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Line strengths of QED-sensitive forbidden transitions in B-, Al-, F- and Cl-like ions
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The magnetic dipole (M1) line strength between the fine-structure levels of the ground configurations in
B-, F-, Al-, and Cl-like ions are calculated for the four elements argon, iron, molybdenum, and tungsten.
Systematically enlarged multiconfiguration Dirac-Hartree-Fock (MCDHF) wave functions are employed to
account for the interelectronic interaction with the Breit interaction included in first-order perturbation theory.
The QED corrections are evaluated to all orders in αZ utilizing an effective potential approach. The calculated
line strengths are compared with the results of other theories. The M1 transition rates are reported using accurate
energies from the literature. Moreover, the lifetimes in the range of millisecond to picosecond are predicted
including the contributions from the transition rate due to the E2 transition channel. The discrepancies of the
predicted rates from those available from the literature are discussed and a benchmark data set of theoretical
lifetimes is provided to support future experiments.
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I. INTRODUCTION

Transition energies and transition rates are two fundamental
properties of atomic states. Therefore, a detailed analysis
and comparison of theoretical predictions with experimental
observations may provide crucial insight into our basic under-
standing of the atomic structure. For level energies, there exists
a number of cases where very high accuracy has been achieved
from both theory and experiment, and has helped make QED
and many-body relativistic effects visible. For example, QED
has been tested at the level of 7.2% for the M1 transition energy
between fine-structure levels of the ground configuration in
B-like Ar [1–4]. For the transition rates and line strengths, in
contrast, the accuracy level is often not yet sufficient to test
QED and many-body relativistic effects. This is partially due
to theory and partially due to experiment. We know that tran-
sition rates depend on higher power of transition energy and
nondiagonal matrix elements of the multipolar electromagnetic
operators. In contrast to transition energies, there is no varia-
tional principle available that defines a minimum condition
for the optimization of nondiagonal matrix elements. For this
reason, the many-body relativistic effects are more difficult to
capture. While the experimental accuracy is typically 2% and
higher due to systematic and statistical errors [5–10], this has
been found insufficient to explore relativistic and QED effects,;
for details, see the reviews [11,12]. However, there are two re-
markable exceptions where an accuracy of the order of 0.1% is
claimed by efficiently controlling the systematic and statistical
errors. Both of these lifetime measurements were performed
at the Heidelberg electron beam ion trap (HD-EBIT). The
measured lifetime is reported as 9.573(4)(5)(stat/syst) ms for
the 2s22p 2P3/2 level in B-like Ar [13] and 16.726(+20/ − 10)
ms for the 3s23p 2P3/2 level in Al-like Fe [14]. Both of these
levels decay dominantly via a magnetic dipole (M1) transition
between the fine-structure levels of the ground configuration.
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In the case of an M1 transition between the fine-structure
levels of the same configuration the nondiagonal matrix el-
ement, i.e., the line strength, is less sensitive than for E1
allowed transitions. This is because in the nonrelativistic limit,
the M1 line strength is insensitive to the description of the
many-electron wave functions. In other words, (almost) all
correlation corrections are of relativistic origin and, therefore,
suppressed by a factor αZ (Z is the nuclear charge). For such
transitions the line strengths are especially sensitive to the
QED contributions. For instance, the leading QED effect of an
order α, the so-called electron anomalous magnetic moment
(EAMM) correction, contributes 0.46% [15]. Therefore, such
M1 transition rates can be calculated very precisely and may
be used as a benchmark for comparison with the experiment.

