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For many atomic and molecular targets positronium (Ps) scattering looks very similar to electron scattering
if total scattering cross sections are plotted as functions of the projectile velocity. Recently this similarity
was observed for the resonant scattering by the N2 molecule. For correct treatment of Ps-molecule scattering
incorporation of the exchange interaction and short-range correlations is of paramount importance. In the present
work we have used a free-electron-gas model to describe these interactions in collisions of Ps with the N2

molecule. The results agree reasonably well with the experiment, but the position of the resonance is somewhat
shifted towards lower energies, probably due to the fixed-nuclei approximation employed in the calculations. The
partial-wave analysis of the resonant peak shows that its composition is more complex than in the case of e-N2

scattering.
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I. INTRODUCTION

The observed similarity between electron and Ps scattering
by neutral targets [1–3] was recently extended to resonant scat-
tering in Ps-N2 [3,4] and Ps-CO2 [2] collisions. In particular
the very well-known resonance in e-N2 scattering of the �g

symmetry [5] looks very similar to the observed resonance in
the Ps-N2 scattering if cross sections for both processes are
plotted as functions of the projectile velocity. This similarity
prompts a theoretical question if the observed phenomenon
is universal: Can one predict with confidence that there is a
resonance in Ps-molecule scattering if a resonance is observed
in electron-molecule scattering?

The �g resonance in e-N2 scattering has been studied in
many theoretical and experimental papers, and it served in
fact as a “workhorse” for many theoretical models of resonant
electron-molecule collisions. (For a review of early work on the
resonant e-N2 collisions see [5]). Theoretical papers on e-N2

resonant scattering can be separated into two categories: cal-
culations performed in the fixed-nuclei approximations [6–11]
and calculations which account for vibrational motion [12–17].
In the second class of calculations a single resonance is split
into series of peaks, so-called boomerang oscillations [13],
which appear because the resonance lifetime is comparable
with the vibrational period in N2.

The importance of resonance phenomena in electron-
molecule collisions cannot be overemphasized since reso-
nances drive many inelastic processes in these collisions,
particularly vibrational excitation and dissociative electron
attachment [18,19]. Therefore, if similar resonances exist
in Ps-molecule collisions, they can drive similar processes,
particularly Ps-impact vibrational excitation and dissociative
Ps attachment.

A recent experimental paper [4] confirmed earlier pre-
dictions [3] of the resonant Ps-N2 scattering and extended
previous measurements towards the challenging region of
low Ps energies. In interpreting their results, the authors
[4] assumed that the electron, on the average, is closer to

the target than the positron [20], and averaged the electron-
scattering cross section for N2 over the momentum distribution
of electrons in Ps. The result of this convolution exhibits a
resonance peak which is somewhat too broad as compared to
the experimental data. As shown in the present paper, the idea
of Ps-electron–target-electron correlation is justified by the
proper treatment of the exchange interaction and short-range
Ps-target correlations. However, the distortion of Ps by the
target due to the long-range electrostatic interaction should
be treated simultaneously with the target distortion. This leads
particularly to the van der Waals force at large distances.

To account for the Pauli exclusion principle, much effort
was done in the past to enforce orthogonality between the
wave function of the Ps electron and the target electrons by
using orthogonalizing pseudopotentials [21–23] and orthogo-
nal exchange kernels [24–26]. In our previous pseudopotential
treatment of Ps collisions [27–30] we imitated the orthog-
onality constraint by using pseudopotentials with repulsive
cores. However, for the complete inclusion of exchange in
electron-molecule collisions the orthogonality constraint is
not sufficient. The exchange interaction contains a substantial
attractive component due to the so-called Fermi hole and is
particularly responsible for the �g resonance in e-N2 scattering
[5,10]. Inclusion of electron exchange in Ps collisions with
atoms and molecules in a completely ab initio way is a
very challenging task [31] and has been accomplished only
for simple targets such as the hydrogen atom [32,33] and
rare-gas atoms [34–37]. An even more challenging problem
is incorporation of short-range correlations in Ps-atom and
Ps-molecule scattering. A recent work of Green et al. [37]
incorporated them in Ps-rare-gas-atom scattering in the lowest
order of perturbation theory. It seems reasonable that higher-
order corrections are not significant in this case, and this
justifies the perturbative approach used in the present paper.

