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The two-loop self-energy correction to the Lamb shift of hydrogenlike ions is calculated for the 1s, 2s, and
2p1/2 states and nuclear charge numbers Z = 30−100. The calculation is performed to all orders in the nuclear
binding strength parameter Zα. As compared to previous calculations of this correction, numerical accuracy is
improved by an order of magnitude and the region of the nuclear charges is extended. An analysis of the Z

dependence of the obtained results demonstrates their consistency with the known Zα-expansion coefficients.
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I. INTRODUCTION

Theoretical and experimental investigations of the Lamb
shift in atomic systems provide stringent tests of the bound-
state quantum electrodynamics (QED) through the first two
orders in the fine-structure constant α and to all orders in
the nuclear binding strength parameter Zα (where Z is the
nuclear charge number) [1,2]. The main factors presently
limiting our theoretical understanding of the Lamb shift in
hydrogenlike atoms are [3] the binding two-loop QED effects
and, in particular, the two-loop self-energy. Accurate treatment
of the two-loop effects is crucial for an adequate comparison of
theory and experiment along the whole range of nuclear charge
numbers, from hydrogen [4] to uranium [5,6].

The two-loop QED effects were extensively investigated
during the last decades, both within the method based on
the Zα expansion [7–10] and also within the all-order (in
Zα) approach [11–15]. Despite significant progress achieved
in these studies, at least two important issues remain to be
solved. The first is that the extrapolation of the all-order
results [15,16] for the 1s two-loop self-energy towards Z → 0
is only barely consistent with the Zα expansion results [8].
The associated uncertainty is presently the largest theoretical
error for the hydrogen Lamb shift [17]. In the foreseeable
future (once the proton charge radius puzzle [18] is solved),
this error will define the uncertainty of the Rydberg constant,
which is determined [17] from the hydrogen spectroscopy. The
second issue is that the calculation of Ref. [13] of the two-loop
self-energy for the n = 2 states was performed only for several
ions with Z � 60. An extension of these calculations towards
lower values of Z is needed.

In the present work, we report a calculation of the two-
loop self-energy correction for the 1s, 2s, and 2p1/2 states of
hydrogenlike ions. As compared to previous calculations, we
enhance the numerical accuracy by an order of magnitude and
extend calculations for the n = 2 states to lower values of Z,
down to Z = 30. We also present a detailed description of the
method of calculation, as developed during two decades of
our work on this problem. In our 2003 paper [19], we already
reported a detailed analysis of the two-loop self-energy and
described the basic scheme of the calculation to all orders in
Zα. The problem in hand is rather complex and its complete
description would be unnecessarily long; for this reason, in the

present work, we will concentrate mainly on recent features of
the calculational method and only sketch the parts that can be
found in Ref. [19].

In the present work, we will use the Feynman gauge for
the photon propagator since this will make formulas more
compact. The actual calculation will be performed for the
point distribution of the nuclear charge, although the general
analysis will be valid for other nuclear-charge distributions as
well. Notations and definitions used throughout the paper are
collected in Appendix A. Appendices B and C contain basic
notations and formulas for the operator of the electron-electron
interaction and the one-loop self-energy, which are essential
for this work. We use the relativistic units (h̄ = c = 1) and the
Heaviside charge units (α = e2/4π , e < 0).

II. BASIC APPROACH

The two-loop self-energy correction is represented by Feyn-
man diagrams in Fig. 1. The corresponding formal expression
can be easily derived, e.g., by the two-time Green-function
method [2],

�ESESE = �ELAL + �EN + �EO + �Ered. (1)

The first term in the right-hand side of Eq. (1) is the loop-after-
loop (LAL) correction induced by the irreducible (n �= a) part
of the diagram in Fig. 1(a),

�ELAL =
∑
n�=a

〈a|γ 0�̃(εa)|n〉〈n|γ 0�̃(εa)|a〉
εa − εn

, (2)

where a denotes the reference state, the summation over n is
performed over the spectrum of the Dirac-Coulomb Hamil-
tonian, εa and εn are the Dirac-Coulomb energy eigenvalues
of the states a and n, respectively, and �̃(ε) = �(ε) − δm is
the one-loop self-energy operator described in Appendix C.
The LAL correction can be evaluated by using generalizations
of approaches developed for the one-loop self-energy. Such
calculations were performed by several groups [20–22]. Since
this part of the calculation is relatively straightforward and well
established, it will not be described here.

The last three terms in the right-hand side of Eq. (1)
comprise the nontrivial part of the two-loop self-energy, which
is the main subject of the present work. The contribution of the
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FIG. 1. Two-loop self-energy diagrams. The double line denotes
the electron propagating in the binding Coulomb field of the nucleus.
The wavy lines denote virtual photons. Individual graphs are referred
to as (a) the loop-after-loop (LAL) diagram, (b) the overlapping
diagram, and (c) the nested diagram.

overlapping (O) diagram in Fig. 1(b) reads

�EO = (2iα)2
∫

CF

dω1 dω2

∫
dx1 . . . dx4 D(ω1,x13)

×D(ω2,x24) ψ†
a (x1) αμ G(εa − ω1,x1,x2) αν

×G(εa − ω1 − ω2,x2,x3) αμ G(εa − ω2,x3,x4)

×ανψa(x4), (3)

where xij = |xi − xj |, ψa(x) is the reference-state wave func-
tion, D(ω,x) is the scalar part of the photon propagator,
G(ε,xi ,xj ) is the Dirac-Coulomb Green function (see Ap-
pendix A for notations and definitions), and CF is the standard
Feynman integration contour. The contribution of the nested
(N ) diagram in Fig. 1(c) is

�EN = (2iα)2
∫

CF

dω1 dω2

∫
dx1 . . . dx4 D(ω1,x14)

×D(ω2,x23) ψ†
a (x1) αμG(εa − ω1,x1,x2) αν

×G(εa − ω1 − ω2,x2,x3) αν G(εa − ω1,x3,x4)

×αμ ψa(x4). (4)

The fourth term in Eq. (1) is the contribution of the reducible
(n = a) part of the diagram in Fig. 1(a),

�Ered = �ESE 〈a|γ 0 ∂

∂ε
�(ε)

∣∣∣∣
ε=εa

|a〉, (5)

where �ESE ≡ 〈a|γ 0�̃(εa)|a〉 is the one-loop self-energy
correction described in Appendix C.

Equations (3)–(5) are only formal expressions and need to
be renormalized and reformulated in order to be made suitable
for a numerical evaluation. In particular, all ultraviolet (UV)
divergences should be regularized in a covariant way and
explicitly canceled. The main problem of the renormalization
originates from the fact that the UV divergences are usually
identified and canceled in momentum space, whereas the
Dirac-Coulomb Green function is known in the coordinate
space and, moreover, in the form of the partial-wave expansion
only. There are studies that perform the renormalization of the
bound-state QED corrections in coordinate space [23–26], but
they are restricted to the one-loop level so far.

In order to covariantly regularize and identify UV diver-
gences present in Eqs. (3)–(5), we use the approach based on
the expansion of the Dirac-Coulomb Green function G in terms
of interactions with the binding Coulomb field V ,

G = G(0) + G(1) + G(2+)

≡ G(0) + G(0) V G(0) + G(0) V G(0) V G, (6)

where G(0) is the free Dirac Green function.

In the case of the one-loop self-energy, the renormalization
approach is quite straightforward [27]. The UV divergences
are induced only by the first two terms of expansion (6). These
terms contain only the free Dirac Green function G(0) and are
evaluated in momentum space. The remainder does not contain
any UV divergences and is evaluated in coordinate space.

For the two-loop self-energy, the renormalization procedure
becomes more complicated, mainly because of the appearance
of mixed terms containing both the UV-divergent subgraphs
and the Dirac-Coulomb Green function. The two-loop renor-
malization procedure based on expansion (6) was first sketched
by Mallampalli and Sapirstein [28] and fully realized in our
investigations [19,29]. Following these studies, we split each of
the nested, overlapping, and reducible contributions in Eq. (1)
into three parts, which are termed as the M , P , and F terms,
correspondingly,

�EO = �EO,M + �EO,P + �EO,F , (7)

�EN = �EN,M + �EN,P + �EN,F , (8)

�Ered = �Ered,M + �Ered,P + �Ered,F . (9)

The M terms are free from any UV divergences; they are
evaluated in coordinate space by using the partial-wave ex-
pansions of the Dirac-Coulomb Green functions. The F terms
contain only the free Dirac Green functions; they are evaluated
in momentum space, without any partial-wave expansions. The
P terms contain both the Dirac-Coulomb Green functions
and one-loop UV-divergent subgraphs. They are evaluated
in the mixed representation: the UV-divergent subgraphs are
treated in momentum space, whereas the Dirac-Coulomb
Green functions are represented as a Fourier transform over
one of the radial variables.

It is convenient to group the M , P , and F terms together,
thus representing the two-loop self-energy correction as

�ESESE = �ELAL + �EM + �EP + �EF , (10)

FIG. 2. The integration contour CLH in the complex ω plane. The
branch cuts of the photon propagator are shown with the dashed green
line. The poles and the branch cuts of the electron propagator are
shown by dots and the blue dash-dotted line. The poles and branch cuts
are shown for the case of the one-loop self-energy of an excited state.
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where

�EM = �EO,M + �EN,M + �Ered,M, (11)

�EP = �EO,P + �EN,P + �Ered,P , (12)

�EF = �EO,F + �EN,F + �Ered,F . (13)

The exact definitions of the M , P , and F terms are given in
the next three sections.

In our previous investigation [19], we presented a detailed
analysis of the divergences arising in individual contributions
in Eqs. (11)–(13) and demonstrated their cancellation. In the
present work, we will rely on that analysis and assume all
UV divergences in individual contributions to be renormalized,
i.e., divergent terms ∼1/ε and ∼1/ε2 in D = 4 − 2ε dimen-
sions will be dropped out. The reference-state infrared (IR)
divergences will be removed from each individual contribution
by IR subtractions. The net effect of all IR subtractions is

zero, which follows from the analysis of Ref. [19]. So, in our
present formulation, each of the individual contributions in the
right-hand side of Eqs. (11)–(13) is finite. This fact will greatly
simplify the following description.

III. M TERM

The nested, overlapping, and reducible M terms are ob-
tained from Eqs. (3)–(5) by applying subtractions that remove
all UV and reference-state IR divergences. Each of these
terms in turn will be discussed in the next three sections. In
order to keep formulas compact, we will have to repeatedly
switch between the Green-function form and the spectral
representation of the electron propagators.