During recent years, various ab initio calculations have been
reported for the M1 line strength between the 2s22p 2P3/2 −
2P1/2 levels in B-like ions [15–20] and 3s23p 2P3/2 − 2P1/2

in Al-like ions [21,22]. In particular, the line strength of the
2s22p 2P3/2 − 2P1/2 transition in B-like Ar has been evaluated
with a relative uncertainty of only 10−5 [15]. However, all
these calculated line strengths combined with experimental
transition energies tend to predict shorter lifetimes than mea-
sured experimentally [13,14]. In fact, the deviation between
theory and experiment is of the order of the EAMM, which led
to a speculation about the correctness of the inclusion of the
EAMM into the transition amplitude. Let us note here that such
high-precision measurements are available only from the HD-
EBIT in the millisecond range. In the future, however, precise
experiments for various lifetime and transition energy domains
and by different techniques will hopefully solve the present
discrepancy. Therefore, there is strong need for a theoretical
analysis of these systems where relativistic correlations and the
QED contributions can be quantified as a benchmark principle
for these experiments.

We here present a detailed study for the line strengths of
QED-sensitive forbidden transitions between the fine-structure
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levels of the ground configurations in B-, Al-, F-, and Cl-
like ions. The ground configurations of B-like and Al-like
ions have a valence p electron in the L shell and M shell,
respectively. These configurations are also quite similar to
the ground configurations of F-like and Cl-like ions but with
a p-shell vacancy in the L shell and M shell, respectively.
The major difference between the two systems of ions is the
flip of fine-structure levels where the excited 2P ground-state
levels dominantly decay through an M1 transition. We will
combine our accurate line strengths with accurate experimental
or theoretical transition energies and predict lifetimes in the
millisecond to picosecond range.

The rest of the paper is structured as follows. A short
description of the underlying theory and our calculations
are described in Sec. II. In Sec. III, we present a detailed
comparison of our calculated line strengths with other theories.
Here we add contributions from the E2 channel and the
M1 channel. From the total transition rates we predict the
lifetimes and compare with available experiments. Finally,
our main findings are summarized in Sec. IV. Atomic units
(h̄ = m = e = 1) are used throughout the paper.

II. THEORY AND CALCULATIONS

A. Theory—Basic formulas

The magnetic dipole transition probability from an upper
state i to a lower state f is expressed in terms of the line
strength as

W = 4

3

ω3

c3
μ2

0
S

2Ji + 1
, (1)

where μ0 denotes the Bohr magneton, c the speed of light,
ω = Ei − Ef the transition energy, and where the line strength
is

S = 18c4

ω2
|〈�f ‖ T ‖ �i〉|2. (2)

T is the M1 transition operator given as

T = 1√
2

j1(ωr/c)
[α × r]

r
=

√
2

r
j1(ωr/c)μ. (3)

Here μ = −[r × α]/2 is the relativistic magnetic moment
operator, α is the Dirac matrix, and j1 is the spherical Bessel
function.

In the nonrelativistic limit the expansion of j1(ωr/c) can
be restricted to the first term, and this gives rise to the more
familiar M1 transition operator

Tnr = −
√

2

3

ω

c
μ0 (L + 2S). (4)

where L and S are the orbital and spin angular momentum
operators, respectively. In the LS-coupling scheme, which is
realized in the nonrelativistic case, the M1 line strength is
nonzero only between fine-structure levels with�J = ±1. The
reduced matrix element of Tnr within the LS coupling is given

by

〈Jf ‖ Tnr ‖ Ji〉 = −
√

2

3

ω

c
μ0〈Jf ‖ (J + S) ‖ Ji〉

= −
√

2

3

ω

c
μ0〈Jf ‖ S ‖ Ji〉,

which implies

Snr = |〈J f ‖ S ‖ J i〉|2. (5)

Therefore, in the nonrelativistic limit the line strength Snr is
completely determined by the quantum numbers of the initial
and final states and does not depend on the radial part of the
many-electron wave functions of the initial and final states. For
the 2P1/2 − 2P3/2 and 2P3/2 − 2P1/2 fine-structure transitions,
the nonrelativistic line strength results in the value of 4/3.