In the present paper we use the free-electron-gas (FEG)
exchange and correlation energies obtained in the previous
paper [38] to construct exchange and correlation potentials for
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FIG. 1. Legendre components of Ps-N2 scattering potentials: (a)
exchange potential and (b) correlation potential.

Ps-N2 scattering and calculate Ps-N2 scattering cross sections
in the fixed-nuclei approximation. This is a necessary first
step in treatment of Ps-N2 scattering before incorporation of
the vibrational dynamics. The orthogonality constraint is not
important for the resonant scattering since there is no occupied
πg orbital in the N2 molecule; therefore, we do not include it.

The rest of the paper is organized as follows. In Sec. II
we present exchange and correlation potentials for Ps-N2

scattering. In Sec. III we describe our calculations of Ps
ionization in Ps-N2 collisions. In Sec. IV we present the results
for elastic and total scattering cross sections. We then turn to
conclusions and an outlook. Atomic units are used throughout
unless stated otherwise.

II. SCATTERING POTENTIALS

In the previous paper [38] we derived expressions for the
exchange and correlation energies as functions of the Fermi
energy. In order to introduce the dependence of these energies
on the projectile position relative to the target, we determine
the Fermi energy in terms of the charge density of N2 using
the near Hartree-Fock wave functions of Cade et al. [39].
The Ps-N2 scattering potentials obtained in this way are then
expanded in Legendre polynomials. In Fig. 1 we show the
lowest three components (λ = 0, 2, 4) of this expansion for
both the exchange and correlation potentials for a velocity of
0.05 a.u.; the total potential is obtained by summing these.

The correlation potential at large distances is matched to
the van der Waals potential with a cutoff of the form

VW (R) = −C0 + C2P2(cos χ )(
R2 + R2

c

)3 , (1)

where R is the position of the center of Ps relative to the
center of N2, χ is the angle between R and the internuclear
axis, and Rc is a cutoff radius. The van der Waals coefficients
C0 and C2 were calculated from the London formula using
the polarizabilities of N2, α0 = 11.89 a.u. and α2 = 4.19 a.u.
giving C0 = 111.8 a.u. and C2 = 39.4 a.u.
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FIG. 2. Solid line, spherical component of the van der Waals
potential (1); dashed line, spherical component of the correlation
potential. The van der Waals form is used for R > 3.2 a.u.

In order for the correlation potential to match smoothly
to the asymptotic form we have chosen a cutoff radius of
Rc = 1.08 a.u. and for the spherical componentλ = 0 switched
from the correlation potential to the asymptotic form at R =
3.2 a.u. In Fig. 2 we show the potential determined in this way
compared with the asymptotic form at values of R between
2.5 and 4.5 a.u. for the Ps velocity of 0.01 a.u. We see that
this procedure gives a smooth transition from the correlation
potential to the van der Waals potential. For the nonspherical
component λ = 2 we use the same cutoff radius but switch
from the correlation potential to the van der Waals form at
R = 5.4 a.u. We have chosen a small velocity since this is the
region in which the long-range van der Waals potential has the
largest effect on the scattering.

III. IONIZATION

Apart from elastic scattering, the largest contribution to the
total cross section for positronium collisions is expected to
be Ps ionization (breakup). Previously we have calculated Ps
ionization cross sections in collisions with molecular hydrogen
[28] assuming that the e−-H2 and e+-H2 scattering potentials
are spherically symmetric and using the binary encounter
approximation [40,41]. This approximation, along with the
pseudopotential approach to elastic Ps-H2 scattering, led to
total cross sections in good agreement with experimental
measurements. We have also used the binary encounter approx-
imation to calculate Ps ionization cross sections in collision
with rare-gas atoms Ar, Kr, and Xe [29], which were in
good agreement with previous calculations using the impulse
approximation [42]. In this section we generalize the binary
encounter approximation to nonspherical potentials.

