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We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson
model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a
limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case
is the Ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or
large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become
sufficiently excited to make a classical simulation impossible. Here we discuss how a quantum simulation of this
problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate
a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the
qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the
spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions
can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.
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I. INTRODUCTION

The spin-boson model studies the dynamics of a two-level
system interacting with a bosonic environment [1,2]. It is a
generic model of quantum decoherence of two-level systems
[3] and is of particular interest for the studies of quantum
phase transitions [4]. It assumes a linear coupling between
a two-level system (spin operator) and a collective coordinate
of the bosonic bath. Despite its very simple form, the spin-
boson model is not exactly solvable by any known theoretical
method [2].

Certain limits of the spin-boson problem, however, are well
understood. In the limit of weak system-bath coupling, pertur-
bative methods such as the Born-Markov master equation [1,2]
can be applied, describing weakly damped coherent oscilla-
tions. In the limit of high temperature, an adequate perturbation
theory may be possible in the polaron basis [1,2,5], describing
incoherent hopping of dressed states. In such situations, the
corresponding spin-boson model can be solved in a good
approximation, analytically or numerically. On the other hand,
when interaction strengths are of the order of the involved
frequencies, the problem becomes increasingly difficult, or
even impossible, to solve in a desired accuracy. This regime
covers many interesting problems of many-body physics, such
as the Kondo effect [1,6,7] and localization-delocalization
transitions of spin dynamics in different environments [1,4,8].

A commonly used strategy of obtaining new insight into
many quantum models, or to test previous theoretical pre-
dictions, is the approach of quantum simulation [9–13].
The Hamiltonian of the problem is mapped to a well-
controlled artificial quantum system and its dynamics is probed

experimentally. Superconducting microwave circuits have
proven to be a particularly attractive experimental platform
for engineering various interesting Hamiltonians [14–21] due
to their good controllability and feasibility of realizing exotic
parameter regimes [22–26].

The computational complexity of model Hamiltonians is
connected to the mutual coupling strengths of the individual
elements relative to the subsystem energies. Reaching the
strong-coupling regime between a qubit and a resonator in a
superconducting microwave circuit, described by the Jaynes-
Cummings model, has enabled the reproduction of many fun-
damental phenomena from cavity quantum electrodynamics
(QED) and has led to the development of novel quantum
systems and applications [22–25,27–29]. Here the coupling
strength between the qubit and the bosonic mode is larger than
the decay rates of the two coupled systems. If the coupling
strength becomes comparable to the subsystem energies, the
counterrotating terms of the general quantum Rabi model
cannot be neglected. This ultrastrong-coupling regime [30–32]
has been experimentally demonstrated with superconducting
circuits [33–39] and in various other platforms [40–42]. Inter-
esting phenomena that emerge include ground-state squeezing
[43], single-mode phase transitions [44], and nonclassical state
generation [45–47].

The spin-boson model is a generalization of the single-
mode quantum Rabi model to a continuous-mode environ-
ment. Near the coupling regime that exhibits Kondo physics
and localization-delocalization transitions [1,4,8], the energy
decay rate � of the two-level system and its free-evolution
frequency � are comparable, � � � [48,49]. A quantum
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simulation of this region with superconducting microwave
circuits can be done by connecting a superconducting qubit to
an open transmission line [6,7,48,49]. Very strong couplings
(combined with high qubit anharmonicities) are possible by
designing system characteristic impedances comparable to
the resistance quantum RQ = h/(2e)2 [6,7,48,49]. The single
Cooper-pair charge 2e appears since the anharmonicity of the
system is ultimately based on Cooper-pair tunneling across a
Josephson junction. For the two-level approximation to hold
even under strong dissipation, Cooper-pair tunneling must
remain the dominant mechanism. In other words, the coupling
strength must be lower than the qubit anharmonicity such
that only very nonlinear qubits such as flux-based qubits are
compatible with reaching the ultrastrong-coupling regime in
the laboratory frame.

Besides increasing the coupling strength via sample design,
it also can be effectively increased by creating a Hamiltonian
in the rotating frame, based on the application of Rabi drives
[18,50]. In the effective frame, the subsystem energies of the
original problem are down-converted to lower frequencies,
while the coupling strength is preserved up to a factor of
2. Applying this approach, an effective ultrastrong coupling
between a microwave resonator and a superconducting qubit
has recently been demonstrated also experimentally [20,51].
Here the original qubit-resonator system in the laboratory
frame needs to be only in the strong-coupling regime. In this
work we study an extension of this approach to a continuous-
mode environment, yielding the spin-boson model. Recently,
related approaches to effectively achieve ultrastrong coupling
have been proposed based on parametric driving [52,53].