The total line strength can be calculated by adding different
corrections to the nonrelativistic line strength as follows:

S = Snr + �SD + �SCI,C + �SCI,B + �SQED + �Srec. (6)

Here �SD is the correction due to the relativistic motion of the
electrons as described by the (single-electron) Dirac equation.
This correction is calculated as the difference between line
strength evaluated between Eqs. (5) and (2). In Eq. (2) the
initial- and final-state wave functions are linear combinations
of Slater determinants constructed in terms of one-electron
Dirac wave functions which are the solution of the noninter-
acting one-electron Dirac Hamiltonian

ĥD = cα · p + (β − 1)c2 − V (r), (7)

where V is the potential of a two-parameter Fermi nuclear
charge distribution, β is the Dirac matrix, and c is the speed of
light in atomic units.

The next two terms in Eq. (6) are due to the relativistic
interelectronic interaction (correlations). While the first term
�SCI,C arises from the Coulomb interaction, and the second
�SCI,B occurs due to the Breit interaction. Both of these
terms are evaluated in detail in Sec. II B. The next correction
�SQED originates from QED diagrams, namely, the self-energy
diagrams. It is calculated here to all orders in αZ. The
evaluation of this term is described in Sec. II C.

Finally, �Srec is the correction to the line strength due to the
finite nuclear mass effect. This effect can be calculated only
by using a rigorous QED approach as described in Ref. [17].
According to this approach the recoil corrected magnetic
moment operator is given by

μ = −μ0

⎛
⎝L + 2S − 1

M

∑
i,j

[ri × pj ]

⎞
⎠, (8)

where M is mass of the nucleus. Hence the correction to the
line strength due to the nuclear recoil can be written as

�Srec � −2〈Jf ‖ (L + 2S) ‖ Ji〉

×
〈
Jf ‖ 1

M

∑
i,j

[ri × pj ] ‖ Ji

〉
. (9)

However, these contributions are very small at the present
level of accuracy compared to the leading nonrelativistic value
4/3. For example �Srec amounts to 2.1 × 10−5, 1.5 × 10−5,
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0.9 × 10−5, and 0.5 × 10−5 for B-like Ar, Fe, Mo, and W ions,
respectively. Therefore, we do not present these values in our
final table of the various contribution to line strengths.

B. Interelectronic-interaction corrections

To evaluate the interelectronic correlation correction arising
due to Coulomb interaction �SCI,C, we apply systematically
enlarged many-electron wave functions by using the latest
version of the general purpose relativistic atomic structure
package GRASP2K [23]. This package implements the mul-
ticonfiguration Dirac-Hartree-Fock (MCDHF) method in jj

coupling [24]. In this method, � is an atomic state function
�(�; πJ ) for a state labelled �, where J is the total angular
momentum quantum number and π is the parity. It is approxi-
mated by a linear combination of configuration state functions
(CSFs) of the same symmetry:

�(�; πJ ) =
nc∑

j=1

cj	(γj ; πJ ), (10)

where nc is the number of CSFs, cj are the mixing coefficients,
and γj denotes the orbital occupancy and angular coupling
scheme of the j th CSF. The configuration state functions
	(γj ; πJ ) are a linear combination of Slater determinants of
one electron Dirac spinors,

	(r) = 1

r

(
Pnκ (r)χm

κ (θ,ϕ)

iQnκ (r)χm
−κ (θ,ϕ)

)
. (11)

Here, κ is relativistic angular momentum quantum number,
Pnκ (r) and Qnκ (r) are the large and small radial components of
the one-electron wave functions represented on a logarithmic
grid, and χm

κ is the spinor spherical harmonic. The radial
part of the Dirac orbitals and the expansion coefficients cj

are optimized to self-consistency from a set of equations
which results from applying the variational principle on a
weighted energy functional of the states in Dirac-Coulomb
approximation [25] where the Dirac-Coulomb Hamiltonian
ĤDC is

ĤDC =
N∑

i=1

[cαi · pi + (βi − 1)c2 − V (ri)] +
N∑

i<j

1

rij

. (12)