A. Nested M term

The nested M term is given by

�EN,M =
(

i

2π

)2 ∫
CF

dω1 dω2

[ ∑
n1n2n3

〈an3|I (ω1)|n1a〉〈n1n2|I (ω2)|n2n3〉(
εa − ω1 − εn1

)(
εa − ω1 − ω2 − εn2

)(
εa − ω1 − εn3

)
− 1

ω2
1

∑
a′a′′

〈aa′′|I (ω1)|a′a〉
∑
n2

〈a′n2|I (ω2)|n2a
′′〉

εa − ω2 − εn2

− UV subtraction

]
, (14)

where I (ω) is the operator of the electron-electron interaction
defined in Appendix B, the summation over ni is performed
over the complete Dirac spectrum, and intermediate states a′
and a′′ differ from the reference state a only by the momentum
projection. The first term in the brackets in the above formula
is the unsubtracted nested contribution given by Eq. (4). The
second term in brackets is the IR subtraction that cancels the
reference-state IR divergence present in the first term. The third
term in the brackets is the UV subtraction that is schematically
represented by the following substitution (to be applied both
to the first and second terms in the brackets):

G2(ε) ≡
∑
n2

|n2〉〈n2|
ε − εn2

→ G
(2+)
2 (ε), (15)

where G(2+)(ε) is the Dirac Green function containing two
and more interactions with the binding Coulomb field (see
Appendix A for the exact definition).

The IR divergence in the unsubtracted nested contribution
was discussed in detail in Ref. [19]. It was shown that it appears
in the limit ω1 → 0 when both the n1 and n3 intermediate
states are degenerate in energy with the reference state a,

εn1 = εn3 = εa . We now add that the divergences arise only
when the n1 and n3 intermediate states have the same parity as
the reference state a. In particular, for the a = 2s reference
state, the contribution of the n1 = n3 = 2p1/2 intermediate
states is IR finite since the radial integrals in the numerator
vanish in the limit ω1 → 0 due to orthogonality of the wave
functions. Therefore, the IR divergences originate from the
intermediate states n1 = a′ and n2 = a′′ that may differ from
the reference state a only by the momentum projection (μa′ and
μa′′ , respectively). Hence, the sum over a′ and a′′ in Eq. (14)
is actually the sum over all possible values of μa′ and μa′′ .

In order to bring Eq. (14) to a form suitable for a numerical
evaluation, we need to sum over the magnetic substates,
perform integrations over the angular variables, and deform
the contour of the ω1 and ω2 integrations. In the present work,
we use the same integration contour CLH as for the one-loop
self-energy, described in Appendix C and shown in Fig. 2. This
contour is similar to the one introduced by Mohr in Ref. [30]
but differs in details. The fact that we can deform the original
contour CF to CLH in the two-loop self-energy follows from
the analysis presented in Appendix B of Ref. [19]. The resulting
expression for the nested M term is

�EN,M =
(

iα

2π

)2 ∫
CLH

dω1 dω2

⎡⎢⎣ ∑
n1n2n3
J1J2

(−1)J1+J2XN RJ1 (ω1,an3n1a) RJ2 (ω2,n1n2n2n3)(
εa − ω1 − εn1

)(
εa − ω1 − ω2 − εn2

)(
εa − ω1 − εn3

)

−
∑
J1

(−1)J1RJ1 (ω1,aaaa)

ω2
1 (2ja + 1)2

∑
n2J2

(−1)j2−ja+J2 RJ2 (ω2,an2n2a)

εa − ω2 − εn2

− UV subtraction

⎤⎥⎦, (16)
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where RJ (ω,abcd) is the relativistic generalization of the Slater radial integral (see Appendix B), XN is the angular coefficient
given by

XN = (−1)j2−ja δκ1κ3

(2ja + 1)(2j1 + 1)
, (17)

j denotes the total angular momentum, and κ is the relativistic angular quantum number of the corresponding electron state.
The expression (16) is finite and can be evaluated numerically as it stands. For the convenience of the numerical computation,

however, we divide it in three parts and evaluate each of them separately. First, we single out the contribution with n1 = n2 =
n3 = a from the first term in brackets of Eq. (16), together with the corresponding part (n2 = a) of the IR subtraction term. The
sum of them is finite but nearly divergent. It can be transformed to a more regular form by performing the integrations over ω1

and ω2, as illustrated in Sec. 1.3 of Ref. [19]. The result is

�EN,M,a = 1

(2ja + 1)2

α2

π2

∫ ∞

0
dk1 dk2

1

k1k2(k1 + k2)
Im

[∑
J1

(−1)J1RJ1 (k1,aaaa)

]
Im

[∑
J2

(−1)J2RJ2 (k2,aaaa)

]
. (18)

Second, we separate the contribution with n1 = n3 = a (but n2 �= a) from the first term in brackets of Eq. (16), together with
the remaining part (n2 �= a) of the IR subtraction term, and the corresponding part of the UV subtractions. Combining them
together, we obtain

�EN,M,i =
(

iα

2π

)2 ∫
CLH

dω1 dω2

⎡⎢⎣∑
J1

(−1)J1RJ1 (ω1,aaaa)

ω2
1 (2ja + 1)2

∑
n2 �=a

J2

(−1)j2−ja+J2 RJ2 (ω2,an2n2a)

×
(

1

εa − ω1 − ω2 − εn2

− 1

εa − ω2 − εn2

)
− UV subtraction

⎤⎥⎦. (19)

This part yields the dominant numerical contribution in the low-Z region, but is relatively simple to evaluate and contains
only one partial-wave summation. Finally, the remainder of Eq. (16) is denoted as �EN,M,r and is evaluated separately. This
part contains two partial-wave summations and its computation is rather complicated and time consuming. The advantage of
separately evaluating �EN,M,r is that it does not suffer (too much) from numerical cancellations occurring in the low-Z region.

B. Overlapping M term

The overlapping M term can be written as

�EO,M =
(

i

2π

)2 ∫
CF

dω1 dω2

[ ∑
n1n2n3

〈an2|I (ω1)|n1n3〉〈n1n3|I (ω2)|n2a〉(
εa − ω1 − εn1

)(
εa − ω1 − ω2 − εn2

)(
εa − ω2 − εn3

) − UV subtractions

]
, (20)

where the first term in the brackets is the unsubtracted overlapping contribution as given by Eq. (3) and the UV subtractions are
schematically represented by

G1G2G3 → G1G2G3 − G1G
(0)
2 G

(0)
3 − G

(0)
1 G

(0)
2 G3 + G

(0)
1 G

(0)
2 G

(0)
3 − G

(0)
1 G

(1)
2 G

(0)
3 . (21)

Here, the index of G corresponds to the index of n in Eq. (20), i.e., Gi(ε) ≡ ∑
ni

|ni〉〈ni |/(ε − εni
).

Summing over the magnetic substates, performing integrations over the angular variables, and deforming the integration
contour of the ω1 and ω2 integrations, we obtain

�EO,M =
(

iα

2π

)2 ∫
CLH

dω1 dω2

⎡⎢⎣ ∑
n1n2n3
J1J2

X
J1J2
O RJ1 (ω1,an2n1n3) RJ2 (ω2,n1n3n2a)(

εa − ω1 − εn1

)(
εa − ω1 − ω2 − εn2

)(
εa − ω2 − εn3

) − UV subtractions

⎤⎥⎦, (22)

where

X
J1J2
O = (−1)j1+j2+j3−ja

2ja + 1

{
j2 J2 j1

ja J1 j3

}
. (23)

Equation (22) is finite and can be evaluated numerically as
it stands. For the convenience of the numerical computation,
however, we separate it in several parts and evaluate them
separately.

First, we single out the contribution with n1 = n2 = n3 =
a and transform it to a more regular form by evaluating the

integrations over ω1 and ω2 (see Sec. 1.3 of Ref. [19]), with
the result

�EO,M,a = −α2

π2

∫ ∞

0
dk1 dk2

1

k1k2(k1 + k2)

×
∑
J1J2

X
J1J2
O Im[RJ1 (k1,aaaa)]Im[RJ2 (k2,aaaa)].

(24)
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TABLE I. Numerical results for the M contribution �EM , in terms of the dimensionless function F (Zα) defined in Eq. (61).

Z �Ered,M �EN,M,i+a �EN,M,r �EO,M,i+a �EM,O,r Total

1s

30 −1.8191 47.4262 −1.3817 (7) −58.7732 (6) −0.922 (2) −15.470 (2)
40 −1.1463 23.4198 −0.8725 (2) −29.1977 (2) −0.458 (2) −8.255 (2)
50 −0.7824 13.4215 (1) −0.623 (1) −16.7579 (1) −0.261 (1) −5.003 (2)
60 −0.5649 8.4658 −0.480 (1) −10.5993 (1) −0.161 (1) −3.339 (2)
70 −0.4242 5.7154 −0.394 (2) −7.2105 (1) −0.105 (1) −2.418 (2)
83 −0.3023 3.7005 −0.322 (3) −4.7746 −0.0654 (8) −1.764 (3)
92 −0.2395 2.8545 −0.293 (2) −3.7871 −0.0499 (7) −1.515 (2)
100 −0.1903 2.3260 −0.2775 (4) −3.2023 −0.0422 (3) −1.3864 (5)

2s

30 −1.9540 87.4704 (5) −7.305 (5) −135.761 (6) −6.27 (1) −63.82 (1)
40 −1.1141 44.4460 (2) −4.644 (2) −70.993 (4) −3.763 (5) −36.067 (6)
50 −0.6395 26.3102 (1) −3.2972 (7) −42.716 (1) −2.478 (6) −22.820 (6)
60 −0.3443 17.2011 −2.5341 (6) −28.2078 (7) −1.732 (5) −15.617 (5)
70 −0.1451 12.0764 (1) −2.0778 (6) −19.9526 (4) −1.272 (1) −11.371 (1)
83 0.0391 8.2685 (1) −1.755 (2) −13.8108 (5) −0.896 (1) −8.154 (2)
92 0.1443 6.6512 −1.662 (1) −11.2475 (5) −0.727 (1) −6.842 (2)
100 0.2370 5.6372 −1.670 (1) −9.7065 (5) −0.620 (2) −6.122 (2)

2p1/2

30 0.0437 107.4798 (4) −3.696 (7) −144.371 (5) −7.137 (7) −47.68 (1)
40 0.0136 55.1287 (1) −2.439 (3) −76.167 (2) −4.275 (2) −27.739 (4)
50 −0.0034 32.9318 (1) −1.7497 (7) −46.1202 (3) −2.827 (2) −17.768 (2)
60 −0.0119 21.7304 −1.3278 (7) −30.5892 (2) −1.994 (2) −12.192 (2)
70 −0.0144 15.4027 (1) −1.0506 (7) −21.6861 (1) −1.466 (3) −8.814 (3)
83 −0.0111 10.6814 −0.8175 (7) −14.9849 (2) −1.015 (3) −6.147 (3)
92 −0.0053 8.6696 −0.7146 (6) −12.1248 (2) −0.793 (2) −4.968 (2)
100 0.0027 7.4073 −0.6578 (9) −10.3424 (3) −0.634 (3) −4.224 (3)

Second, we separate out the part of �EO,M that is relatively
simple and contains only one partial-wave summation, but
yields the dominant numerical contribution in the low-Z
region, �EO,M,i . We define it as a part of the right-hand
side of Eq. (22) with the following restrictions: κ1 = κa ,
κ2 = κ3, RJ1 → RC

0 (where RC
J is the Coulomb part of RJ ),

and the symmetrical contribution with κ1 = κ2, κ3 = κa , and
RJ2 → RC

0 . The remaining part �EO,M,r contains two un-
bound partial-wave summations and is evaluated separately. Its
computations are the most complicated and time-consuming
part of the calculation of the M term.

