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Exchange and correlation in positronium-molecule scattering
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Exchange and correlations play a particularly important role in positronium (Ps) collisions with atoms and
molecules, since the static potential for Ps interaction with a neutral system is zero. Theoretical description
of both effects is a very challenging task. In the present work we use the free-electron-gas model to describe
exchange and correlations in Ps collisions with molecules similar to the approach widely used in the theory of
electron-molecule collisions. The results for exchange and correlation energies are presented as functions of the
Fermi momentum of the electron gas and the Ps incident energy. Using the Thomas-Fermi model, these functions
can be converted into exchange and correlation potentials for Ps interaction with molecules as functions of the
distance between the projectile and the target.
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I. INTRODUCTION

Since the discovery [1–3] of similarity between electron
and positronium (Ps) scattering by atoms and molecules, a
lot of theoretical effort [4–9] has been directed at explaining
this intriguing phenomenon. The similarity of cross sections
for equivelocity electrons and Ps can be justified by the im-
pulse approximation [4]. However, the impulse approximation
breaks down at low energies, particularly below the threshold
for Ps ionization (breakup); therefore a more sophisticated
analysis is required in the low-energy region. Generally at the
Ps velocities above about 0.2 a.u. (energies above 1 eV) the
Ps interaction with atoms is mostly controlled by electrons.
Because of the symmetry of the Ps wave function with respect
to interchange of the electron and positron coordinates, the
direct static potential (without exchange) between Ps and the
atomic or molecular target is zero [10]. Therefore the exchange
interaction and short-range correlations play an especially
important role in Ps scattering. At low collision energies the
long-range van der Waals force between Ps and the target also
becomes important.

In our previous treatment of Ps collisions with rare-gas
atoms [5,8] and molecular hydrogen [7] we constructed pseu-
dopotentials for the Ps-target interaction based on electron
and positron-scattering phase shifts. These pseudopotentials
contain repulsive cores which mock orthogonality between the
wave function of the scattered electron and the occupied molec-
ular orbitals. However, for the complete inclusion of exchange
in electron-molecule collisions the orthogonality constraint is
not sufficient. For example, in e − N2 collisions the �g reso-
nance is mainly due to the exchange interaction [11,12]. This
important effect cannot be incorporated by the orthogonality
constraint used, for example, in Ref. [13], since there is no
occupied πg orbital in N2. Combination of a model attractive
exchange potential with the orthogonality constraint usually
gives the best results in terms of agreement with calculations
which incorporate exchange exactly. Because of the complex-
ity of the exact exchange potential, this method has been widely
used in electron-molecule scattering calculations [11].

Exact inclusion of electron exchange in Ps collisions with
atoms and molecules is an even more challenging task [10]
and has been accomplished only for simple targets such as the
hydrogen atom [14,15] and rare-gas atoms [16–19]. Studies
of electron-molecule collisions [11] show that the electron-
scattering phase shifts can be obtained with good accuracy
by using, in addition to the static potential, a local exchange
potential obtained from calculation of the exchange energy of
interaction of a free electron with a free electron gas (FEG).
Originally this potential for electron-molecule collisions was
proposed by Hara [20], and is therefore called the Hara free-
electron-gas exchange (HFEGE) potential. It was successfully
used for treatment of electron scattering by N2 [12], CO2 [21],
and other targets [22,23]. Systematic studies of the HFEGE
approximation [12,24] have shown that it strongly improves the
results obtained in the static approximation without exchange,
although at low electron energies the scattering cross sections
might still differ from those incorporating exchange exactly by
50%. However, with the growth of energy the HFEGE results
are improving fast. Further improvement can be achieved
by enforcing the orthogonality of continuum orbitals to the
occupied molecular orbitals [24].

Similarly, the treatment of the short-range correlations in
electron or positron scattering by atoms and molecules can
be based on the free-electron-gas model [25,26]. The full
correlation potential is then obtained by joining the short-range
form with the long-range polarization potential, which behaves
as −α/(2r4) at large projectile-target distances, where α is the
dipole polarizability of the target. Alternatively, correlations
can be included by using the potential

Vpol(r) = − α

2r4
[1 − exp[−(r/rc)6]], (1)

where rc is a parameter which can be adjusted by comparing
calculated cross section with experimental or completely ab
initio results. (For simplicity we write here the potential for
electron-atom scattering which contains only the isotropic
term.) Similarly, for Ps-atom collisions we can use an empirical
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potential of the form

Vcorr(R) = −CW

R6
[1 − exp[−(R/Rc)8]], (2)

where R is the distance between the center of mass of Ps and
the center of mass of the target atom, and CW is the van der
Waals constant.