We first performed the calculations for the lowest-order
approximation. For this the wave functions for the states
with J = 1/2 and J = 3/2 are calculated within the basis
of the multireference (MR) configurations. The CSFs in the
MR set are generated from the configurations {1s22s22p,
1s22p3}, {1s22s22p63s23p, 1s22s22p63p3}, 1s22s22p5, and
1s22s22p63s23p5 for the B-, Al-, F-, and Cl-like ions, respec-
tively. After the initial calculations, the wave functions are
systematically improved by performing MCDHF calculations
for each new layer of correlation orbitals and keeping the
previous calculated orbitals fixed. For each new layer of
correlation orbitals the basis of CSFs is expanded by including
further single (S) and double (D) virtual excitations from the
configurations defining the MR set to the active set of orbitals.
The active set of orbitals is spanned by the orbitals with a
principal quantum number n � 7 and with azimuthal quantum
number ł � 6. We also performed the calculations by including

TABLE I. Interelectronic-interaction correction �SCI to the M1
line strength of the transition between the fine-structure levels of
the ground configuration for B-, F-, Al-, and Cl-like Fe ions. The
MCDHF and RCI methods are employed to evaluate these corrections
considering Coulomb and Breit type interactions. They are presented
as a function of the size of the increasing active set (AS) labeled by
the highest principal quantum number n of the orbitals starting from
the MR set.

AS B-like Fe F-like Fe Al-like Fe Cl-like Fe

MR 0.00053 0.00154 0.00149 0.00167
3 0.00052 0.00146 0.00148 0.00165
4 0.00049 0.00151 0.00146 0.00164
5 0.00050 0.00153 0.00145 0.00164
6 0.00045 0.00146 0.00147 0.00165
7 0.00045 0.00145 0.00147 0.00164

triple excitations from the MR set of orbitals. We found that
the effect of triple excitation is of the order of 10−6 or smaller.
This effect is negligible for the present level of accuracy.

Following each of the MCDHF calculations, separate
relativistic configuration interaction (RCI) calculations are
performed to further improve the initial- and final-state
wave functions. These allowed us to evaluate the correction
due to the Breit interaction �SCI,B to the line strength.
For these calculations the Dirac-Coulomb Breit Hamiltonian
ĤDCB = ĤDC + ĤBreit is used where

ĤBreit = −
N∑

i<j

1

2rij

[
αi · αj + (αi · r ij )(αj · r ij )

r2
ij

]
. (13)

The sum of these two corrections gives rise to the total
relativistic interelectronic-interaction correction �SCI. These
contributions are presented in Table I as a function of the size
of the increasing active set labeled by the highest principal
quantum number n of the of orbitals considered for the corre-
lations. For the sake of brevity, we present the results only for
the Fe ions. As seen from Table I, the convergence with regard
to the size of the active set is fairly achieved, which allows us to
set an absolute uncertainty for the interelectronic-interaction
correction to a range of 1 × 10−5 to 5 × 10−5 depending on
the particular ion.

C. QED correction

The QED correction to the M1 line strength �SQED can be
derived in lowest order in αZ by modifying the M1 transition
operator of the atomic magnetic moment for the EAMM, as
discussed in detail in Ref. [15]. The contribution of the EAMM
amounts to �SQED,EAMM = 0.00618. In Ref. [16], moreover,
the one-loop QED correction was calculated for several
B-like ions to all orders in αZ within the so-called original
Furry picture, and by taking into account only the Coulomb
potential of the nucleus. We now consider an extended Furry
picture which includes a local screening potential in the
unperturbed Hamiltonian, and extends the calculations for F-,
Al-, and Cl-like systems. This extension enables us to partially
account for the screening QED corrections by evaluating only
one-electron QED diagrams. In the extended Furry picture,
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we solve the Dirac equation with an effective spherically
symmetric potential treating the interaction with the external
Coulomb potential of the nucleus and the local screening
potential exact to all orders. We employ here the core-Hartree
screening potential, which is given by the expression

Vscr(r) =
∫ ∞

0
dr ′ 1

r>

ρcore(r ′). (14)

Here ρcore denotes the total radial charge density distribution
of the core electrons