A. e−- and e+-N2 scattering

The binary encounter approximation described below de-
pends fundamentally on the body frame T -matrix elements in
the fixed-nuclei approximation for both electron and positron
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FIG. 3. (a) Total elastic e−-N2 cross section as a function of
electron velocity: solid line, present calculation including �, �, and
� symmetries; open circles, calculations of Morrison and Collins
[10]; and squares, recommended elastic cross sections of Itikawa [47].
(b) Elastic e+-N2 cross sections as functions of positron velocity:
solid line, present calculation; open circles, experimental values of
Hoffman et al. [46]; and squares, calculations of Elza et al. [45].

scattering by N2. To calculate these scattering matrices we have
used the static potential determined from the N2 ground-state
wave function [39] and the Hara free-electron-gas exchange
(HFEGE) [43] potential. We have also added a polarization
potential of the form

Vpol(r) =
[
− α0

2r4
− α2

2r4
P2(cos θ )

]
C(r), (2)

where

C(r) = 1 − exp(−(r/rc)p) (3)

is a cutoff function and rc is an adjustable cutoff parameter. For
both electron and positron collisions the polarization potential
is attractive, but the cutoff parameter and power parameter p

may be different. For electron-molecule scattering it is usual
to take p = 6 and that is the choice we make in the present
calculations. For e+-N2 scattering, however, calculations by
Darewych [44] have shown that the choice p = 6 cannot
reproduce the shape of the experimentally observed cross
sections below 10 eV. Later calculations by Elza et al. [45]
using a fully adiabatic potential with p = 1 provided good
agreement with the experimental measurements of Hoffman
et al. [46].

For e−-N2 scattering we have used the wave function
of Cade et al. [39] and the HFEGE potential of Morrison
and Collins [10]. For the polarization potential we use α0 =
11.78 a.u. and α2 = 4.19 a.u., and a cutoff radius of rc =
2.341 a.u., which are the same values as used in [10].

In Fig. 3(a) we show our calculated total e−-N2 cross
sections compared with the calculations of Morrison and
Collins[10] and the recommended elastic cross sections of
Itikawa [47]. Our results are slightly larger than that of [10],
although we use the same scattering potentials. However, in
our calculation, we have used partial waves up to lmax = 17
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FIG. 4. e−-N2 differential cross sections at an incident electron
energy of (a) 2.46 eV (v = 0.425 a.u.) and (b) 10 eV (v = 0.857 a.u.):
solid lines, present fixed-nuclei calculation; circles, measurements of
Sun et al. [16]; open squares, measurements of Gote and Ehrhardt
[48]; and dashed red lines, vibrational close coupling calculations of
Sun et al. [16].

while Morrison and Collins have used lmax = 26. Inclusion of
more partial waves should improve the agreement between the
calculations although slight numerical differences may also be
responsible for some disagreement.

Both calculations are somewhat higher than the recom-
mended elastic cross sections. This is particularly true at the
position of the �g shape resonance. The reason for the large
disagreement in this region is that the calculations have been
done in the fixed-nuclei approximation and do not take into
account the motion of the nuclei. When nuclear motion is taken
into account the well-known oscillatory structure [12,13] of the
cross section is seen in the region of the resonance which is
not seen in a fixed-nuclei calculation.

In Fig. 3(b) we show our calculated e+-N2 cross section as a
function of positron velocity compared with the measurements
of Hoffman et al. [46]. In this calculation we have used
the static potential plus the adiabatic with cutoff polarization
potential (ADPOS) of [45]. Our calculations are in good
agreement with these calculations and the experimental values
for positron velocities below 1.0 a.u.

In Fig. 4 we show e−-N2 differential cross sections at
representative scattering energies of 2.46 eV (v = 0.425 a.u.)
and 10 eV (v = 0.857 a.u.). At 2.46 eV the cross section is at the
peak of the �g shape resonance, and our calculated differential
cross sections are much larger than the measurements and
vibrational close coupling (VCC) calculations of Sun et al.
[16]. This is again due to the fact that our calculation uses
the fixed-nuclei approximation in which scattering in the
resonance region is dominated by the �g T matrix. When the
vibrational motion is included contributions from the �g and
other symmetries become important [16], which can change
the magnitude and shape of the differential cross section at and
near the resonance. At 10 eV we have better agreement between
experiment and the VCC calculations, which is generally the
case at energies that are not near the �g resonance.
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B. Binary encounter approximation

The binary encounter approximation is based on the as-
sumption that the electron and positron in Ps interact indepen-
dently with the target molecule, and the ionization cross section
due to either electron or positron collision may be written as
[40]

σ±
ion = 1

vB

〈
|v − vB |

∫
�E>I

dσ±
〉
, (4)

where vB is the relative collision velocity, v is the electron
(positron) velocity relative to the Ps center of mass, dσ± is the
differential cross section for e+-B or e−-B elastic scattering,
and the integration is restricted by the angles which result in
the energy transfer to electron (positron) �E greater than the
Ps ionization potential I = 6.8 eV. As a result of collision with
the target B the electron (positron) velocity changes from u to
u′ in the laboratory frame where the molecule B is at rest, so

that [28]

�E = vB · (u − u′).