C. Reducible M term

The reducible M term is given by

�Ered,M = �ESE

(
− iα

2π

) ∫
CF

dω

[∑
n

〈an|I (ω)|na〉
(εa − ω − εn)2

−
∑
a′

〈aa′|I (ω)|a′a〉
(−ω)2

−
∑

α

〈aα|I (ω)|αa〉
(εa − ω − εα)2

]
,

(25)

where �ESE is the one-loop self-energy correction to the
energy (see Appendix C) and the summation over α is per-
formed over the spectrum of the free Dirac Hamiltonian. The
first term in the brackets of the above formula corresponds to
the unsubtracted reducible term of Eq. (5), the second term
is the IR subtraction, and the third term is the free-electron

(Z = 0) UV subtraction, G(0)(ε) ≡ ∑
α |α〉〈α|/(ε − εα). Ex-

pression (25) can be evaluated after deforming the integration
contour CF → CLH . Its computation is relatively straight-
forward and was performed by adapting the general scheme
developed for the one-loop self-energy matrix element [31].

D. Numerical evaluation of M terms

The general scheme of our numerical computation of the
M terms was described in detail in Ref. [19] and does not need
to be repeated here. We therefore will concentrate on recent
features of our computational method. One of the important
differences introduced in the present work was the choice of
the integration contour for the ω1 and ω2 integrations. We
now use the contour CLH as described in Appendix C, which
has several advantages as compared to the standard Wick
rotation (ω → iω) employed in Ref. [19]. First, by bending the
low-energy part of the contour into the complex plane, we avoid
the appearance of numerous pole terms, which significantly
simplifies the analysis in the case of excited states. Second, this
choice of the contour softens the infrared (small-ω) behavior
of the integrand due to the appearance of sin(ωr12) from
the photon propagators, instead of exp(−ωr12) for the Wick
rotation. Because of this, the integrand has a much more regular
behavior at small ω1 and (or) ω2, which significantly simplifies
numerical integrations for low values of Z.

Calculations of the �EN,M,i and �EO,M,i parts involve
only a single partial-wave expansion over the relativistic
angular momentum parameter κ . It was extended up to
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|κmax| = 20−22 and the tail of the expansion was estimated
by fitting the expansion terms to the polynomials in 1/|κ|.

Calculations of �EN,M,r and �EO,M,r involve a double
partial-wave expansion over κ’s of two (out of the three)
electron propagators; we chose them to be κ1 and κ3. An
important issue is the extrapolation of |κ1| → ∞ and |κ3| →
∞. Following Ref. [19], instead of calculating the matrix of
the partial-wave contributions X|κ1|,|κ3| and then extrapolating
it, we prefer to work with the matrix Yl1l2 , where l1 = ||κ1| −
|κ3|| = 0,1, . . . is the consecutive number of the subdiagonal in
the matrix X|κ1|,|κ3| and l2 = (|κ1| + |κ3| − l1)/2 = 1,2, . . . is
the consecutive number of the element in the l1th subdiagonal
of X|κ1|,|κ3|. In our computations, we compute the elements of
the matrix Yl1l2 up to (l1,max,l2,max) = (14,10) for Z = 30,40,

and 50, and (12,10) for higher values of Z. We note that for the
overlapping diagram, X|κ1|,|κ3| = X|κ3|,|κ1|, which reduces the
number of matrix elements to be computed. The extrapolation
was performed in two steps. First, we extrapolate l2 → ∞ by
fitting the expansion terms to the polynomials in 1/l2. Second,
we extrapolate l1 → ∞ in a similar way.

Numerical results for the M terms for the 1s, 2s, and 2p1/2

states of hydrogenlike ions with Z = 30−100 are presented in
Table I. The results for the 1s state are in agreement with and
more accurate than our previous values reported in Ref. [16].
The results for the 2s and 2p1/2 states extend our previous
calculations reported in Ref. [13] and improve their accuracy
by an order of magnitude.

IV. F TERM

The F term comprises a part of the UV subtraction terms
introduced in the M term, namely, those that contain zero
or one interaction with the binding Coulomb field in the
electron propagators. The corresponding Feynman diagrams
are shown in Fig. 3. There are no IR divergences in the F

term since the momenta of the initial and the final electron
state are off mass shell and the virtuality ρ = (m2 − p2)/m2 =
(m2 − ε2

a + p2)/m2 is strictly positive and never vanishes.
It is natural to separate the F term into the zero-potential

F part �EF, zero (comprising two-loop diagrams with no
interactions with the Coulomb field in electron propagators),

FIG. 3. Feynman diagrams contributing to the F term. The single
line denotes the free electron, the double line denotes the bound
electron, the dashed line terminated by a cross denotes the interaction
with the Coulomb field of the nucleus.

the one-potential F part �EF, one (comprising two-loop dia-
grams with one interaction with the Coulomb field in electron
propagators), and the reducible F part �EF, red (containing
derivative of the one-loop diagram),

�EF = �EF, zero + �EF, one + �EF, red. (26)

The zero-potential F term can be written as

�EF, zero =
∫

d p
(2π )3

ψ†
a ( p) γ 0 �

(2)
zero,R(p) ψa( p)

≡ 〈a|γ 0�
(2)
zero,R|a〉, (27)

where p = (εa, p) is the four-momentum of the bound electron
and �

(2)
zero,R(p) is the UV-finite part of the free two-loop self-

energy operator �(2)
zero(p). The separation of UV divergences

from the unrenormalized operator �(2)
zero(p) is performed by

working in D = 4 − 2ε dimensions, expanding around ε = 0
and identifying divergent 1/ε and 1/ε2 terms. It was demon-
strated [19] that

�(2)
zero − δm(2) = (p/ − m) B(2) + αC2

ε

4πε
�

(0)
R,4(p) + �

(2)
zero,R(p),

(28)

where δm(2) is the two-loop mass counterterm, B(2) is the two-
loop renormalization constant

B(2) = α2C2
ε

16π2

(
− 1

2ε2
+ 3

4ε

)
, (29)

Cε is the two-loop prefactor

Cε = �(1 + ε) (4π )ε
(

μ2

m2

)ε

, (30)

and �
(0)
R,4(p) is the UV-finite part of the free one-loop self-

energy operator in D = 4 dimensions. The derivation of the
UV-finite part of �

(2)
zero,R(p) is discussed in detail in Ref. [19]

and will not be repeated here.
The one-potential F term is written as

�EF, one

=
∫

d p1 d p2

(2π )6
ψ†

a ( p1) γ 0 V (q) �
(2)
one,R(p1,p2) ψa( p2)

≡ 〈a|V γ 0�
(2)
one,R|a〉, (31)

where p1 = (εa, p1) and p2 = (εa, p2), q = p1 − p2, and
�

(2)
one,R is the UV-finite part of the two-loop vertex operator

�(2)
one. It was demonstrated [19] that

�(2)
one(p1,p2) = γ 0L(2) + αC2

ε

4πε
�0

R,4(p1,p2) + �
(2)
one,R(p1,p2),

(32)

where �
μ

R,4(p1,p2) is the free one-loop vertex operator in
D = 4 dimensions, and the two-loop renormalization constant
L(2) is related to B(2) by the Ward identity, L(2) = −B(2). The
derivation of the UV-finite two-loop vertex operator �

(2)
one,R(p)

is discussed in detail in Ref. [19] and will not be repeated here.
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TABLE II. Numerical results for the F term �EF , in terms of the
dimensionless function F (Zα) defined in Eq. (61).

Z �EF,zero �EF,one �EF,red Total

1s

30 24.66907 (3) −16.07999 (8) 36.13890 (1) 44.72798 (9)
40 11.61552 (1) −9.24107 (3) 17.13164 (1) 19.50609 (3)
50 6.87772 (1) −6.27573 (2) 9.42434 (1) 10.02633 (2)
60 4.66299 (1) −4.64818 (2) 5.70902 (1) 5.72383 (2)
70 3.44582 (1) −3.65961 (1) 3.71093 (1) 3.49714 (1)
83 2.54744 (1) −2.92278 (1) 2.31342 (1) 1.93808 (2)
92 2.18316 (2) −2.67665 (1) 1.76914 (4) 1.27566 (5)
100 1.99368 (8) −2.63549 (3) 1.46677 (3) 0.82496 (9)

2s

30 90.7129 (2) −50.90661 (8) 93.50484 (2) 133.3111 (2)
40 39.54636 (4) −23.2332 (2) 47.42563 (1) 63.7388 (2)
50 21.25492 (1) −13.56096 (7) 28.03112 (1) 35.72508 (8)
60 13.17901 (3) −9.28982 (6) 18.32256 (2) 22.21176 (6)
70 9.08349 (1) −7.12317 (5) 12.89932 (3) 14.85964 (6)
83 6.34101 (1) −5.76042 (3) 8.94329 (3) 9.52387 (4)
92 5.32624 (3) −5.41592 (1) 7.33740 (3) 7.24773 (5)
100 4.8297 (2) −5.49624 (5) 6.41643 (5) 5.7499 (2)

2p1/2

30 95.6913 (2) −46.6496 (3) 97.34783 (4) 146.3895 (3)
40 40.76330 (3) −20.2246 (1) 48.18244 (1) 68.7211 (2)
50 21.48169 (2) −11.5546 (1) 27.72745 (1) 37.65458 (8)
60 13.16105 (3) −7.88637 (5) 17.60679 (1) 22.88147 (6)
70 9.05117 (2) −6.02972 (4) 12.00600 (2) 15.02745 (5)
83 6.38819 (1) −4.75684 (3) 7.93045 (1) 9.56180 (3)
92 5.43716 (1) −4.29107 (2) 6.24689 (1) 7.39297 (3)
100 4.98000 (2) −4.11006 (1) 5.22996 (1) 6.09990 (2)

Finally, the reducible F term can be expressed as [19]

�EF, red = �ESE 〈a|γ 0 ∂

∂p0
�

(0)
R,4(p)

∣∣∣∣
p0=εa

|a〉

− α

4π
〈a|γ 0 ∂

∂ε

�
(0)
R,D(p)

Cε

∣∣∣∣
ε=0

|a〉

− α

4π
〈a|γ 0 V

∂

∂ε

�0
R,D(p1,p2)

Cε

∣∣∣∣
ε=0

|a〉, (33)

where �ESE is the one-loop self-energy correction to the
energy. The second and third terms on the right-hand side of
the above equation contain matrix elements of the linear in ε ≡
D − 4 parts of the one-loop operators �

(0)
R,D and �R,D(p1,p2)

(see Eqs. (248) and (256) of Ref. [19]), which yield finite
contributions when multiplied by divergent terms ∼1/ε from
∂/(∂p0)�(0)

D (p).
Our numerical approach to the calculation of the F term is

described in Ref. [19]. In the present work, we use the same
method so it does not need to be discussed here. The com-
putation is relatively straightforward but time consuming, in
particular for the one-potential contribution�EF, one, which in-
volves a sevenfold integration to be performed numerically. As
compared to our previous work [19], we adjusted all numerical
integrations, employing the extended Gauss-log quadratures
[32] alongside the standard Gauss-Legendre quadratures, and
enhanced the numerical accuracy of the obtained results.