ρcore(r) =
∑

c

[
P 2

c (r) + Q2
c(r)

]
,

∫ ∞

0
drρcore(r) = nc, (15)

where nc is the number of the core electrons, i.e., nc =
4, 8, 12, 16 for B-, F-, Al-, and Cl-like ions, respectively. This
screening potential is generated self-consistently by solving the
Dirac equation until the energies of the core and valence states
become stable with the relative accuracy of 10−9. To estimate
the sensitivity of the result on the choice of the potential, several
tests have been performed with other screening potentials:
Kohn-Sham, Dirac-Hartree, and Dirac-Slater constructed for
the initial as well as for the final state. It has been found out that
a relative difference between results obtained with different
potentials does not exceed 5 × 10−4. Overall, therefore, the
uncertainty is dominated by a numerical error, which is
everywhere smaller than 10−5.

The one-loop QED correction to the line strength consists
of the self-energy and vacuum-polarization terms. However,
the vacuum-polarization correction previously evaluated in
the Uehling approximation appears to be two to four orders
of magnitude smaller than the self-energy correction beyond
the EAMM approximation [26]. For this reason, we neglect
the vacuum-polarization term in the present consideration. The
self-energy contribution is given by the diagrams depicted in
Fig. 1. While the formulas derived in Ref. [16] in the original
Furry picture remain formally the same, let us recall that the
Dirac spectrum is now generated by solving the Dirac equation
with the effective potential. We make use of the implementation

FIG. 1. Feynman diagrams that represent the self-energy correc-
tion to the line strength. The wavy line indicates the photon propagator
and the double line indicates the bound-electron wave functions and
propagators in the effective potential being the sum of Coulomb and
screening potentials. The single-photon emission is depicted by the
wavy line with arrow.

of Ref. [16] where a detailed description of these calculations
for B-like ions is presented.

III. RESULTS AND DISCUSSION

Table II lists different corrections to the nonrelativistic line
strength for the M1 transition between the fine-structure levels
of the ground configurations in B-like and F-like Ar, Fe, Mo,
and W ions. These corrections refer to two different systems
of p subshells, one with a single valence electron and the
other with a single vacancy in the L shell. Table III shows
similar results as Table II but for the M shell for Al-like and
Cl-like Fe, Mo, and W ions. As seen from Tables II and III
the relativistic correction �SD is most important. Its value
increases by an order of magnitude for the Mo and W ions when
compared to Ar and Fe ions. The interelectronic-interaction
correction arising due to the Breit interaction turns out to be
relatively small as compared to corrections arising due to the
Coulomb interaction. For Mo and W ions these corrections

TABLE II. Individual corrections to the M1 nonrelativistic line
strength Snr = 4/3 for the (2s22p) 2P1/2 − 2P3/2 transition in B-like
as well as for the (2s22p5) 2P3/2 − 2P1/2 transitions in F-like Ar, Fe,
Mo, and W ions. The total line strength (S) is compared with other
theories. The uncertainties involved in the calculation of line strengths
are given within the parentheses.

Ar Fe Mo W

B-like

�SD −0.00295 −0.00633 −0.01800 −0.07402
�SCI,C 0.00056 0.00038 −0.00247 −0.00530
�SCI,B 0.00001 0.00007 0.00042 0.00166
�SQED 0.00617 0.00615 0.00606 0.00567
S 1.33714(28) 1.33362(23) 1.3194(10) 1.2614(18)

1.3372a 1.3337a 1.3197a

1.33693(26)b 1.333c*

1.337c* 1.333d*

1.337d*

F-like

�SD −0.00295 −0.00633 −0.01800 −0.07402
�SCI,C 0.00094 0.00143 0.00258 0.00569
�SCI,B 0.00000 0.00002 0.00006 0.00036
�SQED 0.00617 0.00615 0.00607 0.00568
S 1.33749(47) 1.33460(70) 1.3240(13) 1.2710(30)