The problem with potentials (1) and (2) is that they can
underestimate the short-range correlations due to uncertainty
in the cutoff parameter. The ultimate choice of the cutoff
parameter is often dictated by experiments, but this makes
the whole calculation empirical and diminishes its physical
significance, especially in the case of Ps scattering as compared
to electron scattering, since the short-range electron-target
interaction is typically dominated by the static potential, and
for Ps scattering the static potential is zero. In addition, the
effective cutoff parameter might be energy dependent. Some
indication of this deficiency can be observed in pseudopotential
calculations [7] of Ps-H2 scattering which employed the van
der Waals potential in the form of Eq. (2). Whereas with a
physically reasonable choice of Rc, agreement with experiment
is good at low Ps velocities below 1.5 a.u., the theoretical
cross section decreases significantly for v > 1.5 a.u., and
the experimental cross section remains basically flat. The
same tendency was observed in preliminary results for Ps-N2

scattering [9] which were obtained with the van der Waals
potential (2). This might indicate that short-range correlations
are not included properly.

In the present paper we generalize exchange and correlation
potentials, developed for electron scattering, to Ps-molecule
scattering and apply them in the next paper of this series to
Ps-N2 scattering [27]. Based on the results of the previous
studies of the accuracy of the FEG approximation for electron
scattering [12,24], we assume that the same level of accuracy
can be achieved in employing the FEG model for Ps scattering.
Atomic units are used throughout unless stated otherwise.

II. EXCHANGE POTENTIAL FOR
POSITRONIUM-MOLECULE SCATTERING

A. First-order perturbation theory

The Hara exchange potential [20] was derived for a free
incident electron. We want to extend it to the electron bound in
the Ps atom. Consider first the wave function describing Ps in
the presence of a free electron in a Fermi sea. The unperturbed
wave function has the form

�(q1,q2,rp) = 1√
2

[�(0)(r1,r2,rp)χm1m2 (1,2)

−�(0)(r2,r1,rp)χm1m2 (2,1)], (3)

where q1, q2 are all electron coordinates including spin coordi-
nates, r1, r2 are spatial electron coordinates, rp spatial positron
coordinates, χm1m2 (1,2) the electron part of the spin function
(the inessential positron part is omitted), and

�(0)(r1,r2,rp) = 1√
V

eik·r1�p(r2,rp), (4)

where k is the momentum of the electron in the Fermi sea, V is
the normalization volume, and �p(r2,rp) is the wave function

of Ps moving with the momentum p,

�p(r2,rp) = 1√
V

eip·R2ψ100(ρ2), (5)

where ψ100(ρ1) is the Ps ground state,

ψ100(ρ) = e−ρ/2

(8π )1/2
. (6)

The coordinates Ri , ρi , i = 1,2 are related to ri , rp by the
transformation

Ri = 1

2
(ri + rp), ρi = ri − rp.

The total Hamiltonian of the system can be written in two
alternative forms

H = H0(1) + HPs(2) − 1

r1p

+ 1

r12

or

H = H0(2) + HPs(1) − 1

r2p

+ 1

r12
,

where H0 is the Hamiltonian of a free electron, and HPs is the
Hamiltonian of the Ps. Note that the function �(0)(r1,r2,rp) ≡
�

(0)
1 is the eigenstate of the Hamiltonian H0(1) + HPs(2), and

the function �(0)(r2,r1,rp) ≡ �
(0)
2 is the eigenstate of the

Hamiltonian H0(2) + HPs(1) with the eigenvalue

E(0) = k2

2
+ p2

4
+ ε1,

where ε1 = −0.25 a.u. is the energy of the ground-state Ps.
Therefore the expectation value of the Hamiltonian over the
unperturbed state is

〈�|H |�〉 = E(0) + 1√
2
〈�| − 1

r1p

+ 1

r12
|�(0)

1 χm1m2 (1,2)〉

− 1√
2
〈�| − 1

r2p

+ 1

r12
|�(0)

2 χm1m2 (2,1)〉.

Both contributions to the energy correction in the right-hand
side are identical, and therefore the correction can be written
as

E(1) = 〈
�

(0)
1

∣∣ − 1

r1p

+ 1

r12

∣∣�(0)
1

〉 − 〈
�

(0)
2 χm1m2 (2,1)|

− 1

r1p

+ 1

r12
|�(0)

1 χm1m2 (1,2)
〉
.

The first (direct) contribution gives zero result because the
integrand is odd under the interchange of r2 and rp. This is a
particular case of a general result: interaction of any system
of charges with Ps averaged over the Ps density distribution is
zero. In particular, the static Ps-atom interaction is zero. The
second (exchange) contribution is reduced to the integral

E(1) = −δm1m2

V

∫
eik·(r1−r2)�∗

p(r1,rp)�p(r2,rp)

×
(

1

r12
− 1

r1p

)
dr1dr2drp.

As expected, it is nonzero only for m1 = m2.
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We add now summation over all electrons below the Fermi
level which have the same spin direction as the electron in Ps.
This leads to the following expression for the exchange energy
Eex in the first order of the perturbation theory:

Eex = − 1

V 2

∑
k

∫
eik·(r1−r2)eip·(R2−R1)ψ100(ρ1)ψ100(ρ2)

×
(

1

r12
− 1

r1p

)
dr1dr2drp.