FIG. 4. Feynman diagrams contributing to the P term.

Our numerical results for the F term for the 1s, 2s, and 2p1/2

states of hydrogenlike ions with Z = 30−100 are presented in
Table II. The numerical accuracy of the listed values is high
enough so that it does not influence the total uncertainty of the
final results for the two-loop self-energy.

V. P TERM

The P term comprises the subtractions introduced in the
M term that contain two or more interactions with the binding
Coulomb field in the electron propagators. (We recall that the
subtractions with zero and one interactions with the Coulomb
field are already accounted for by the F term.) The Feynman
diagrams contributing to the P term are shown in Fig. 4.
The distinct feature of these diagrams is that they contain
both the bound-electron propagators and the UV-divergent
one-loop subgraphs (the free self-energy loop or the free
vertex subgraph). Since in our approach the isolation of UV
divergences is performed in momentum space, we have to
evaluate the one-loop subgraphs in momentum space. The
problem is that to treat the bound-electron propagator (i.e.,
the Dirac-Coulomb Green function) in momentum space as
well does not seem to be practically feasible.

Our solution [29] was to develop a method for computing
the Dirac-Coulomb Green function in the mixed coordinate-
momentum representation (i.e., one of the radial variables in
momentum space and the other radial variable in coordinate
space). By now, we developed two different numerical schemes
for doing this. In our early works [12,13,16,29], we used
the Fourier transformation of the discrete representation of
the spectrum of the Dirac-Coulomb Hamiltonian obtained by
the B-spline finite basis-set method [33,34]. This approach
is convenient for practical implementations but is plagued by
a slow convergence with respect to the size of the basis set,
which sets a limitation for the achievable numerical accuracy.
In our recent studies [15,35], we developed a more effective
solution of this problem, which involves a numerical Fourier
transformation of the analytical representation of the Dirac-
Coulomb Green function in terms of the Whittaker functions
[1]. This approach provides the Dirac-Coulomb Green function
in the mixed coordinate-momentum representation with a high
and controllable numerical precision so that the limiting factor
for the accuracy of the final results becomes the convergence
of the partial-wave expansion. In Refs. [15,35], this approach
was applied for the ground state only. In the present work,
we extend it to the excited states. This extension requires
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significant modifications of the calculational scheme, which
will be described next.

The contribution of Feynman diagrams shown in Fig. 4 is
conveniently represented as a sum of three parts,

�EP = �EN,P,1 + �EN,P,2 + �EO,P , (34)

which are discussed in turn below.

A. The first nested P contribution

The first nested P contribution is represented by two nested
diagrams with the free self-energy loop subgraph, shown in
Figs. 4(a) and 4(b). The corresponding expression can be
written as [35]

�EN,P,1 = i

2π

∫
CF

dω

{∑
n1n2

〈an2|I (ω)|n1a〉 〈n1V |S(εa − ω) |V n2〉(
εa − ω − εn1

)(
εa − ω − εn2

) − 〈aa′′|I (ω)|a′a〉 〈a′V |S(εa) |V a′′〉
ω2

+ 2
∑

n1α2α3

〈aα2|I (ω)|n1a〉 〈n1|V |α3〉 〈α3V |S(εa − ω) |α2〉(
εa − ω − εn1

)(
εa − ω − εα3

) }
, (35)

where the operator S is defined as

S(ε) = 1

p/ − m
�

(0)
R (p)

1

p/ − m
γ 0

∣∣∣∣
p0=ε

, (36)

and �
(0)
R is renormalized free one-loop self-energy operator

in D = 4 dimensions [see Eq. (C4)]. The summations over
ni are performed over the spectrum of the Dirac-Coulomb
Hamiltonian, the summations over αi are performed over the
spectrum of the free Dirac Hamiltonian, and the states a′ and a′′
denote the intermediate states that coincide with the reference
state a (i.e., κa′ = κa′′ = κa and na′ = na′′ = na) except for
the momentum projections (μa′ and μa′′ , correspondingly).
Summations over the magnetic substates (in particular, over
μa′ and μa′′ ) are implicit. In Eq. (35), we introduced the special
notation |V n〉 for the product of the nuclear Coulomb potential
and the wave function. In coordinate space, it is just

|V n〉 = V (x) ψn(x), 〈nV | = ψ†
n(x) V (x). (37)

In momentum space, |V n〉 is understood as a Fourier transform
of the product V (x) ψn(x). Matrix elements of S are assumed
to be evaluated in momentum space, whereas matrix operators
of the electron-electron interaction operator I (ω) are assumed
to be evaluated in coordinate space.

The first term in the brackets in Eq. (35) corresponds to the
diagram in Fig. 4(a), the second term is the IR subtraction that
removes the reference-state IR divergence in the first term, and
the third term corresponds to the diagram in Fig. 4(b). We note

that the sum over α2 in the third term
∑

α2
|α2〉〈α2| is the sum

over the complete set of functions; it is inserted artificially for
the convenience of representation.

In order to make Eq. (35) suitable for a numerical evaluation,
we deform the contour of the ω integration from CF to a new
contour in the complex ω plane. In our previous calculation
[35], we used the contour CLH described in Appendix C
with δy = 0 (since only the ground state was considered in
there). In the present work, we perform calculations for excited
states. In this case, there are virtual intermediate states more
deeply bound than the reference state. They would cause
appearances of the first-order [∼1/(δ − ω)] and second-order
[∼1/(δ − ω)2] singularities on the low-energy part of the CLH

contour with δy = 0. In our evaluation of the M term, we
avoid such singularities by bending the low-energy part of the
contour in the complex plane (i.e., using δy > 0). For the P

term, however, we found the contour with δy > 0 to be too
difficult for a practical implementation. Instead, we prefer
to use the contour CLH with δy = 0, treat the double-pole
contributions separately, and handle the first-order singularities
by evaluating the principal value of the integral. Specifically,
we separate out the double-pole contributions n1 = n2 = n

with 0 < εn < εa and calculate them separately, using the
standard Wick rotation ω → iω of the integration contour.

We thus write Eq. (35) as a sum of two parts, �EN,P,1 =
�E a

N,P,1 + �E b
N,P,1, where the second part is the contribution

of the n1 = n2 = n states with 0 < εn < εa and the first part
is the remainder. The first term reads

�E a
N,P,1 = i

2π

∫
CLH

dω

{∑
n1n2

〈an2|I (ω)|n1a〉 〈n1V |S(εa − ω) |V n2〉(
εa − ω − εn1

)(
εa − ω − εn2

) − 〈aa′′|I (ω)|a′a〉 〈a′V |S(εa) |V a′′〉
ω2

+ 2
∑

n1α2α3

〈aα2|I (ω)|n1a〉 〈n1|V |α3〉 〈α3V |S(εa − ω) |α2〉(
εa − ω − εn1

)(
εa − ω − εα3

) −
0<εn<εa∑

n

〈an′′|I (ω)|n′a〉 〈n′V |S(εa − ω) |V n′′〉
(εa − ω − εn)2

}
.

(38)

In the above formula, the states |n′〉 and |n′′〉 have the same energy εn′ = εn′′ = εn and quantum numbers κn′ = κn′′ = κn and
n′ = n′′ = n, but different values of the momentum projections, μn′ and μn′′ , respectively. Summations over the magnetic substates
(including μn′ and μn′′ ) are implicit. The subtraction of the last term in the brackets removes all second-order singularities on
the low-energy part of the contour. The remaining first-order singularities [∼1/(δ − ω)] were handled by evaluating the principal
value of the integral numerically (by using integration quadratures symmetrical with respect to the position of the pole).
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The second part �E b
N,P,1 is the contribution of the n1 = n2 = n states with 0 < εn < εa . It is transformed by applying the

Wick rotation of the contour ω → iω and identifying the corresponding pole contributions. The result is

�Eb
N,P,1 =

0<εn<εa∑
n

[
〈an′′|I (�an)|n′a〉 〈n′V |S ′(εn)|V n′′〉 − 〈an′′|I ′(�an)|n′a〉 〈n′V |S(εn)|V n′′〉

− 1

π
Re

∫ ∞

0
dω

〈an′′|I (iω)|n′a〉 〈n′V |S(εa − iω) |V n′′〉
(�an − iω)2

]
, (39)

where �an = εa − εn and I ′ and S ′ denote the derivatives over the energy argument.
In order to evaluate Eqs. (38) and (39) numerically, we rewrite all sums over the Dirac spectrum in terms of the Green functions.

In particular, for the first term in the brackets in Eq. (38), we use the representation∑
n1n2

|n1〉〈n1V |S(E) |V n2〉〈n2|
(E − εn1 )(E − εn2 )

=
∫

d p
(2π )3

GV (E,x1, p)S(E, p) GV (E, p,x2), (40)

where GV denotes the (Fourier transform of the) product GV ,

GV (ε,x1, p) =
∫

dx2 ei p·x2 G(ε,x1,x2) V (x2), (41)

GV (ε, p,x2) =
∫

dx1 e−i p·x1 V (x1) G(ε,x1,x2). (42)

For the third term in the brackets in Eq. (38), we use the following representation:∑
n1α2α3

|n1〉〈n1|V |α3〉 〈α3V |S(E) |α2〉〈α2|
(E − εn1 )(E − εα3 )

=
∫

d p
(2π )3

G
(1+)
V (E,x1, p)

1

γ 0E − γ · p − m
�

(0)
R (E, p) G(0)(E, p,x2), (43)

where G
(1+)
V is the part of GV with one and more Coulomb

interactions, GV ≡ G
(0)
V + G

(1+)
V .

The main difficulty of the numerical evaluation of the P

term is that the computation of the Fourier transform of the
Dirac-Coulomb Green function is rather time consuming (since
it is done by evaluating the momentum integration numerically;
see Appendix A of Ref. [35] for details). The key idea is
to perform the radial integrations over x1 and x2 before the
integration over p. For a given value of p, we compute and store
the Fourier transform of the Dirac-Coulomb Green function for
all points of the radial x grid that are needed for computation
of the radial integrals. The scheme is described in detail in
Ref. [35].

A difficulty arises in the numerical evaluation of Eq. (43)
due to the presence of the free Green function G(0)(E, p,x2)
in the mixed momentum-coordinate representation. For large
values of p, G(0)(E, p,x2) is a strongly oscillating function

of x2. Rapid oscillations cause the radial integration over x2

to converge slowly and require very dense integration grids.
We address this difficulty by noting that G(0)(E, p,x2) can
be expressed analytically in terms of the spherical Bessel
functions (see Appendix B of Ref. [35]) and thus the integral
over x2 is essentially the Bessel transform of a relatively simple
function, which can be computed by the same method as the
Fourier transform of the Dirac-Coulomb Green function. By
using this approach, we were able to achieve a very good
stability of the radial integrations in our computations.

