29) for (k1,k2) = (1,−1). We see that the shape and
position of the moiré pattern in Fig. 4(b) coincide with the
side ring of the doubly differential momentum distribution in
Fig. 4(a). When the laser frequency is increased to ω = 0.02,
the principal side ring shifts horizontally toward less energetic
domains and is centered at (kz,k⊥) � (0.62,0), as can be
observed in Fig. 4(c). The corresponding moiré pattern in
Fig. 4(d), also shifts accurately reproducing the side ring. This
is a confirmation of the application of the principal moiré
patterns theory to atomic ionization in the mid-infrared range
posed in the last section.

To fully confirm the theory of the moiré patterns, we plot
the inter- and intracycle spacings for ω = 0.014 24 in Fig. 5(a)
and ω = 0.02 in Fig. 5(b) in a solid line, together with the
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FIG. 4. SPA doubly differential momentum distribution (linear gray scale) of Eq. (25) [(a) and (c)] and the corresponding (1,−1) moiré
pattern [(b) and (d)]. The laser frequency is ω = 0.01424 for (a) and (b) and ω = 0.02 for (c) and (d). The rest of the laser parameters are the
same as in Figs. 2 and 3. Distributions have been normalized.

double of the corresponding spacings in dashed lines. The rest
of the laser parameters are the same as in previous figures. In
the second row of Fig. 5 the principal moiré ring is centered
at the kz value, which corresponds to the intersection of the
inter- and intracycle spacings in agreement with Eq. (33) for

(k1,k2) = (1,−1), i.e., �kintra
z = �kinter

z . We see that the center
of the moiré pattern is situated at kz = 0.84 for ω = 0.014 24
in Fig. 5(b), whereas it is at kz = 0.62 for ω = 0.02 in Fig. 5(g).
In the third row we see that the secondary moiré pattern of order
(2,−1) is centered at the intersection of the intercycle spacing

FIG. 5. Inter- and intracycle spacings with their first harmonic (twice the spacings) of Eqs. (26) and (28), respectively [(a) and (f)]. Main
moiré (1,−1) pattern [(b) and (g)] and secondary moiré (1,−2) [in (c) and (h)] and (2,−1) [in (d) and (i)] patterns. SPA doubly differential
momentum distribution (linear gray scale) of Eq. (25) in (e) and (j). For the first column (a)–(e) ω = 0.01424 and for the second column (f)–(j)
ω = 0.02. The rest of the laser parameters are the same as in Figs. 2–4. Distributions have been normalized.
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FIG. 6. Position of the center of the main and secondary moiré
patterns in units of the scaled parallel momentumκz (a) and the parallel
momentum kz (b) as a function of the Keldysh parameter γ .

and twice the intracycle spacing in agreement with Eq. (33),
i.e., 2�kintra

z = �kinter
z . The center of the (2,−1) is at kz = 0.5

for ω = 0.014 24 in Fig. 5(c), whereas it is at kz = 0.37 for
ω = 0.02 in Fig. 5(h). In the fourth line we see that the
secondary moiré pattern of order (1,−2) is centered at the
intersection of twice the intercycle spacing and the intracycle
spacing in agreement with Eq. (33), i.e., �kintra

z = 2�kinter
z .

The center of the (1,−2) is at kz = 1.31 for ω = 0.014 24 in
Fig. 5(d), whereas it is at kz = 0.97 for ω = 0.02 in Fig. 5(i).
For the sake of completeness, in the last row, we show the
complete doubly differential momentum distribution within
the SPA. We clearly observe how the principal (1,−1) and
secondary (2,−1) and (1,−2) moiré patterns are mirrored in the
momentum distribution. Not only does the center of the moiré
rings coincide with the prediction of Eq. (33) and observed
in the corresponding moiré patterns cos2[(T (kz,k⊥)], but also
the radii of the moiré rings perfectly agree with the momentum
distribution. We want to point out that not only are the positions
of the center of the moiré structures described by the theory
but also the radii of the rings themselves are fully reproduced.
No counterpart of the secondary moiré rings (2,−1) and
(1,−2) are observed in the SFA and TDSE doubly differential
momentum distribution of Fig. 1 since their visibility is very
poor. In conclusion, Fig. 5 provides a full confirmation of the
application of the theory of the moiré patterns for principal
and secondary rings to the formation of the side rings in the
ionization of atomic hydrogen by mid-infrared lasers.