Using the transformation

r = r2 − r1, ρ1 = r1 − rp, r′
p = rp,

whose Jacobian equals 1, and integrating over r′
p, we obtain

Eex = − 1

V

∑
k

∫
e−ik·r+ip·r/2ψ100(ρ1)ψ100(|ρ1 + r|)

×
(

1

r
− 1

ρ1

)
drdρ1.

Perform now the summation over k:

1

V

∑
k

e−ik·r = 1

(2π )3

∫
dk̂

∫ kF

0
eik·rk2dk = k2

F

2π2r
j1(kF r),

where kF is the Fermi momentum and j1 is the spherical Bessel
function. Therefore

Eex = −
∫

k2
F

2π2r
j1(kF r)eip·r/2ψ(ρ1)ψ(|ρ1 + r|)

×
(

1

r
− 1

ρ1

)
drdρ1. (7)

This result does not depend on the Ps position due to uniformity
of the electron gas. For collisions with atomic and molecular
targets kF can be made coordinate dependent by the use of the
Thomas-Fermi model, and this is what makes the exchange en-
ergy dependent on the projectile coordinate (Hara prescription
[20]). According to this approach, kF in expression (7) should
be taken at the coordinate R1 + ρ1/2 for the electron part of
the interaction and at the coordinate R1 − ρ1/2 for the Ps part
of the interaction, where the coordinate dependence of kF is
given by

kF (r) = [3π2n(r)]1/3,

where n(r) is the electron number density in the target.
However, such a substitution in the integrand of Eq. (7)
would be inconsistent, since until now we assumed that k is a
position-independent wave vector in the plane wave. Indeed,
such a substitution would lead to a complex exchange energy
which is physically unjustified. Instead we will assume that
kF is a slowly varying function of coordinates and take it
at the center of the Ps atom corresponding to the average
position of the electron and positron in Ps. This ansatz is
justified due to the weak dependence of kF on the number
density n. Near the nuclei n varies with r rather rapidly, and
kF (r) dependence might become significant. However, at the
low projectile energies which we are mostly interested in, the
short-range part of the interaction does not affect partial cross
sections, except possibly the s-wave contribution. This could

create some error in the �g contribution to the scattering cross
section.

For calculation of the integral we use the explicit form of
the ground-state Ps wave function, Eq. (6), and perform the
expansions

e−|r+ρ1|/2 =
∑

l

(2l + 1)Fl(r,ρ1)Pl(cos θr−ρ1 ), (8)

eip·r/2 =
∑

l

il(2l + 1)jl(pr/2)Pl(cos θpr ), (9)

where θpr is the angle between vectors r and p, θr−ρ1 is the angle
between vectors r and − ρ1, Pl is the Legendre polynomial,
and Fl is the function introduced in Ref. [5]:

Fl(r1,r2) = (−1)l+1 d

dκ
[κĥl(κr>)ĵl(κr<)]|κ=1/2.

Here r<, r> are less and greater of r1, r2, and ĥl, ĵl are real
functions that can be expressed in terms of spherical Bessel
functions as

ĥl(x) = −ilh
(1)
l (ix), ĵl(x) = iljl(ix).

Integration over angles is performed using∫
Pl(cos θpr )Pl′(cos θr−ρ1 )d r̂dρ̂1 = (4π )2δl0δll′ .

Finally we obtain

Eex = −k2
F

π

∫
e−ρ/2j1(kF r)j0(pr/2)F0(r,ρ)(ρ − r)ρdrdρ.

(10)

B. Choice of Ps momentum

When the projectile interacts with the target, its momentum
is not equal to the incident momentum at infinity p. Hara, when
deriving the free-electron-gas exchange potential, assumed that
the potential acting on the incident electron is the same as the
potential acting on the electron in the Fermi gas. This resulted
in the following effective momentum p∗ [20]:

p∗ =
√

2E∗, E∗ = E + EF + I, (11)

where E is the energy of the incident electron, EF = k2
F /2

is the Fermi energy, and I is the ionization potential. The
dependence of p∗ on the distance R between the projectile
and the target is due to dependence of the Fermi momentum
on the electron density. Riley and Truhlar [22] argued that
this expression becomes inconsistent at the infinite projectile-
target separation where, according to Eqs. (11), E∗ = E + I ,
whereas the correct relation should be E∗ = E. Therefore they
suggested using instead what they called the “asymptotically-
adjusted” relation between E∗ and E,

E∗ = E + EF .