B. The second nested P contribution

The second nested P contribution is represented by nested
diagrams containing the free vertex subgraph. They are shown
in Figs. 4(c) and 4(d). The corresponding expression can be
written as [35]

�EN,P,2 = i

2π

∫
CF

dω

{∑
n1n2

〈an2|I (ω)|n1a〉 〈n1V |G(εa − ω) |V n2〉(
εa − ω − εn1

)(
εa − ω − εn2

) − 〈aa′′|I (ω)|a′a〉 〈a′V |G(εa) |V a′′〉
ω2

+ 2
∑
n1α2

〈aα2|I (ω)|n1a〉 〈n1V |G(εa − ω) |α2〉
εa − ω − εn1

}
, (44)

where the operator G is defined as

G(ε, p1, p2) = 1

p/1 − m
V (q) � 0

R(p1,p2)
1

p/2 − m
γ 0

∣∣∣∣
p0

1=p0
2=ε

, (45)

q = p1 − p2, V is the Coulomb potential, and � 0
R is the time component of the renormalized free vertex operator in D = 4

dimensions [see Eq. (C5)].
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In principle, we could have evaluated Eq. (44) in full analogy with the scheme described for the first nested P term. Such
evaluation, however, would be much more time consuming since matrix elements of the operator G involve two momentum
integrations (over p1 and p2) and are complicated by the (integrable) Coulomb singularity at q = 0. In order to compute the
momentum integrations efficiently, it is desirable to separate out the Coulomb singularity. We achieve this by subtracting and
re-adding the vertex operator with the zero transferred momentum and performing one of the momentum integrations in the
separated contribution analytically. Specifically, we split the vertex operator into the regular (r) and irregular (i) parts with the
help of the Ward identity as

� 0
R(p1,p2) = [

� 0
R(p1,p2) − 1

2 � 0
R(p1,p1) − 1

2 � 0
R(p2,p2)

] + [ − 1
2 �

(0)′
R (p1) − 1

2 �
(0)′
R (p2)

] ≡ � 0
r (p1,p2) + � 0

i (p1,p2), (46)

where the prime denotes the derivative with respect to p0. The regular operator � 0
r (p1,p2) vanishes at p1 = p2, thus removing

the Coulomb singularity in the corresponding integral. In the irregular term, the Coulomb singularity is integrated out analytically
by using the the Dirac equation and the definition of the Green function. In particular, we make use of the identity∫

d p2

(2π )3
V (q)

1

γ 0E − γ · p2 − m
GV (E, p2,x2) = G

(1+)
V (E, p1,x2). (47)

The next step is to deform the integration contour of the ω integration, in full analogy with the procedure described for the
first nested P contribution, which splits the regular and the irregular terms into the a and b parts. In the result, the second nested
P contribution is written as a sum of four terms,

�EN,P,2 = �E
r,a
N,P,2 + �E

r,b
N,P,2 + �E

i,a
N,P,2 + �E

i,b
N,P,2, (48)

where

�E
r,a
N,P,2 = i

2π

∫
CLH

dω

{∑
n1n2

〈an2|I (ω)|n1a〉 〈n1V |Gr (εa − ω) |V n2〉(
εa − ω − εn1

)(
εa − ω − εn2

) − 〈aa′′|I (ω)|a′a〉 〈a′V |Gr (εa) |V a′′〉
ω2

+ 2
∑
n1α2

〈aα2|I (ω)|n1a〉 〈n1V |Gr (εa − ω) |α2〉
εa − ω − εn1

−
0<εn<εa∑

n

〈an′′|I (ω)|n′a〉 〈n′V |Gr (εa − ω) |V n′′〉
(εa − ω − εn)2

}
, (49)

�E
r,b
N,P,2 =

0<εn<εa∑
n

[
〈an′′|I (�an)|na′〉 〈n′V |G ′

r (εn)|V n′′〉 − 〈an′′|I ′(�an)|n′a〉 〈n′V |Gr (εn)|V n′′〉

− 1

π
Re

∫ ∞

0
dω

〈an′′|I (iω)|n′a〉 〈n′V |Gr (εa − iω) |V n′′〉
(εa − iω − εn)2

]
, (50)

�E
i,a
N,P,2 = − i

2π

∫
CLH

dω

{ ∑
n1α1n2

〈an2|I (ω)|n1a〉 〈n1|V |α1〉〈α1| �(0)′
R (εa − ω) |V n2〉(

εa − ω − εn1

)(
εa − ω − εα1

)(
εa − ω − εn2

) − 〈aa′′|I (ω)|a′a〉 〈a′| �(0)′
R (εa) |V a′′〉

ω2

+
∑

n1α1α2

〈aα2|I (ω)|n1a〉 〈n1|V |α1〉〈α1V | �(0)′
R (εa − ω) |α2〉(

εa − ω − εn1

)(
εa − ω − εα1

)(
εa − ω − εα2

) −
0<εn<εa∑

n

〈an′′|I (ω)|n′a〉 〈n′| �(0)′
R (εa − ω) |V n′′〉

(εa − ω − εn)2

}
,

(51)

�E
i,b
N,P,2 = (−1)

0<εn<εa∑
n

[
〈an′′|I (�an)|n′a〉 〈n′|�(0)′′

R (εn)|V n′′〉 − 〈an′′|I ′(�an)|n′a〉 〈n′|�(0)′
R (εn)|V n′′〉

− 1

π
Re

∫ ∞

0
dω

〈an′′|I (iω)|n′a〉 〈n′| �(0)′
R (εa − iω) |V n′′〉

(εa − iω − εn)2

]
, (52)

where Gr (ε) is obtained from Eq. (45) by the substitution �0
R(p1,p2) → �0

r (p1,p2). Out of the four terms in the right-hand side of
Eq. (48), only the first two contain two momentum integrations. They involve the operator Gr , which is regular at p1 = p2. The
last two terms in Eq. (48) contain one momentum integration, and their evaluation is similar to that for the first nested contribution.

For the numerical evaluation, we rewrite Eqs. (49)–(52) in terms of the Green function, identifying, in particular,∑
n1

|n1〉〈n1V |
E − εn1

= GV (E,x1, p1), (53)

∑
n1α1

|n1〉〈n1|V |α1〉〈α1V |
(E − εn1 )(E − εα1 )

= G
(1+)
V (E,x1, p1). (54)
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We checked that the expressions with and without the separation (46) give the results consistent with each other within the
estimated numerical error.

C. Overlapping P term

The overlapping P term is represented by the Feynman diagram in Fig. 4(e). The corresponding expression is written as [35]

�EO,P = − 4iα

∫
CF

dω

∫
d p1

(2π )3

d p2

(2π )3

∫
d z

exp(−iq · z)

ω2 − q2 + i0
ψ†

a (z) αμG
(1+)
V (εa − ω,z, p1) �̃μ(εa − ω, p1; εa, p2) ψa( p2),

(55)

where

�̃μ(E, p1; εa, p2) ≡ 1

γ 0E − γ · p1 − m
�

μ

R(E, p1; εa, p2),

and �
μ

R is the renormalized one-loop free vertex operator in D = 4 dimensions (see Eq. (257) of Ref. [19]). In our previous
investigations [19,35], we evaluated Eq. (55) by performing the Wick rotation of the ω integration contour and separately
evaluating the pole contributions. For the excited states and low values of the nuclear charges considered in the present work,
however, the behavior of the integrand becomes rather complicated for small ω, acquiring a rapidly changing structure which is
difficult to integrate numerically. In order to make the integrand behave more smoothly in the region of small ω, we subtract and
re-add the following contribution:

�E subtr
O,P = − 4iα

∫
CF

dω

∫
d p1

(2π )3

d p2

(2π )3

∫
d z

exp(−iq · z)

ω2 − q2 + i0
ψ†

a (z) αμ

∑
k

ψk(z) (ψkV )†( p1)

εa − ω − εk

�̃μ(εa, p1; εa, p2) ψa( p2),

(56)

where the index k run over the virtual bound states with energies 0 < εk < εa + δ, where δ is some (reasonably small) positive
parameter. It can be immediately seen that we obtained �E subtr

O,P from �EO,P by neglecting ω in the vertex operator and retaining
only the lowest-lying virtual bound states in the spectral decomposition of the electron propagator. The summation over k in
Eq. (56) thus includes virtual states more deeply bound than the reference state and, in addition, virtual states that are close in
energy to the reference state. The subtraction of �E subtr

O,P removes the complicated structure of the integrand for small ω. On the
other hand, the fact that the vertex operator �̃ in Eq. (56) does not depend on the energy of the virtual photon ω allows us to
perform the integral over ω analytically by the Cauchy theorem.

We thus write

�EO,P = (
�EO,P − �E subtr

O,P

) + �E subtr
O,P .

In the first part, we make the Wick rotation of the ω integration contour ω → iω. As a result, this part is separated into the pole
term �E

pole
O,P and the integral over the imaginary axis, �E Im

O,P . In the second part, we perform the ω integration analytically by
Cauchy theorem. The result is

�EO,P = �E
pole
O,P + �E Im

O,P + �E subtr
O,P , (57)

where

�E
pole
O,P = −8πα

∑
0<εn<εa

∫
d p1

(2π )3

d p2

(2π )3

∫
d z

e−iq·z

(εa − εn)2 − q2 + i0
ψ†

a (z) αμψn(z) (ψnV )†( p1)

× [�̃μ(εn, p1; εa, p2) − �̃μ(εa, p1; εa, p2)] ψa( p2), (58)

�E Im
O,P = 8α

∫ ∞

0
dω

∫
d p1

(2π )3

d p2

(2π )3

∫
d z

e−iq·z

−ω2 − q2
ψ†

a (z) αμ

×
[
G

(1+)
V (εa − iω,z, p1) �̃μ(εa − iω, p1; εa, p2) −

∑
k

ψk(z) (ψkV )†( p1)

εa − iω − εk

�̃μ(εa, p1; εa, p2)

]
ψa( p2), (59)

�E subtr
O,P = −4πα

∑
k

∫
d p1

(2π )3

d p2

(2π )3

∫
d z

e−iq·z

q(εa − q − εk)
ψ†

a (z) αμ ψk(z) (ψkV )†( p1) �̃μ(εa, p1; εa, p2) ψa( p2). (60)

The number of states included in the summation over k can
be varied; it also serves as a crosscheck of the correctness of
the numerical procedure. For the ground state, we performed
calculations with and without the separation of �E subtr

O,P ; the

results were found to be in perfect agreement with each
other.

The numerical procedure for evaluation of the P term was
described for the 1s state in Ref. [35]. This procedure can be
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TABLE III. Numerical results for the P term �EP , in terms of
the dimensionless function F (Zα) defined in Eq. (61).