1.356(5)e* 1.335g* 1.324h* 1.271f*

1.338f* 1.334f* 1.324f* 1.271i*

1.3270j* 1.3211j*

aMCDHF theory by Froese Fischer et al. [20].
bMC-DFS theory by Tupitsyn et al. [15].
cMCDF theory by Rynkun et al. [18].
dMCDF theory by Marques et al. [19].
eRelativistic coupled-cluster theory by Nandy [27].
fMCDF theory by Jönnson et al. [28].
gMCDF theory by Jonauskas et al. [29].
hMCDF theory by Aggarwal and Keenan [30].
iMCDF theory by Aggarwal and Keenan [31].
jRelatively coupled-cluster theory by Nandy and Sahoo [32].
*The original values are corrected by adding the QED correction
obtained here.
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TABLE III. Individual corrections to the M1 nonrelativistic line
strength Snr = 4/3 for the (3s23p) 2P1/2 − 2P3/2 transition in Al-like
as well as for the (3s23p5) 2P3/2 − 2P1/2 transition in Cl-like Fe,
Mo, and W ions. The total line strength (S) is compared with other
theories. The uncertainties involved in the calculation of line strengths
are given within the parentheses.

Fe Mo W

Al-like

�SD −0.00302 −0.00950 −0.05025
�SCI,C 0.00146 0.00230 0.00340
�SCI,B 0.00001 0.00007 0.00054
�SQED 0.00617 0.00614 0.00595
S 1.33797(73) 1.3324(13) 1.2928(20)

1.336a*

1.337b

Cl-like

�SD −0.00302 −0.00950 −0.05025
�SCI,C 0.00164 0.00294 0.00615
�SCI,B 0.00000 0.00005 0.00029
�SQED 0.00617 0.00614 0.00595
S 1.3381(18) 1.3330(15) 1.2955(32)

1.338c* 1.295d*

1.338e 1.29f*

aMR-MP theory by Vilkas and Ishikawa [21].
bMR-MP theory by Santana et al. [22].
cB-spline single-particle orbitals method by Moehs et al. [33].
dMCDF method by Aggarwal and Keenan [34].
eMR-MP theory by Ishikawa et al. [35].
fMCDF theory by Singh and Puri [36].
*The original values are corrected by adding the QED correction
obtained here.

provide essential contributions to the total line strengths. The
next important correction arises from the self-energy (QED).
Generally, the lowest order QED correction, i.e., the inclusion
of EAMM to the transition operator, is considered enough
for such transitions. As discussed in Sec. II C this correction
amounts to 0.00618 the total line strength. However, the present
estimates of the QED correction show that the inclusion of the
EAMM is enough only for low Z. For the heavier systems
the present rigorous calculations of QED corrections within
an extended Furry picture approach are necessary. Finally, all
corrections sum to the total line strength S. To estimate the
total uncertainty we have to note here that the contribution of
the negative-energy excitations is not taken into account in the
present calculations. Since the value of the negative-continuum
term strongly depends on the employed one-electron basis
functions [15], by varying them we estimate its contribution
to be less than half of the correlation effect. The uncertainties
of individual terms presented in Tables II and III as discussed
above in corresponding sections are much smaller than the
uncertainty due to the negative-continuum contribution. There-
fore, the total uncertainty of the line strength S obtained is fully
determined by the missing negative-continuum contribution.

To compare our results with previous computations, we
make use of the line strength from M1 transition rates based
on Eq. (1). We take the same transition energies that were
used in respective calculations. It should be noted that we