Neither expression would work for Ps as a projectile, since the
potential experienced by Ps is different from that experienced
by an electron. It would be more consistent to assume

E∗ = E − Eex, p∗ =
√

4E∗, (12)

where E = p2/4 is the kinetic energy of the incident Ps. How-
ever, calculation of Eex(R) requires the effective momentum as
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FIG. 1. FEG exchange energy as a function of the Fermi momen-
tum kF for several Ps momenta p.

an input. Therefore an iterative procedure has been developed.
We start with p∗ = p, calculate Eex from Eq. (10) and E∗
from Eq. (12), and repeat the same calculation until the change
in Eex between two iterations is small enough. This method
works quite well for sufficiently large Eex. If it is too small,
the integration error is becoming too large at higher iteration
steps. This typically occurs at small kF , corresponding to large
distances R, where Eex calculated with p∗ = p seems to be
sufficient. At kF > 1 the difference between Eex calculated
with different values of p∗ starts to increase, but even at
kF = 2.8 it is only about 10%.

C. Exchange energies

In Fig. 1 we present the exchange energy as a function of
the Fermi momentum kF for several Ps momenta p which
were chosen to be unmodified. It is interesting to discuss
the sign of the exchange energy. It is well known that, due
to the Pauli exclusion principle, electron interaction with the
electron gas results in a “Fermi hole” [28,29] which creates
an effective attraction between the individual electron and
electron gas, and therefore the exchange energy is negative. The
same hole creates an effective repulsion between the positron
in Ps and the gas. However, the electron and positron motion
in Ps are correlated in such a way that the net energy is in
most cases negative, although with some exceptions. As can
be observed from the figure, at p < 1 a.u. and kF < 0.6 a.u.
the net exchange energy becomes positive. This means that at
low incident momenta and large distances there is an effective
repulsion between Ps and the target. However, typically this
repulsion is small compared to the van der Waals interaction,
and therefore the net Ps-target interaction is still attractive.

To show the role of e − e interaction in the exchange energy,
in Fig. 2 we compare the total exchange energy with the e − e

contribution. It confirms that the e − e interaction is dominant.
It is also apparent from Fig. 1 that the dependence of the Eex on
the Ps momentum p is weak; therefore the exchange potential
should not be very sensitive to the exact choice of p.

FIG. 2. Full FEG exchange energy (upper curves) compared with
the e − e contribution (lower curves). Solid curves: p = 0.2 a.u.,
dashed curves: p = 1.8 a.u.

In Fig. 3 we present comparison of exchange energy,
calculated with the original Ps momentum p, with the energy
calculated with the adjusted momentum given by Eq. (12).
As in the case of Hara potential, the adjustment decreases
the absolute value of the exchange energy. However, in the
present case this change is significantly smaller than in the
case of electron scattering because of the relative weakness of
the Ps-molecule interaction.

III. FEG CORRELATION ENERGY

Inclusion of short-range correlations in lepton-atom scatter-
ing is a very challenging task. One way to do this is to calculate

FIG. 3. FEG exchange energy as a function of the Fermi mo-
mentum kF calculated with the modified Ps momenta for several Ps
momenta p∗ [Eq. (12)] (solid lines) and unmodified momenta (dashed
lines) for p = 0.2 and p = 1.8.
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the second-order correction to the projectile energy in a free
electron gas. It is well known (see, e.g., Ref. [30]) that in the
case of the projectile electron this correction is diverging due
to the singularity of the Coulomb potential at low momentum
transfer, and it is necessary to go to higher-order perturbation
theory. In particular, in the high-density approximation it is
possible to sum all ring diagrams [31] and obtain the correction
equivalent to the random-phase approximation of Bohm and
Pines [32]. In what follows below we will show that for Ps
the second-order correction is not diverging and will obtain
formulas for its evaluation.

A. Second-order correction

We start again with the unperturbed wave function describ-
ing Ps and a free electron in a Fermi sea, Eq. (3). We will
include now the virtual excitations of Ps, and therefore we
replace Eqs. (4) and (5) by

�(0)(r1,r2,rp) = 1√
V

eik·r1�nlmp(r2,rp)

and

�nlmp(r2,rp) = 1√
V

eip·R2ψnlm(ρ2),

where ψnlm(ρ1) is the Ps wave function in the state with
the principal quantum number n, orbital angular momentum
l, and its projection m. The eigenvalues of the unperturbed
Hamiltonian are

Enpk = k2

2
+ p2

4
+ εn,

where εn is the energy of the Ps in the state {nlm}.
The second-order correction to the ground-state Ps energy

interacting with an electron in the Fermi sea is

E
(2)
1pk =

∑
nlmp′k′m′

1m
′
2

|〈nlmp′k′|H ′|100pk〉|2
E1pk − Enp′k′ + iη

, (13)

where H ′ is the perturbation

H ′ = 1

r12
− 1

r2p

,

summation is restricted to electron energies above the Fermi
level, k′ > kF , and the infinitesimal iη in the denominator
provides outgoing-wave boundary conditions in the inelastic
channels. The total Ps correlation energy is

Ecorr
1p =

∑
k

E
(2)
1pk ,

where the summation is over the occupied states below the
Fermi level, k < kF .