From Eqs. (26) and (28) we see that the positions of the
centers of the principal and secondary rings in terms of κz

do not depend on the laser amplitude F0 and frequency ω

independently, but through the Keldysh parameter γ . With this
in mind, in Fig. 6 we plot the center of the principal (1,−1) and

secondary (2,−1) and (1,−2) moiré rings as a function of γ .
In Fig. 6(a), we observe that the position of the center of both
principal and secondary rings measured in terms of the scaled
κz momentum increases with the Keldysh parameter. In the
tunneling limit (γ � 1), the position of the center of the moiré
rings approaches to constant values κ (1,−1)

zc = 0.217, κ (2,−1)
zc =

0.128, and κ (1,−1)
zc = 0.337. This result leads to a scale law for

the position of the moiré rings in the tunneling regime

k(1,−1)
zc = 0.217

F0

ω
,

k(2,−1)
zc = 0.128

F0

ω
, (34)

k(1,−2)
zc = 0.337

F0

ω
,

where we have used �κ = (ω/F0) �k. This means that the position
of the center of the moiré rings scales as the inverse of
the Keldysh parameter γ −1, which is observed in Fig. 6(b)
in the tunneling regime (γ < 1). In the multiphoton regime
(γ > 1), we see in Fig. 6(a) that the center of the moiré rings
follows an approximate linear behavior with γ , i.e., κ (1,−1)

zc �
0.214γ, κ (2,−1)

zc � 0.124γ , and κ (1,−1)
zc � 0.345γ , which is

consistent with the asymptotic values for the center of the
moiré rings in the multiphoton limit (γ � 1), observed in
Fig. 6(b). The proportionality coefficients were calculated as
the average slope of curves in Fig. 6(a) between γ = 3 and
4. The approximate agreement between the asymptotic values
for the center of the moiré fringes in the multiphoton limit and
the coefficients of Eq. (34) in the tunneling regime deserve
more investigation. As the position of the moiré structures
depends strongly on the Keldysh parameter (Fig. 6), it is
doubtful that they could survive the averaging over the focal
volume of the laser. However, in the multiphoton regime
(γ � 1), the position of the center of the moiré does not vary
significantly with the Keldysh parameter γ , and consequently,
on the laser intensity. Therefore, for low intensity lasers, moiré
could, in principle, survive the intensity averaging. On the
other hand, experimentalists could measure the momentum
map for an intensity I and then for a slightly higher intensity
I + �I and perform the difference. This would be a way
to measure intensity-non-averaged ionization probabilities,
where the moiré patterns could survive.

IV. CONCLUSIONS

We have presented a study of interference effects observed
in the direct ionization of atoms subject to multicycle laser
pulses with wavelength in the range of the mid-infrared. In the
framework of the SPA we describe the full differential electron
momentum distribution and identify side rings calculated
within the SFA and TDSE [28] as the moiré fringes due
to the interplay between the intra- and intercycle interfer-
ences of electron trajectories in photoelectron 3D momentum
distribution. A whole family of moiré fringes of varying
visibility is characterized. An analytical expression for the
moiré patterns within a Fourier analysis is presented showing
an excellent agreement with the numerical calculations. The
principal (secondary) side rings are centered along the parallel
momentum axis (k⊥ = 0) with kz values where the spacing
of the intracycle pattern is equal to (multiple of or one over

053406-8



MOIRÉ PATTERNS IN DOUBLY DIFFERENTIAL … PHYSICAL REVIEW A 97, 053406 (2018)

a multiple of) the intercycle spacing. The position of the
center of the side rings follows a scale law depending on the
Keldysh parameterγ . Finally, we have discussed the possibility
of experimetally observing the moiré patterns in the doubly
differential momentum distribution.
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