have added the QED contribution to the line strengths in
respective theoretical values wherever this effect has not been
considered. For B-like Ar, which has received much attention
over the last decade, our result of total line strength 1.33714(28)
corroborates the two exceptionally agreeing calculations from
Tupitsyn et al. [15] and Fischer et al. [20]. Tupitsyn et al.
[15] reported the line strength value 1.33693(26) for B-like
Ar. Additionally, Fischer et al. [20] reported a line strength
1.3372 for B-like Ar. Fischer et al. [20] further extended
their calculations for the B-like isoelectronic sequence until
Z = 42. As seen from Table II our results also agree with
B-like Fe and B-like Mo. Our results of the line strengths
for all other systems under present study are in agreement
with other available theories. The only exception is with
the relativistic coupled-cluster calculations for which the line
strength of 1.356(5) in F-like Ar of Ref. [27] is overestimated
and the line strength of 1.3270 in F-like Fe of Ref. [32] is
underestimated. This may be due to the incorrect handling
of intruder states in the implementation of coupled-cluster
theory in open-shell systems [37]. Overall, our calculations
have reached an accuracy of 10−4 − 10−5 for the QED sensitive
M1 line strengths between the fine-structure levels of the same
configuration. As a result, the present calculations provide a
theoretical prerequisite for a test of QED effects in the line
strengths of various ions.

In Table IV we present the lifetimes τpres (in seconds)
calculated for the (2s22p) 2P3/2 level in B-like ions, the
(2s22p5) 2P1/2 level in F-like ions, the (3s23p) 2P3/2 level
in Al-like ions as well as for the (3s23p5) 2P1/2 level in Cl-like
ions. Here, τexpt are experimental lifetimes and the respective
experimental uncertainties are given in parentheses. AM1 is
the present transition rate from the M1 channel. We used the
best available transition energies from the literature for the
calculation of the transition rate. For B-like ions we applied
the transition energies from the rigorous QED treatment of
Artemyev et al. [2,4], and for the rest of the ions we used
transition energies from the NIST database [38]. Here AE2 is
the transition rate from the E2 channel in length form. For the
E2 transition rate, we use same wave-function expansion as
for the M1 transition rate; in addition to that, the length and the
velocity gauges of theE2 line strength were in good agreement.
Let us note that the present uncertainties in transition rates and
lifetimes are due to uncertainties in the calculation of the M1
line strengths only. They are given within the parentheses. For
the present level of accuracy, the uncertainties due to the E2
transition channel are very small. However, the uncertainties
in the transition energies will increase total uncertainties in our
calculations accordingly.

As seen from Table IV, our predicted lifetimes for B-like
Ar and for Al-like Fe disagree with both experiments at the
HD-EBIT [13,14]. In contrast, the comparison of our predicted
lifetime for F-like Ar with the experiment at the LLNL-EBIT
[8] and for the lifetime of Cl-like Fe with the experiment at the
HD-EBIT [39] shows very good agreement. For Cl-like Fe,
our lifetime also agrees well with the extrapolated lifetime of
Ref. [40] which is resulted in an experimental study along
Cl-like Co, Ni, and Cu ions. These experiments with an
uncertainty larger than 0.5% are not, however, sensitive enough
to test the underlying relativistic correlations and the leading
QED effects. New experiments with the soft x-ray free electron
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TABLE IV. Lifetimes τpres (in seconds) calculated for the (2s22p) 2P3/2 level in B-like ions, the (2s22p5) 2P1/2 level in F-like ions, the
(3s23p) 2P3/2 level in Al-like ions, and the (3s23p5) 2P1/2 level in Cl-like ions compared with experimental lifetimes (τexpt). AM1 is the present
transition rate (in s−1) from the M1 channel and AE2 is the transition rate (in s−1) from the E2 channel. The values of the transition energy
used for the present lifetime calculations are given in cm−1 and corresponding transition wavelengths λ in Å. The uncertainties involved in the
calculation of transition rate and lifetime arising due to uncertainties in the line strengths are given within the parentheses. The numbers given
in the square brackets denote powers of 10.