Z �EN,P,1 �EN,P,2 �EO,P Total

1s

30 −23.8156 (8) 44.810 (2) −50.408 (2) −29.413 (2)
40 −9.0139 (4) 17.6060 (8) −20.1711 (8) −11.579 (1)
50 −4.3392 (3) 8.4018 (6) −9.5503 (6) −5.4877 (9)
60 −2.4456 (2) 4.5451 (4) −5.0659 (4) −2.9664 (6)
70 −1.5202 (1) 2.6715 (2) −2.9353 (3) −1.7841 (4)
83 −0.8653 (1) 1.4268 (1) −1.6306 (3) −1.0690 (4)
92 −0.5542 (1) 0.9091 (1) −1.1901 (3) −0.8352 (3)
100 −0.2985 (5) 0.5426 (1) −0.9791 (3) −0.7349 (6)

2s

30 −27.003 (9) 117.320 (8) −160.260 (8) −69.94 (1)
40 −3.711 (4) 46.364 (6) −71.083 (4) −28.430 (9)
50 1.318 (2) 21.768 (4) −37.036 (3) −13.949 (6)
60 2.285 (1) 11.235 (4) −21.451 (2) −7.932 (5)
70 2.276 (1) 5.980 (3) −13.432 (2) −5.176 (4)
83 2.085 (1) 2.291 (2) −8.043 (2) −3.668 (3)
92 2.1074 (8) 0.563 (2) −6.002 (2) −3.332 (3)
100 2.3637 (8) −0.868 (1) −4.870 (2) −3.375 (2)

2p1/2

30 −50.451 (6) 142.357 (7) −190.46 (1) −98.56 (1)
40 −11.943 (3) 56.512 (6) −85.371 (6) −40.802 (9)
50 −1.854 (2) 26.920 (6) −44.726 (4) −19.659 (7)
60 1.063 (1) 14.433 (4) −25.902 (3) −10.405 (5)
70 1.827 (1) 8.397 (3) −16.091 (2) −5.867 (4)
83 1.8854 (8) 4.482 (2) −9.359 (2) −2.992 (3)
92 1.7902 (6) 2.941 (2) −6.704 (2) −1.972 (3)
100 1.7531 (7) 1.933 (1) −5.123 (2) −1.437 (2)

directly generalized to the case of excited states considered
here. Our numerical results for the P term are presented in
Table III. The dominant numerical uncertainty of the listed
results comes from the truncation of the partial-wave expansion
and extrapolation of the expansion tail.

VI. RESULTS AND DISCUSSION

The two-loop self-energy correction to energy levels is
conveniently parameterized in terms of the dimensionless
function F (Zα) defined as

�ESESE = m

(
α

π

)2 (Zα)4

n3
F (Zα). (61)

In the present work, we calculate the function F (Zα) to all
orders in Zα. In order to compare our results with calculations
based on the Zα expansion, it is convenient to identify
the higher-order remainder function Gh.o. that incorporates
contributions of all orders starting with α2(Zα)6,

F (Zα) = B40 + (Zα)B50

+ (Zα)2[L3B63 + L2B62 + LB61 + Gh.o.(Z)],

(62)

where L ≡ ln[(Zα)−2] and the expansion of the remainder
starts with a constant, Gh.o.(Z) = B60 + Zα (. . .) . Available

results for the expansion coefficients B40−B61 [7–10] are
summarized in Table I of Ref. [3].

Our numerical results for the two-loop self-energy cor-
rection for the 1s, 2s, and 2p1/2 states of H-like ions with
Z = 30−100 are presented in Table IV. The second-to-last
column contains our previous results taken from Ref. [16]
for the 1s state and from Ref. [13] for excited states. As can
be seen from the table, the numerical accuracy was improved
by an order of magnitude as compared to our previous works
and calculations for excited states were extended to the region
Z = 30−50. Agreement with our previous calculations is very
good. A small deviation in the high-Z region for the 1s state
is due to the fact that the P -term results in Ref. [16] partly
included the finite nuclear size effect, whereas the present
results are obtained strictly for the point nucleus.

It is remarkable that while the total values of the function
F (Zα) are quite small numerically (of the order of 1 for
the s states and of the order of 0.1 for the p states), the
individual contributions listed in Tables I–III are larger, often
by orders of magnitude. So, the final results for the two-
loop self-energy are obtained through delicate cancellations
of numerous individual contributions to the M , P , and F

terms, with the cancellations growing fast as Z decreases.
Because of the strong Z dependence of the cancellations,
an analysis of the final results for F (Zα) and Gh.o.(Z) as
functions of Z and a comparison with the Zα expansion yields
an independent check of correctness of the results obtained and
of our estimations of errors of the evaluation.

The analysis of the all-order two-loop self-energy results
for the 1s state and the comparison with the corresponding
Zα-expansion coefficients were reported in our previous in-
vestigation [15]. In this work, we do not repeat this analysis
since the improved numerical accuracy for Z � 30 does not
influence the extrapolation to Z → 0. Instead, we present an
analysis for the normalized difference of the two-loop self-
energy for the 1s and 2s states, δE ≡ 8�E2s − �E1s . This
difference is known within the Zα expansion to a much better
extent than �E2s and �E1s separately. Specifically, there are
results available for the first two expansion coefficients of the
higher-order remainder,

δGh.o.(Z) = δB60 + (Zα) ln[(Zα)−2] δB71 + · · · , (63)

where δB60 = 14.1 (4) and δB71 = 15.9 ± 8.0 [10].
Figure 5 shows our all-order numerical results for the

function δF (Zα) = F2s(Zα) − F1s(Zα) and the correspond-
ing higher-order remainder δGh.o., in comparison with the Zα-
expansion results. We observe that the Zα expansion converges
slowly and that the known expansion coefficients are not
sufficient in order to describe the all-order results with Z � 30
even qualitatively. On the other hand, the numerical accuracy
and the Z range of the all-order results are not sufficient for
extrapolating them to Z → 0 and making a clear statement
about agreement with the Zα expansion. Instead of this, we
decided to assume the correctness of the existingZα-expansion
results and to search for the best fitting function that reconciles
the Zα expansion and all-order data. We found that we can
describe our numerical data very well by introducing just three
fitting parameters. As a result, the best fit to our numerical data
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TABLE IV. The two-loop self-energy correction, in terms of the dimensionless function F (Zα) defined in Eq. (61). Gh.o. is the higher-order
remainder function defined by Eq. (62).

Z �ELAL �EF �EP �EM Total Previous [13,16] Gh.o.

1s

30 −0.7565 44.7280 (1) −29.413 (2) −15.470 (2) −0.912 (3) −0.90 (3) −70.39 (7)
40 −0.8711 19.5061 −11.579 (1) −8.255 (2) −1.199 (3) −1.19 (3) −58.35 (3)
50 −0.9734 10.0263 −5.4877 (9) −5.003 (2) −1.438 (2) −1.44 (3) −47.42 (2)
60 −1.0825 5.7238 −2.9664 (6) −3.339 (2) −1.664 (2) −1.67 (2) −37.460 (8)
70 −1.2161 3.4971 −1.7841 (4) −2.418 (2) −1.922 (2) −1.89 (3) −28.399 (8)
83 −1.4658 1.9381 −1.0690 (4) −1.764 (3) −2.361 (3) −2.35 (1) −17.798 (9)
92 −1.7342 1.2757 −0.8352 (3) −1.515 (2) −2.809 (2) −2.78 (1) −11.220 (6)
100 −2.0990 0.8250 (1) −0.7349 (6) −1.3864 (5) −3.3953 (8) −3.381 (8) −5.934 (2)

2s

30 −0.4650 (1) 133.3111 (2) −69.94 (1) −63.82 (1) −0.91 (2) −57.9 (4)
40 −0.5155 63.7388 (2) −28.430 (9) −36.067 (6) −1.27 (1) −47.5 (1)
50 −0.5695 35.7251 (1) −13.949 (6) −22.820 (6) −1.613 (8) −38.19 (6)
60 −0.6434 22.2118 (1) −7.932 (5) −15.617 (5) −1.980 (7) −1.98 (7) −29.79 (4)
70 −0.7539 14.8596 (1) −5.176 (4) −11.371 (1) −2.442 (4) −2.45 (6) −22.36 (2)
83 −0.9956 9.5239 −3.668 (3) −8.154 (2) −3.294 (4) −3.30 (4) −13.97 (1)
92 −1.2839 7.2477 −3.332 (3) −6.842 (2) −4.209 (3) −4.22 (3) −9.086 (7)
100 −1.7071 5.7499 (2) −3.375 (2) −6.122 (2) −5.454 (3) −5.46 (7) −5.539 (6)

2p1/2

30 0.0255 146.3895 (3) −98.56 (1) −47.68 (1) 0.18 (2) −0.3 (4)
40 0.0061 68.7211 (2) −40.802 (9) −27.739 (4) 0.19 (1) −0.3 (1)
50 −0.0294 37.6546 (1) −19.659 (7) −17.768 (2) 0.198 (7) −0.24 (5)
60 −0.0814 22.8815 (1) −10.405 (5) −12.192 (2) 0.203 (6) 0.22 (7) −0.18 (3)
70 −0.1524 15.0274 −5.867 (4) −8.814 (3) 0.193 (5) 0.19 (6) −0.17 (2)
83 −0.2869 9.5618 −2.992 (3) −6.147 (3) 0.135 (4) 0.13 (4) −0.26 (1)
92 −0.4343 7.3930 −1.972 (3) −4.968 (2) 0.019 (3) 0.01 (3) −0.444 (8)
100 −0.6512 6.0999 −1.437 (2) −4.224 (3) −0.212 (4) −0.21 (3) −0.786 (7)

is found to be

δGh.o.,fit(Z) = δB60 + (Zα){ln[(Zα)−2] δB71

+ b70 + (Zα) b80 + (Zα)2 b90}, (64)

where the fitted parameters are b70 = −75.324, b80 =
100.336, and b90 = −49.917. The fitted function is plotted

in Fig. 5 with the dash-dotted line. Our general conclusion is
that our all-order results for the normalized difference of the 2s

and 1s states are consistent with the available Zα-expansion
coefficients.

In Fig. 6, we plot our numerical results for the 2p1/2 state, in
comparison with the corresponding Zα-expansion results. We
observe that in this case, the known terms of the Zα expansion

FIG. 5. The two-loop self-energy correction for the normalized difference of the 2s and 1s states, for the function δF (Zα) = F2s(Zα) −
F1s(Zα) (left graph) and for the higher-order remainder δGh.o. = Gh.o.(2s) − Gh.o.(1s) (right graph). The dots denote the numerical all-order
results, the dashed line (red) represents the Zα-expansion results, and the green dash-dotted line shows the best fit of the numerical data.
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FIG. 6. The two-loop self-energy correction for the 2p1/2 state, for the function F (Zα) (left graph) and for the higher-order remainder Gh.o.

(right graph). The dots denote the numerical all-order results, whereas the red dashed line represents the Zα-expansion results.

qualitatively reproduce the behavior of the all-order results for
the function F (Zα) in the medium-Z range. The numerical
values of the higher-order remainder Gh.o. turn out to be rather
small in this case. The accuracy of our all-order results is not
sufficient for the extrapolation of Gh.o. to Z → 0, but we can
conclude that there is a qualitative agreement with the Zα

expansion for the 2p1/2 state.
Results for the two-loop self-energy correction for the 2p3/2

state were reported previously for several high-Z ions [13]. In
the present work, we performed calculations for the 2p3/2 state,
with the results being consistent with those from Ref. [13].
However, extending our calculations down until Z = 30, we
found inconsistency with theZα-expansion results. We assume
that this indicates an error in our codes for the 2p3/2 state, which
we were not able to locate so far. For this reason, we do not
present any results for the 2p3/2 state in this paper.