Due to the antisymmetry of the wave function with respect
to interchange of q1 and q2, the matrix element of the perturba-
tion H ′ is reduced to two terms, the direct and exchange terms.
The direct term has the form

Mdir = δm1m
′
1
δm2m

′
2

V 2

∫
eiR1·Qeir2·qψ∗

nlm(ρ1)ψ100(ρ1)

×
(

1

r12
− 1

r2p

)
dr1dr2drp , (14)

where Q = p − p′, q = k − k′. Due to the symmetry proper-
ties of the Ps wave function, under the inversion

ψ∗
nlm(−ρ)ψ100(−ρ) = (−1)lψ∗

nlm(ρ)ψ100(ρ)

the integrand is odd under interchange of r1 and rp, if l is even,
and therefore the integral is nonzero only for odd l.

Perform now integration over r2:
∫

eir2·q

r12
dr2 = eir1·q 4π

q2
,

∫
eir2·q

r2p

dr2 = eirp ·q 4π

q2
.

Then

Mdir = 4πδm1m
′
1
δm2m

′
2

V 2q2

∫
eiQ·R1ψ∗

nlm(ρ1)ψ100(ρ1)(eiq·r1

− eiq·rp )dR1drp.

Changing now integration variables to ρ1 and R1, we obtain

Mdir = 4πδm1m
′
1
δm2m

′
2

V 2q2

∫
ψ∗

nlm(ρ1)ψ100(ρ1)(eiq·(R1+ρ1/2)

− eiq·(R1−ρ1/2))eiQ·R1dR1dρ1.

Integration over R1 leads to the conservation of momentum,
Q + q = 0, and we obtain

Mdir = 8πiδm1m
′
1
δm2m

′
2
δPP′

V q2

×
∫

sin(q · ρ1/2)ψ∗
nlm(ρ1)ψ100(ρ1)dρ1, (15)

where P = p + k. The square modulus of this matrix element
can be expressed through the atomic form factor

Fn(q) =
∑
lm

∣∣∣∣
∫

sin(q · ρ1/2)ψ∗
nlm(ρ1)ψ100(ρ1)

∣∣∣∣
2

, (16)

which appears in the expression of many collision cross
sections in terms of momentum transfer [33], for example in the
Born approximation. Methods of its evaluation were reviewed
by Beigman and Lebedev [33]. However, for our purposes it is
more convenient to use the method developed in Appendix A.

Summation over k and k′ can be replaced by summation
over k and q. Then in the denominator of Eq. (13),

k2 − (k′)2

2
+ p2 − (p′)2

4
= −3

4
q2 + q ·

(
k − 1

2
p
)

and

Ecorr
1p = 2(8π )2

V 2

∑
k<kF

∑
|k−q|>kF

×
∑

n

Fn(q)

q4
[− 3

4q2 + q · (k − 1
2 p) + ε1 − εn + iη

] ,

where we have summed over m′
1,m

′
2 and included an extra

factor 2 due to sum over spin states below the Fermi level.
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Using the standard switching from summation over wave
vectors to integration, we obtain

Ecorr
1p = 2

π4

∑
n

∫
d3k

×
∫

d3q
Fn(q)θ (|k − q| − kF )θ (kF − k)

q4
[− 3

4q2 + q · (k − 1
2 p) + ε1 − εn + iη

] ,

(17)

where we have introduced step (Heaviside) functions to ac-
count for the constraints on the integration region. Since
Fn(q) behaves as q2 near the origin, the integral is convergent
in q (in contrast to what happens with the free-electron
correlation energy). The nontrivial integration variables here
are q, k, cos ζ , and cos θ , where ζ is the angle between k and
q, and θ is the angle between p and q. Angular integration
and integration in k can be performed analytically, as shown in
Appendix B, and calculation of Ecorr

1p is reduced to numerical
integration in q and summation over n.

Equation (17) includes only the direct term. Calculation of
the exchange-correlation term is a much more formidable task,
and we have neglected it in the present work. A justification for
this approximation can be found in the recent paper of Green
et al. [19], who used the diagram technique to calculate the
correlation energy in Ps-atom interaction. In particular, they
showed that the main contribution to the correlation energy is
given by the direct electron-hole loop diagram, and it provides
the required van der Waals asymptotic form for the correlation
potential. On the other hand, the two leading contributions to
the exchange-correlation correction partly cancel each other,
and therefore the total exchange-correlation contribution can
be neglected.

In accordance with the Thomas-Fermi model, the correla-
tion energy can be used for description of Ps-target correlation
potential if kF is considered as a function of the projectile
position R, similar to the method used in electron-atom and
electron-molecule scattering. Outside the target where n(R)
and kF (R) become small, the energy is matched with the van
der Waals interaction −CW/R6. This approach is similar to
that used in electron-molecule collisions [25,26] where the
correlation potential is matched to its long-range part −α/(2r4)
outside the target.