Ions Energy λ AM1 AE2 τpres τexpt

B-like

Ar13+ 22656.92 4413.663 1.0487(02)[+02] 1.86[−03] 9.5354(20)[−03] 9.573(4)(5)[−03]a

8.7(5)[−03]b

9.12(18)[−03]c

9.70(15)[−03]d

Fe21+ 118310.243 845.235 1.4893(03)[+04] 1.37[+00] 6.7141(11)[−05]
Mo37+ 964437.459 103.687 7.9810(60)[+06] 6.00[+03] 1.2520(09)[−07]
W69+ 11802649.713 8.473 1.3985(20)[+10] 1.25[+08] 7.0874(10)[−11]

Al-like

Fe13+ 18852.5 5304.336 6.0455(33)[+01] 1.49[−02] 1.6537(09)[−02] 1.6726(+20/-10)[−02]e

1.7(2)[−02]f

1.674(12)[−02]g

1.752(29)[−02]h

Mo29+ 204020 490.148 7.6299(74)[+04] 1.67[+02] 1.3078(12)[−05]
W61+ 2933400 34.090 2.2008(34)[+08] 6.30[+06] 4.4174(70)[−09]

F-like

Ar9+ 18067.494 5534.802 1.0639(04)[+02] 2.11[−03] 9.3994(33)[−03] 9.32(12)[−03]d

Fe17+ 102579 974.858 1.9428(10)[+04] 1.94[+00] 5.1466(26)[−05]
Mo33+ 886305 112.828 1.2432(12)[+07] 9.77[+03] 8.0372(79)[−08]
W65+ 11202000 8.927 2.4097(57)[+10] 2.16[+08] 4.1131(98)[−11]

Cl-like

Fe9+ 15683.14 6376.274 6.9615(93)[+01] 1.52[−02] 1.4362(19)[−02] 1.42(2)[−02]i

1.441(14)[−02]j

1.364(25)[−02]h

Mo25+ 186950 534.902 1.1746(13)[+05] 2.41[+02] 8.4959(96)[−06]
W57+ 2796000 35.765 3.8190(94)[+08] 1.05[+07] 2.5485(65)[−09]

aHD-EBIT experiment by Lapierre et al. [13].
bNIST-EBIT experiment by Serpa et al. [6].
cECRIS in a Kingdon ion trap experiment by Moehs et al. [5].
dLLNL-EBIT by Träbert et al. [8].
eHD-EBIT experiment by Brenner et al. [14].
fECRIS in a Kingdon ion trap experiment by Smith et al. [10].
gLLNL-EBIT experiment by Beiersdorfer et al. [9].
hECRIS in a Kingdon ion trap by Moehs and Church [7].
iHD-EBIT experiment by Brenner et al. [39].
jTSR measurements at the Max Planck Institute for Nuclear Physics, Heidelberg, Germany by Träbert et al. [40].

laser (FLASH) and a new EBIT [41] along with the pump
probe x-ray laser experiments [42] will hopefully provide
experimental data for the transitions with short lifetimes in so
far inaccessible energy ranges. We believe that our calculations
will support such future experiments for transitions with
different frequencies and lifetimes.

IV. CONCLUSION

In this paper, we have presented highly accurate calculations
for the line strengths of QED-sensitive forbidden transitions
by utilizing the multiconfiguration Dirac-Hartree-Fock and
relativistic configuration interaction methods. We have ex-

tended the high-precision evaluations previously performed
for the middle Z B-like ions [15,20] to higher Z as well as
to different systems such as F-, Al-, and Cl-like ions. In our
systematically enlarged wave functions, we incorporated all
important electron correlations and the effects of relativity
by taking the Coulomb and Breit interactions into account.
The obtained line strengths are further improved by rigor-
ous calculations of the QED correction within an extended
Furry picture approach. We used up-to-date accurate transition
energies for the calculations of the M1 transition rates and
reported lifetimes in the millisecond to picosecond range.
We believe that our accurate theoretical predictions provide
the prerequisite for a test of QED by lifetime measurements
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at different frequencies and timescales. This will help to
find a reason for the present discrepancies between theory
and experiment for B-like Ar and Al-like Fe. Apart from
testing atomic structure theory, such experiments in the future
agreeing with the theoretical investigations will be very helpful
for terrestrial and astrophysical plasma diagnostics.
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