The main difference between our present calculation of Ps
ionization and our previous, spherically symmetric, calcula-
tions appears in the differential cross section. For a molecule
with a ground state of � symmetry the differential cross section
averaged over molecular orientation may be written in terms
of the body-frame T -matrix elements as [5]

dσ

d�
= 1

4u2

∑
μ

∑
L

AμLT �
l,l0

T �′∗
l′,l′0

PL(cos θs), (5)

where l0, l are initial and final angular momenta of the scattered
electron, � is its projection on the internuclear axis, θs is the
laboratory-frame scattering angle (the angle between u and u′),
and μ = (l,l0,l′,l′0,�,�′). The coefficients result from angular
momentum coupling and are given, in terms of Wigner 3-j
symbols, by

AμL = il0−l+l′−l′0 (2L + 1)[(2l0 + 1)(2l + 1)(2l′ + 1)(2l′0 + 1)]1/2

(
l l′ L

0 0 0

)

×
(

l0 l′0 L

0 0 0

)(
l l′ L

� −�′ �′ − �

)(
l0 l′0 L

� −�′ �′ − �

)
. (6)

Inserting this expression for the differential cross section into Eq. (4) and performing the integration over azimuthal angles φ

and φ′ leads to an expression for the ionization cross section that is averaged over molecular orientation,

σion = π

4vB

∫ ∞

I/2vB

duu

∫ 1−I/vBu

−1
d(cos θ )|g1s

(
u2 + v2

B + 2uvB cos θ
)|2

×
∑
μL

AμLT �
l,l0

T �′∗
l′,l′0

PL(cos θ )
∫ cos θ+vB/u

cos θ+I/vBu

d(cos θ ′)PL(cos θ ′), (7)

where |g1s |2 is the velocity distribution of the electron
(positron) in Ps given by

1

4π
|g1s(v

2)|2 = 1

4π

256

π (4v2 + 1)4
.

The integration limits follow from the restriction that �E > I

[28,29].
In Fig. 5 we present the total ionization cross section and

contributions due to electron and positron. At velocities near
threshold the electron contribution is dominant, but at higher
velocities the electron contribution decreases and the positron
contribution remains flat until they become comparable around
1.8 a.u. This happens because as the Ps velocity increases, vB in
Eq. (7), the lower limit on the integration over u, the positron
velocity, gets closer to zero, but in this region the positron
cross section is rapidly increasing. The situation is different
from what we see in the case of rare-gas atoms [29] and H2

[28], where the electron contribution remains dominant for all
Ps velocities.

IV. RESULTS AND DISCUSSION

In order to obtain fixed-nuclei T -matrices for Ps scatter-
ing we solve the set of coupled equations describing Ps-N2

scattering using the integral equation method [49]. From these
T -matrices we obtain the elastic cross section that is averaged
over molecular orientation.

In Fig. 6 we present our theoretical elastic, ionization, and
total cross sections and compare the latter with the experi-
mental data [1,4]. The theoretical resonance peak’s position
(v = 0.34 a.u.) is slightly shifted towards lower Ps velocities
relative to the experimental peak position (v = 0.46 a.u.). The
latter might be due to the the fixed-nuclei approximation which
does not take into account the vibrational dynamics. However,
there is a secondary peak at a slightly higher velocity of
v = 0.44 a.u. In our previous calculations [30], a significant
difference between the theory and experiment was observed at
higher velocities where the experimental cross section remains
practically flat and stays close to the e-N2 cross section,
whereas the theoretical curve was showing a relatively fast
decrease with growing v. A similar tendency was observed in
Ps-H2 calculations [28]. The present calculations which take
into account short-range correlations agree much better with
the measurements at higher velocities.