VII. CONCLUSION

We carried out calculations of the two-loop self-energy
correction to the energy levels of the 1s, 2s, and 2p1/2 states of
hydrogenlike ions with the nuclear charges Z = 30−100. The
calculation was performed to all orders in the nuclear binding
strength parameter Zα, for the point distribution of the nuclear
charge. The obtained results improved the accuracy of the
previously published values for the two-loop self-energy by
an order of magnitude. For excited states, they also extended
the lowest nuclear charge range from Z = 60 to Z = 30. The
obtained results were shown to be consistent with the known
coefficients of the Zα expansion.
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APPENDIX A: DEFINITIONS, NOTATIONS, AND
USEFUL IDENTITIES

The photon propagator in the Feynman gauge is

Dμν(ω,x12) = gμν D(ω,x12) ≡ gμν

exp(i
√

ω2 + i0 x12)

4πx12
,

(A1)

where x12 = |x1 − x2|, and the branch of the square root is
fixed by the condition Im(

√
ω2 + i0) > 0.

The Green function of the Dirac-Coulomb equation is
defined by its spectral representation,

G(ε) =
∑

n

|n〉〈n|
ε − εn

, (A2)

where the summation over n is performed over the complete
spectrum of the Dirac equation with the Coulomb nuclear
potential. The free Dirac Green function is the Z → 0 limit
of the Dirac-Coulomb Green function,

G(0)(ε) =
∑

α

|α〉〈α|
ε − εα

= G(ε)
∣∣
Z=0. (A3)

Here and everywhere in this paper, Greek subscripts α, β, etc.
refer to states of the free electron, whereas italic subscripts
n, k, etc. refer to states in the binding Coulomb potential. The
one-potential Dirac Green function is defined as the linear in Z

term of the Z expansion of the Dirac-Coulomb Green function,

G(1)(ε) = Z

[
d

dZ
G(ε)

]
Z=0

. (A4)

We introduce special notations for the Dirac Green function
containing one and more (two and more) interactions with the
binding potential, defined as

G(1+)(ε) = G(ε) − G(0)(ε), (A5)

G(2+)(ε) = G(ε) − G(0)(ε) − G(1)(ε). (A6)
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We also mention the identity that follows from the Dirac
equation, which is extensively used in this paper. It reads, in
coordinate space,

ψa(x1) =
∫

dx2 G(0)(εa,x1,x2) V (x2) ψa(x2), (A7)

where V (x) is the binding Coulomb potential, and in momen-
tum space,

ψa( p) = 1

γ 0εa − γ · p − m
γ 0 (V ψa)( p), (A8)

where (V ψa)( p) is the Fourier transform of the product
V (x) ψa(x).

APPENDIX B: ELECTRON-ELECTRON
INTERACTION OPERATOR

The operator of the electron-electron interaction in the
Feynman gauge is

I (ω) = e2αμαμD(ω,x12)

= α (1 − α1 · α2)
exp(i

√
ω2 + i0 x12)

x12
, (B1)

where α = e2/(4π ) is the fine-structure constant and αμ =
(1,α) is the vector of Dirac matrices.

The matrix elements of the electron-electron interaction
operator are conveniently represented in the form [36,37]

〈ab|I (ω)|cd〉 = α
∑
L

JL(abcd) RL(ω,abcd), (B2)

where the function JL contains the standard magnetic-substate
dependence of a scalar two-body operator,

JL(abcd) =
∑
mL

(−1)L−mL+jc−μc+jd−μd

2L + 1

×C
LmL

jaμa,jc−μc
C

LmL

jdμd ,jb−μb
, (B3)

C
jm

j1μ1, j2μ2
are the Clebsch-Gordan coefficients, and RL is the

relativistic generalization of the Slater radial integral (for
explicit expressions, see, e.g., Ref. [36] and Appendix C of
Ref. [19]). The sum over L in Eq. (B2) is restricted by the
triangular selection rules of the Clebsch-Gordan coefficients. It
is noteworthy that the operator I preserves the total momentum
projection, i.e., the nonzero matrix elements should comply
with the requirement

μa + μb = μc + μd. (B4)

APPENDIX C: ONE-LOOP SELF-ENERGY

In this section, we summarize the main definitions and
notations for the one-loop self-energy correction, which are
extensively used throughout the paper.

The unrenormalized one-loop self-energy operator is given
by

�(ε,x1,x2) = 2iαγ 0
∫

CF

dω D(ω,x12) ανG(ε − ω,x1,x2)αν,

(C1)

where CF is the standard Feynman integration contour. The
renormalization of the one-loop self-energy is performed
[27,36,38] by expanding the Dirac-Coulomb Green function
G in terms of the interaction with the binding Coulomb field.
Using the identity

G(ε) = G(0)(ε) + G(1)(ε) + G(2+)(ε), (C2)

one represents the one-loop self-energy correction to the
energy as a sum of the zero-potential, one-potential, and
many-potential terms, which are induced by the three terms
in the right-hand side of Eq. (C2), correspondingly,

�ESE = 〈a|γ0 �̃(εa)|a〉 = �Ezero
SE + �Eone

SE + �E
many
SE ,

(C3)

where �̃(ε) = �(ε) − δm and δm is the corresponding mass
counterterm.

The zero-potential term is given by the matrix element of the
renormalized free self-energy operator �

(0)
R (ε) in momentum

space,

�Ezero
SE = 〈a|γ 0 �

(0)
R (εa)|a〉

=
∫

d p
(2π )3

ψ†
a ( p) γ 0 �

(0)
R (εa, p) ψa( p). (C4)

Explicit formulas for the operator �
(0)
R (ε) can be found, e.g.,

in Appendix A of Ref. [39] for the case of D = 4 dimensions
and in Appendix A.1 of Ref. [19] for the general case of D

dimensions.
The one-potential term is given by the matrix element of

the renormalized free vertex operator �0
R(ε1,ε2) in momentum

space,

�Eone
SE = 〈a|V γ 0 �0

R(εa,εa)|a〉

=
∫

d p1

(2π )3

d p2

(2π )3
ψ†

a ( p1) V (q)

× γ 0 �0
R(εa, p1; εa, p2) ψa( p2), (C5)

where V (q) = −4πZα/|q| is the Coulomb potential in the
momentum space and q = p1 − p2. Explicit formulas for
the renormalized free vertex operator can be found, e.g., in
Appendix B of Ref. [39] for the case of D = 4 dimensions
and in Appendix A.2 of Ref. [19] for the general case of D

dimensions.
The many-potential term is given by the matrix element of

the subtracted self-energy operator in coordinate space,

�E
many
SE = 〈a|γ 0[�(εa) − �(0)(εa) − �(1)(εa)]|a〉

= 2 i α

∫
CF

dω

∫
dx1 dx2 D(ω,x12) ψ†

a (x1)

× αν G(2+)(εa − ω,x1,x2) αν ψa(x2). (C6)

In order to bring the many-potential term to the form
suitable for a numerical evaluation, one needs to perform the
integrations over the angular variables, sum over the angular-
momentum projections, and deform the integration contour.
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The result [39] can be written as

�E
many
SE = iα

2π

∫
CLH

dω

[∑
nJ

(−1)J+jn−ja

2ja + 1

× RJ (ω,anna)

εa − ω − εn

− subtractions

]
, (C7)

where the subtractions are defined symbolically by the substi-
tution

G(ε) → G(2+)(ε), (C8)

and the integration contourCLH is shown in Fig. 2. Specifically,
the contour CLH consists of the low-energy part CL and the
high-energy part CH . The high-energy part CH is parallel
to the imaginary axis and extends from � − i∞ to � and
from � to � + i∞. Such a choice of the contour eliminates
strong oscillations of the integrand arising in the high-energy
region of the contour CF and replaces them by the exponential
falling-off. The low-energy part of the integration contour CL

runs over the upper and the lower banks of the cut of the

photon propagator. In the general case of excited reference
states, it is also bent in the complex plane in order to avoid
singularities coming from virtual bound states with energies
εn < εa in the electron propagator. Specifically, the contour CL

consists of the upper and lower parts, both of which extend over
three sections: [0,δx,1 − iδy], [δx,1 − iδy,δx,2], and [δx,2,�],
as shown on Fig. 2. The advantage of such a choice of the
low-energy part of the contour is that virtual bound states with
the energy εn � εa in the electron propagator do not create any
pole contributions and do not require any special treatment.
The parameters of the contour δx,1, δx,2, δy , and � may be
chosen differently. In our recent works, we used the following
choice: δx,1 = εa − ε1s when the reference state a is an excited
state and δx,1 = (Zα)2 when a is the 1s state; δx,2 = 2 δx,1;
δy = δx,1/2 when there are intermediate states with the energy
εn < εa and δy = 0 otherwise; and � = Zα εa .

We note that for the case when the reference state is the
ground state, there is no need to bend the low-energy part of
the contour in the complex plane (as there are no intermediate
states with energy 0 < εn < εa), so it is convenient to set
δy = 0.

[1] P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 227 (1998).
[2] V. M. Shabaev, Phys. Rep. 356, 119 (2002).
[3] V. A. Yerokhin and V. M. Shabaev, J. Phys. Chem. Ref. Data 44,

033103 (2015).
[4] M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth,

T. Udem, T. W. Hänsch, M. Abgrall, J. Grünert, I. Maksimovic,
S. Bize, H. Marion, F. P. Dos Santos, P. Lemonde, G. Santarelli,
P. Laurent, A. Clairon, C. Salomon, M. Haas, U. D. Jentschura,
and C. H. Keitel, Phys. Rev. Lett. 92, 230802 (2004).

[5] C. Brandau, C. Kozhuharov, A. Müller, W. Shi, S. Schippers,
T. Bartsch, S. Böhm, C. Böhme, A. Hoffknecht, H. Knopp, N.
Grün, W. Sheid, T. Steih, F. Bosch, B. Franzke, P. H. Mokler, F.
Nolden, M. Steck, T. Stöhlker, and Z. Stachura, Phys. Rev. Lett.
91, 073202 (2003).

[6] P. Beiersdorfer, H. Chen, D. B. Thorn, and E. Träbert, Phys. Rev.
Lett. 95, 233003 (2005).

[7] K. Pachucki, Phys. Rev. A 63, 042503 (2001).
[8] K. Pachucki and U. D. Jentschura, Phys. Rev. Lett. 91, 113005

(2003).
[9] A. Czarnecki, U. D. Jentschura, and K. Pachucki, Phys. Rev.

Lett. 95, 180404 (2005).
[10] U. D. Jentschura, A. Czarnecki, and K. Pachucki, Phys. Rev. A

72, 062102 (2005).
[11] V. A. Yerokhin, Phys. Rev. Lett. 86, 1990 (2001).
[12] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev.