B. Results for FEG correlation energy

In specific calculations we kept a finite sum in n in Eq. (17)
and neglected completely the integral over the Ps continuum.
Calculations show that sum in n is convergent reasonably well,
although sometimes n up to 20 should be included. Physically
it is also clear that highly excited Rydberg states of Ps should
not contribute because of the screening effects which are not
accounted for in the second-order perturbation theory. Some
discussion of the screening effects is given in Sec. IV. At large
Ps-target distances the screening effects become negligible,
and the complete sum in all Ps eigenstates, including inte-
gration over the Ps continuum, should be included. However,
outside the target we match the correlation energy with the van
der Waals interaction with the proper van der Waals constant.
In this way we incorporate the effect of the Ps continuum
implicitly.

FIG. 4. Correlation energy for Ps in an electron gas as a function
of the Fermi momentum kF . Solid line, Ps momentum p = 0.2 a.u.
Dashed line, p = 1.0 a.u.

In Fig. 4 we present the real part of the correlation energy
as a function of the Fermi momentum. As in the case of the
exchange energy, the dependence on Ps momentum p is weak.

Calculations also show that the imaginary part of the
correlation energy is negligible in the domain p < 2 a.u.,
kF < 3 a.u. Mathematically this means that the denominator in
Eq. (17) turns to zero for such values of q where the numerator,
Fn(q), is small. Physically this corresponds to insignificance
of the inelastic channels, electron-hole excitations, and exci-
tations of Ps. For higher momenta ImEcorr starts to grow. The
most important inelastic channel in Ps-atom and Ps-molecule
collisions is the Ps ionization, which can be included explicitly
by impulse [34] or binary-encounter [7,8] approximations. In
the present application of the method to Ps-N2 collisions [27]
we neglect ImEcorr and calculate the contribution of the Ps
ionization channel explicitly.

IV. SCREENING EFFECTS

A. Review of the electron gas theory

Screening effects play an important role in the theory of
the electron gas. The electron self-energy in the electron gas
is divergent in the second-order perturbation theory [31], and
only accounting for screening effects makes it finite [30]. We
will summarize the results for electron gas first.

The electron-electron Coulomb interaction in momentum
space

V (q) = 4π

q2
, q = k − k′ (18)

with account of screening is modified as

Vs(q) = 4π

q2 + ξ 2
,

where ξ is the screening constant. Generally, if the external
perturbation is time-dependent, it depends on q and frequency
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ω, but in the static approximation

ξ 2(q) = 2kF

π

[
1 −

(
1

q
− 1

4
q

)
ln

∣∣∣∣1 − q/2

1 + q/2

∣∣∣∣
]
.

In the limit q → 0 we get the Thomas-Fermi screening
constant [31,32]

ξ 2
TF = 4kF

π
.

The Fourier transform of Vs(q) with the q-independent
Thomas-Fermi screening constant produces the Yukawa poten-
tial. However, when q dependence of ξ is taken into account,
the dependence of Vs(r) on r is more complicated: at large
r it decays as 1/r3 with superimposed oscillations (Friedel
oscillations [35]):

Vs(r) = const
cos(2kF r)

r3
.

Calculations of the electron exchange energy Eex account-
ing for screening show a significant reduction of Eex, but the
results obtained with the Thomas-Fermi screening constant
and dynamical screening constant are very close to each other.

B. Electron exchange and correlations in Ps-atom scattering

Calculation of screening effects in Ps interaction with an
electron gas is a much more challenging task than calculation
of screening effects for a point charge. If the q dependence of
the screening constant is not important, we can assume that
the electron or positron in Ps interacts with an electron in the
Fermi gas by the potential

Vs(r) = −Z
e−ξr

r
,

where Z = −1 for electron and Z = 1 for positron. However,
such an approach would be very approximate, if not wrong,
since it treats polarization of the electron gas due to the electron
and positron in Ps independently.

Regarding the Ps self-energy, the second-order correction
gives a finite result, as was discussed above. A simple replace-
ment of the Coulomb potential by the screened potential in
Eq. (14) produces an unrealistically small correlation energy.
It is clear, though, from the discussion above that such a
substitution would be inconsistent: it accounts for screening
in interaction of the Ps electron with the Fermi gas and
Ps positron with the Fermi gas, but not for screening in
interaction between Ps electron and positron. It is obvious that
a consistent account of screening in Ps interaction with the
electron gas requires a much more advanced theory. On the
other hand, Green et al. [19], using the diagram technique,
found that the lowest-order diagram describing creation of
an electron-hole pair is sufficient for an adequate description
of Ps-atom scattering. This lowest-order diagram corresponds
to our correlation energy Ecorr. Generally, it is reasonable to
assume that since Ps is a neutral system, the screening effect
in this case will not be as significant as for an electron, as
is apparent from comparison of the Fourier transform of the
Coulomb potential, Eq. (18), with the Fourier transform of the
Ps-electron interaction, Eq. (15).