In order to understand the composition of the resonance
peaks, we show, in Fig. 7, the partial cross sections for the
scattering symmetries included in our calculation of the total
elastic cross section. Unlike the case of e−-N2 scattering we do
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FIG. 5. Ionization of Ps by impact with N2 using the binary
encounter approximation. The curve labeled “Total” is the sum of
the electron (e−) and the positron (e+) contributions.

not see the resonance in the �g symmetry, but we see a peak in
the �g partial cross section which is responsible for the max-
imum in the total cross section at v = 0.34 a.u. and a peak in
the �u partial cross section which is mainly responsible for the
maximum in the total cross section at v = 0.44 a.u. We should
note though that the actual dependence of the cross section
on Ps energy should be more complicated, since inclusion of
vibrational motion of the target will create additional structure
in the cross section (boomerang oscillations [13]) which is not
resolved yet in measurements [1,4].

These differences from e−-N2 scattering can be understood
by looking at the spherically symmetric (λ = 0) components of
the potential and considering some dominant potential matrix
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FIG. 7. Partial cross sections for Ps-N2 elastic scattering: (a) even
(gerade) scattering symmetries and (b) odd (ungerade) scattering
symmetries.

elements V M
LL′ . For the spherically symmetric component there

is no d-wave resonance; in fact the potential supports a weakly
bound state. Also there is an f -wave shape resonance. When
anisotropy is included in the potential (λ is increased), the
�g matrix element V 0

22 becomes more attractive. In the �g

symmetry the matrix element V 2
22 becomes weaker and the

bound state moves into the continuum and a resonance appears
in this symmetry. For the �g symmetry the matrix element V 1

22
does not change very much as anisotropy is included and we
do not see a resonance. The peak at v = 0.44 a.u. is related
to the f -wave resonance that is seen in the scattering by the
spherically symmetric component of the potential.

Again this is quite different from e−-N2 scattering where a
d-wave resonance is seen even for the spherically symmetric
component of the scattering potential and becomes stabilized
in the �g symmetry as anisotropy is included. However, it
might be expected that the composition of resonances for
Ps scattering might be more sensitive to the inclusion of
anisotropy than in electron scattering due to the vanishing
of the static potential for Ps scattering. Finally, but perhaps
most importantly, since the Ps electron is bound, there is
no one-to-one correspondence between the electron angular
momentum in electron scattering and Ps angular momentum
in Ps scattering.

Analysis of the low-energy behavior of the �g phase shifts
shows that the scattering length for Ps-N2 scattering is A =
2.49 a.u. This indicates the absence of the Ramsauer-Townsend
minimum, similar to the case of Ps scattering by rare-gas
atoms [27,29]. The dip at v = 0.25 a.u. is due to the resonance
behavior of the �g contribution which peaks at v = 0.34 a.u.
while the �g contribution is decreasing.

Overall, the �g contribution seems to be too large at low
energies. This might be caused by an error in the short-range
part of the exchange and correlation potentials [38]: due to the
strong dependence of the electron density on electron coordi-
nates near the target nuclei, replacing the Fermi momentum by
[3π2n(R)]1/3 could be inaccurate.
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V. CONCLUSION

In conclusion we have constructed FEG exchange and
correlation potentials allowing us to describe resonant Ps-N2

scattering similar to the e-N2 resonant scattering in the �g

symmetry. These potentials were determined from the FEG
exchange and correlation energies calculated in the preceding
paper [38] by using the Thomas-Fermi model to introduce the
dependence of the energy on the distance between the projectile
and the target. Although the composition of the Ps-N2 reso-
nance is more complex, our results further confirm the observed
similarity between electron and Ps scattering which can be
extended now towards resonance phenomena. The position of
the resonance peak is slightly below the observed position. This
could be due to the neglect of nuclear motion. Therefore, the
next step in theoretical development should be incorporation
of vibrational dynamics along the lines of the boomerang
model [13]. This also opens an opportunity of calculations
of vibrational excitation cross sections in Ps-N2 collisions.

In previous calculations for rare-gas atoms [27,29] we
constructed a pseudopotential with a repulsive core to imitate
the orthogonality condition. In the present calculation we do
not add a repulsive core to the FEG potentials. Recent measure-
ments of Ps–rare-gas scattering at low velocities [50] show a
decrease in the cross section in this region. The pseudopotential
calculations as well as other recent calculations [36,37] do not
exhibit such a decrease. Therefore, it is natural that as a next
step we plan to apply the present method to Ps scattering by
heavy rare-gas atoms. Future application of the present method
to Ps scattering by other molecules, such as CO2 where a
resonance in Ps scattering has also been observed [2], is of
interest as well.
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