Lett. 91, 073001 (2003).
[13] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev.

Lett. 97, 253004 (2006).
[14] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev. A

77, 062510 (2008).
[15] V. A. Yerokhin, Phys. Rev. A 80, 040501(R) (2009).
[16] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev. A

71, 040101(R) (2005).
[17] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88,

035009 (2016).
[18] R. Pohl, A. Antognini, F. D. Amaro, F. B. J. M. R. Cardoso,

C. A. N. Conde, A. Dax, S. Dhawan, L. M. P. Fernandes, T. W.

Hänsch, F. J. Hartmann, V. W. Hughes, O. Huot, P. Indelicato,
L. Julien, P. E. Knowles, F. Kottmann, Y.-W. Liu, L. Ludhova,
C. M. B. Monteiro, F. Mulhauser, F. Nez, P. Rabinowitz, J. M. F.
dos Santos, L. A. Schaller, C. Schwob, D. Taqqu, and J. F. C. A.
Veloso, Can. J. Phys. 83, 339 (2005).

[19] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Eur. Phys. J.
D 25, 203 (2003).

[20] A. Mitrushenkov, L. Labzowsky, I. Lindgren, H. Persson, and
S. Salomonson, Phys. Lett. A 200, 51 (1995).

[21] S. Mallampalli and J. Sapirstein, Phys. Rev. Lett. 80, 5297
(1998).

[22] V. A. Yerokhin, Phys. Rev. A 62, 012508 (2000).
[23] P. Indelicato and P. J. Mohr, Phys. Rev. A 46, 172 (1992).
[24] P. Indelicato and P. J. Mohr, Phys. Rev. A 58, 165 (1998).
[25] P. Indelicato and P. J. Mohr, Phys. Rev. A 63, 052507 (2001).
[26] P. Indelicato, P. J. Mohr, and J. Sapirstein, Phys. Rev. A 89,

042121 (2014).
[27] N. J. Snyderman, Ann. Phys. (NY) 211, 43 (1991).
[28] S. Mallampalli and J. Sapirstein, Phys. Rev. A 57, 1548 (1998).
[29] V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 64, 062507

(2001).
[30] P. J. Mohr, Ann. Phys. (NY) 88, 26 (1974).
[31] V. A. Yerokhin, K. Pachucki, and V. M. Shabaev, Phys. Rev. A

72, 042502 (2005).
[32] K. Pachucki, M. Puchalski, and V. Yerokhin, Comput. Phys.

Commun. 185, 2913 (2014).
[33] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys. Rev. A

37, 307 (1988).
[34] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and

G. Soff, Phys. Rev. Lett. 93, 130405 (2004).
[35] V. A. Yerokhin, Eur. Phys. J. D 58, 57 (2010).
[36] S. A. Blundell, Phys. Rev. A 46, 3762 (1992).
[37] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys. Rev. A

37, 2764 (1988).
[38] S. A. Blundell and N. J. Snyderman, Phys. Rev. A 44, R1427

(1991).
[39] V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 60, 800 (1999).

052509-16

https://doi.org/10.1016/S0370-1573(97)00046-X
https://doi.org/10.1016/S0370-1573(97)00046-X
https://doi.org/10.1016/S0370-1573(97)00046-X
https://doi.org/10.1016/S0370-1573(97)00046-X
https://doi.org/10.1016/S0370-1573(01)00024-2
https://doi.org/10.1016/S0370-1573(01)00024-2
https://doi.org/10.1016/S0370-1573(01)00024-2
https://doi.org/10.1016/S0370-1573(01)00024-2
https://doi.org/10.1063/1.4927487
https://doi.org/10.1063/1.4927487
https://doi.org/10.1063/1.4927487
https://doi.org/10.1063/1.4927487
https://doi.org/10.1103/PhysRevLett.92.230802
https://doi.org/10.1103/PhysRevLett.92.230802
https://doi.org/10.1103/PhysRevLett.92.230802
https://doi.org/10.1103/PhysRevLett.92.230802
https://doi.org/10.1103/PhysRevLett.91.073202
https://doi.org/10.1103/PhysRevLett.91.073202
https://doi.org/10.1103/PhysRevLett.91.073202
https://doi.org/10.1103/PhysRevLett.91.073202
https://doi.org/10.1103/PhysRevLett.95.233003
https://doi.org/10.1103/PhysRevLett.95.233003
https://doi.org/10.1103/PhysRevLett.95.233003
https://doi.org/10.1103/PhysRevLett.95.233003
https://doi.org/10.1103/PhysRevA.63.042503
https://doi.org/10.1103/PhysRevA.63.042503
https://doi.org/10.1103/PhysRevA.63.042503
https://doi.org/10.1103/PhysRevA.63.042503
https://doi.org/10.1103/PhysRevLett.91.113005
https://doi.org/10.1103/PhysRevLett.91.113005
https://doi.org/10.1103/PhysRevLett.91.113005
https://doi.org/10.1103/PhysRevLett.91.113005
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevLett.86.1990
https://doi.org/10.1103/PhysRevLett.86.1990
https://doi.org/10.1103/PhysRevLett.86.1990
https://doi.org/10.1103/PhysRevLett.86.1990
https://doi.org/10.1103/PhysRevLett.91.073001
https://doi.org/10.1103/PhysRevLett.91.073001
https://doi.org/10.1103/PhysRevLett.91.073001
https://doi.org/10.1103/PhysRevLett.91.073001
https://doi.org/10.1103/PhysRevLett.97.253004
https://doi.org/10.1103/PhysRevLett.97.253004
https://doi.org/10.1103/PhysRevLett.97.253004
https://doi.org/10.1103/PhysRevLett.97.253004
https://doi.org/10.1103/PhysRevA.77.062510
https://doi.org/10.1103/PhysRevA.77.062510
https://doi.org/10.1103/PhysRevA.77.062510
https://doi.org/10.1103/PhysRevA.77.062510
https://doi.org/10.1103/PhysRevA.80.040501
https://doi.org/10.1103/PhysRevA.80.040501
https://doi.org/10.1103/PhysRevA.80.040501
https://doi.org/10.1103/PhysRevA.80.040501
https://doi.org/10.1103/PhysRevA.71.040101
https://doi.org/10.1103/PhysRevA.71.040101
https://doi.org/10.1103/PhysRevA.71.040101
https://doi.org/10.1103/PhysRevA.71.040101
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1139/p05-016
https://doi.org/10.1139/p05-016
https://doi.org/10.1139/p05-016
https://doi.org/10.1139/p05-016
https://doi.org/10.1140/epjd/e2003-00270-x
https://doi.org/10.1140/epjd/e2003-00270-x
https://doi.org/10.1140/epjd/e2003-00270-x
https://doi.org/10.1140/epjd/e2003-00270-x
https://doi.org/10.1016/0375-9601(95)00117-L
https://doi.org/10.1016/0375-9601(95)00117-L
https://doi.org/10.1016/0375-9601(95)00117-L
https://doi.org/10.1016/0375-9601(95)00117-L
https://doi.org/10.1103/PhysRevLett.80.5297
https://doi.org/10.1103/PhysRevLett.80.5297
https://doi.org/10.1103/PhysRevLett.80.5297
https://doi.org/10.1103/PhysRevLett.80.5297
https://doi.org/10.1103/PhysRevA.62.012508
https://doi.org/10.1103/PhysRevA.62.012508
https://doi.org/10.1103/PhysRevA.62.012508
https://doi.org/10.1103/PhysRevA.62.012508
https://doi.org/10.1103/PhysRevA.46.172
https://doi.org/10.1103/PhysRevA.46.172
https://doi.org/10.1103/PhysRevA.46.172
https://doi.org/10.1103/PhysRevA.46.172
https://doi.org/10.1103/PhysRevA.58.165
https://doi.org/10.1103/PhysRevA.58.165
https://doi.org/10.1103/PhysRevA.58.165
https://doi.org/10.1103/PhysRevA.58.165
https://doi.org/10.1103/PhysRevA.63.052507
https://doi.org/10.1103/PhysRevA.63.052507
https://doi.org/10.1103/PhysRevA.63.052507
https://doi.org/10.1103/PhysRevA.63.052507
https://doi.org/10.1103/PhysRevA.89.042121
https://doi.org/10.1103/PhysRevA.89.042121
https://doi.org/10.1103/PhysRevA.89.042121
https://doi.org/10.1103/PhysRevA.89.042121
https://doi.org/10.1016/0003-4916(91)90192-B
https://doi.org/10.1016/0003-4916(91)90192-B
https://doi.org/10.1016/0003-4916(91)90192-B
https://doi.org/10.1016/0003-4916(91)90192-B
https://doi.org/10.1103/PhysRevA.57.1548
https://doi.org/10.1103/PhysRevA.57.1548
https://doi.org/10.1103/PhysRevA.57.1548
https://doi.org/10.1103/PhysRevA.57.1548
https://doi.org/10.1103/PhysRevA.64.062507
https://doi.org/10.1103/PhysRevA.64.062507
https://doi.org/10.1103/PhysRevA.64.062507
https://doi.org/10.1103/PhysRevA.64.062507
https://doi.org/10.1016/0003-4916(74)90398-4
https://doi.org/10.1016/0003-4916(74)90398-4
https://doi.org/10.1016/0003-4916(74)90398-4
https://doi.org/10.1016/0003-4916(74)90398-4
https://doi.org/10.1103/PhysRevA.72.042502
https://doi.org/10.1103/PhysRevA.72.042502
https://doi.org/10.1103/PhysRevA.72.042502
https://doi.org/10.1103/PhysRevA.72.042502
https://doi.org/10.1016/j.cpc.2014.06.018
https://doi.org/10.1016/j.cpc.2014.06.018
https://doi.org/10.1016/j.cpc.2014.06.018
https://doi.org/10.1016/j.cpc.2014.06.018
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1140/epjd/e2010-00089-4
https://doi.org/10.1140/epjd/e2010-00089-4
https://doi.org/10.1140/epjd/e2010-00089-4
https://doi.org/10.1140/epjd/e2010-00089-4
https://doi.org/10.1103/PhysRevA.46.3762
https://doi.org/10.1103/PhysRevA.46.3762
https://doi.org/10.1103/PhysRevA.46.3762
https://doi.org/10.1103/PhysRevA.46.3762
https://doi.org/10.1103/PhysRevA.37.2764
https://doi.org/10.1103/PhysRevA.37.2764
https://doi.org/10.1103/PhysRevA.37.2764
https://doi.org/10.1103/PhysRevA.37.2764
https://doi.org/10.1103/PhysRevA.44.R1427
https://doi.org/10.1103/PhysRevA.44.R1427
https://doi.org/10.1103/PhysRevA.44.R1427
https://doi.org/10.1103/PhysRevA.44.R1427
https://doi.org/10.1103/PhysRevA.60.800
https://doi.org/10.1103/PhysRevA.60.800
https://doi.org/10.1103/PhysRevA.60.800
https://doi.org/10.1103/PhysRevA.60.800