V. CONCLUSION

In conclusion, we have constructed FEG exchange and cor-
relation energies allowing us to describe more completely these
effects as compared to our previous treatment of exchange and
correlations in Ps-atom and Ps-molecule scattering. The major
difference in methods used in [5,8] and the present is that in
Refs. [5,8] we constructed a pseudopotential for the projectile-
target interaction using the electron- and positron-scattering
phase shifts, whereas the present method is based on the FEG
exchange and correlation potentials without adding a repulsive
core mocking the orthogonality condition. Whereas the present
method is more direct in the sense that it does not require
electron- and positron-scattering data, it includes exchange
and correlation effects approximately by modeling the target
electrons as a free electron gas. In the next paper of this series
[27] we apply the method developed in the present paper to the
problem of Ps-N2 scattering and show that it describes well
the resonant Ps-N2 scattering and high-energy behavior of the
total cross section.
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APPENDIX A: HYDROGENLIKE FORM FACTORS

For calculation of Ps form factors, Eq. (16), we start with
the integral

Inl =
∫

eiq·ρ/2ψ∗
nlm(ρ)ψ100(ρ)dρ.

This has a nonzero value only for m = 0 if we direct the
quantization axis along the momentum transfer q.

Expanding the plane wave in spherical harmonics and using
the standard expressions for the hydrogenlike wave functions,

ψnlm(ρ) = unl(ρ)

ρ
Ylm(ρ̂),

unl(ρ) = Nnlx
l+1e−x/2F (l + 1 − n,2l + 2,x), x = 2ρ

na0
,

where F is the confluent hypergeometric function, a0 is the
Bohr radius for the hydrogenlike system (for Ps a0 = 2 a.u.),
and Nnl is the normalization constant

Nnl = 1

(2l + 1)!

[
(n + l)!

2n(n − l − 1)!

]1/2( 2

na0

)l+3/2

.

Then

Inl = il(2l + 1)1/2
∫

jl(qρ/2)unl(ρ)u10(ρ)dρ ,

where jl is the spherical Bessel function. Since only the
imaginary part of Inl contributes to the form factor, Eq. (16),
we are interested only in odd values of l.
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Now we use the polynomial representation of F ,

F (−nr,2l + 2,x) =
nr∑

k=0

(−nr )k
k!(2l + 2)k

xk, nr = n − l − 1

and the integral [36]∫ ∞

0
ρl+k+3/2 exp

[
− ρ

a0

(
1 + 1

n

)]
Jl+1/2(qρ/2)dρ

= a
l+k+5/2
0

�(2l + k + 3)(qa0/4)l+1/2

y2l+k+3�(l + 3/2)

× 2F1

(
l + k + 3

2
, − k + 1

2
; l + 3

2
; z

)
, (A1)

where

y2 =
(

1 + 1

n

)2

+ 1

4
q2a2

0, z = q2a2
0

4y2

and 2F1 is the Gauss hypergeometric function.
Then we obtain

Inl = il

(2l + 1)!�(l + 3/2)

[
π (2l + 1)(n + l)!

2nnr !

]1/2(qa0

4

)l

×
nr∑

k=0

(−nr )k
k!(2l + 2)k

(
2

n

)k+l+3/2
�(2l + k + 3)

y2l+3+k

× 2F1

(
l + k + 3

2
, − k + 1

2
; l + 3

2
; z

)
. (A2)

The hypergeometric function can be reduced to a polynomial.
If k is odd, k = 2m + 1, m = 0,1,..., then the hypergeometric
series is truncated as

2F1[l + m + 2, − (m + 1); l + 3/2; z]

=
m+1∑
s=0

(l + m + 2)s(−m − 1)s
(l + 3/2)ss!

zs.

If k is even, k = 2m, we use [36]

2F1(a,b; c; z) = (1 − z)−b
2F1

(
c − a,b; c;

z

z − 1

)
.

Then

2F1

(
l + m + 3

2
, − m − 1

2
; l + 3

2
; z

)

= (1 − z)m+1/2
m∑

s=0

(−1)s(−m)s(−m − 1/2)s
s!(l + 3/2)s

(
z

1 − z

)s

.

APPENDIX B: CALCULATION OF
CORRELATION ENERGY

To calculate the correlation energy, we start first with
Eq. (17) and perform integration over orientation of the vector
k in the coordinate system with the polar axis along vector q.
The integral is reduced to

I1(q,k) = 2π

∫ xmax

−1

dx

qkx + t(q)
,

where t(q) = −3q2/4 − q · p/2 + ε1 − εn + iη. The upper
integration limit xmax is determined from the constraint |k −

q| > kF , which leads to

x = cos ζ < β(q,k),

where

β(q,k) = k2 + q2 − k2
F

2kq
.

Therefore

xmax = min[1,β(q,k)]. (B1)

To find the right-hand side in Eq. (B1), we look for a domain
in the (q,k) plane where β(q,k) < 1. This occurs for

k − kF < q < k + kF .

Since k < kF , this constraint is simply reduced to q < k + kF .
Look now for the domain where β(q,k) < −1. This occurs if
q < kF − k. In summary,

I1(q,k) = 2π

qk

[
θ (k + kF − q) ln

β(q,k) + t(q)/qk

−1 + t(q)/qk

+ θ (q − k − kF ) ln
1 + t(q)/qk

−1 + t(q)/qk

]
if k > kF − q

and

I1(q,k) = 0 if k < kF − q.

Here and below ln is defined as analytic function with the
branch cut along the negative real axis and with the account of
Imt > 0. Perform now integration over orientation of q in the
coordinate system with the polar vector along p. Since

t(q) = s(q) − qpy/2, y = cos θ,

s(q) = −3q2/4 + ε1 − εn + iη,

the integration is reduced to

I2(q,k) = (2π )2

qk

∫ 1

−1
dy

[
θ (k + kF − q) ln

2k/p + v − y

v − 2k/p − y

+ θ (q − k − kF ) ln
u(q) + k2/pq − y

v − 2k/p − y

]
,

where

u(q) = q2 − k2
F + 2s(q)

pq
, v(q) = 2s(q)

pq
.

Using the integral

λ(a) ≡
∫ 1

−1
ln(y − a)dy = (1 − a)

× ln(1 − a) + (1 + a) ln(−1 − a) − 2

we obtain

I2 = 0 if k < kF − q

I2(q,k) = (2π )2

qk

[
λ

(
k2

pq
+u(q)

)
−λ

(
v− 2k

p

)]
ifk>q−kF ,

(B2)

I2(q,k)= (2π )2

qk

[
λ

(
v + 2k

p

)
− λ

(
v − 2k

p

)]
if k < q − kF .

(B3)
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Integration in the (q,k) plane can be organized now as∫ ∞

0
dq

∫ kF

0
dk =

∫ kF

0
dq

∫ kF

kF −q

dkI ′
2(q,k) +

∫ 2kF

kF

dq

(∫ q−kF

0
I

′′
2 (q,k) +

∫ kF

q−kF

dkI ′(q,k)

)
+

∫ ∞

2kF

dq

∫ kF

0
dkI

′′
2 ,

where for I ′
2 we use Eq. (B2), and for I

′′
2 Eq. (B3).

Integration in k can be performed using the following integrals:

G1(a,b,x) ≡
∫

(ax2 + bx) ln(ax + b)dx =
(

1

3
ax3 + 1

2
bx2 − b3

6a2

)
ln(ax + b) − 1

9
ax3 − 1

12
bx2 + b2

6a
x,

G2(a,b,x) ≡
∫

(ax3 + bx) ln(ax2 + bx)dx =
(

1

4
ax4 + 1

2
bx2 + b2

4a

)
ln(ax2 + b) − 1

8
ax4 − 1

4
bx2.

Finally,

Ecorr
100 = 8

π2

∑
n>1

∫ ∞

0

dq

q3
Fn(q)G(q),

where

G(q) = G2[−(pq)−1,1 − u(q); kF ] − G2[−(pq)−1,1 − u(q); kF − q]

−G2[−(pq)−1, − 1 − u(q); kF ] + G2[−(pq)−1, − 1 − u(q); kF − q]

−G1[2p−1,1 − v(q); kF ] + G1[2p−1,1 − v(q); kF − q]

+G1[2p−1, − 1 − v(q); kF ] − G1[2p−1, − 1 − v(q); kF − q], if 0 < q < kF , (B4)

G(q) = G1[−2p−1,1 − v(q); q − kF ] − G1[−2p−1, − 1 − v(q); q − kF ]

−G1[2p−1,1 − v(q); q − kF ] + G1[2p−1, − 1 − v(q); q − kF ]

+G2[−(pq)−1,1 − u(q); kF ] − G2[−(pq)−1,1 − u(q); q − kF ]

−G2[−(pq)−1, − 1 − u(q); kF ] + G2[−(pq)−1, − 1 − u(q); q − kF ]

−G1[2p−1,1 − v(q); kF ] + G1[2p−1,1 − v(q); q − kF ]

+G1[2p−1, − 1 − v(q); kF ] − G1[2p−1, − 1 − v(q); q − kF ] if kF < q < 2kF , (B5)

G(q) = G1[−2p−1,1 − v(q); kF ] − G1[−2p−1, − 1 − v(q); kF ]

−G1[2p−1,1 − v(q); kF ] + G1[2p−1, − 1 − v(q); kF ] if q > 2kF . (B6)
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