In this article we study theoretically a realization of the spin-
boson model with strong system-environment couplings using
a superconducting qubit coupled to an engineered environment
of bosonic modes. In analogy to the approach described in
Refs. [18,20], we propose the construction of an effective
spin-boson Hamiltonian in the rotating frame. The bosonic
environment is realized via a set of individual microwave
resonators that reside in a restricted frequency range. We
discuss in detail how the microwave circuit maps onto the
spin-boson model discussed in literature. While in principle
any bosonic environment can be engineered with the proposed
method, we consider the construction of an environment with
an Ohmic spectral function that allows for probing localization
dynamics of the spin-boson model. We find that the localization
regime appears at strong coupling between the qubit and
individual bosonic modes, which is experimentally feasible
to achieve.

We also discuss how the resulting spin dynamics can be
probed by standard readout techniques from circuit QED. In
particular, the down-conversion of system frequencies allows
for tracking the spin-relaxation dynamics in real time. We also
discuss an experimental implementation, where the bosonic
environment and the qubit are fabricated on two separate chips
in a modular approach. This setup allows for probing the
system more rigorously, by characterizing both the qubit and
the environmental properties in separate experiments.

The article is organized as follows. In Sec. II we introduce
the spin-boson problem in the notation widely used in literature
and how it maps to the notation and methods used in this
article. We briefly go through central results and predictions of

the spin-boson model. In particular, in Sec. II C we show how
the effective spin-boson coupling strength can be tailored by
two-tone driving. In Sec. III we introduce an implementation
of the spin-boson model by a superconducting transmon qubit
coupled to a microwave circuit. We show how the impedance
of the environment is related to the spectral density in the spin-
boson model and discuss in detail how the impedance affects
to transmon. In Sec. IV we analyze how a set of microwave
resonators can be used to tailor an Ohmic spectral density in
the rotating frame with Kondo parameter α ∼ 1. In Sec. V
we provide a description of an experimental realization based
on a modular flip-chip approach and introduce measurement
pulse sequences that can be used to probe spin dynamics with
different initial conditions. A summary and discussion are
given in Sec. VI.

II. SPIN-BOSON MODEL

We start our analysis by introducing the Hamiltonian and
the spectral function of the spin-boson problem. After this, in
Sec. II B, we go through central results and predictions of the
spin-boson problem obtained in the literature [1] and discuss
the corresponding quantities to be measured in our realization.
In Sec. II C, by applying the method described in Refs. [18,20],
we derive an effective spin-boson Hamiltonian in the rotating
frame with decreased subsystem energies. Finally, in Sec. II D
we analyze the limits of validity of the given derivation.

A. Spin-boson Hamiltonian and the spectral density

Here we introduce the spin-boson Hamiltonian in the
notation widely used in earlier literature. After this we discuss
how it maps to the notation used in this article. The notation and
methods used throughout the remainder of this article match
the standard ones used in superconducting microwave circuits
and therefore more directly allow us to relate properties of the
spin-boson model to the proposed experimental realization.

1. Notation in literature

In earlier literature, the spin-boson model is often intro-
duced by starting from the Hamiltonian [1,2]

ĤSB = − h̄�

2
σ̂x + ε

2
σ̂z + q0

2
σ̂z

∑
i

ci x̂i + Ĥbath, (1)

Ĥbath =
∑

i

[
1

2
miω

2
i x̂

2
i + 1

2mi

p̂2
i

]
. (2)

The two-level system, described by the Pauli matrices σ̂i , may
be regarded as two trapped positions of a virtual particle in a
certain potential landscape. The variable q0 denotes a trapping
distance, � denotes a hopping rate, and ε characterizes the
energy difference. The environment perceives the location of
the particle and thereby couples to σ̂z. The free evolution of
the environmental coordinate operators x̂i is defined by the
quadratic harmonic oscillator Hamiltonian Ĥbath.

A central function of the theory is the spectral density of
the environment, defined formally as

J (ω) = π

2

∑
i

c2
i

miωi

δ(ω − ωi). (3)
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The spectral function S(ω) of the collective bath operator,

X̂ =
∑

i

ci x̂, (4)

is a function of temperature T and J (ω) and reads

S(ω) = 〈X̂(t)X̂(0)〉ω = 2h̄J (ω)

1 − exp
(− h̄ω

kBT

) . (5)

Together with the parameter q0 [see Eq. (1)], the spectral
function includes all relevant information of the effect of
the environment on the two-level system. The fundamental
reason is that the environmental fluctuations satisfy Gaussian
statistics. Accordingly, Wick’s theorem is valid and the time
evolution of the reduced density matrix of the two-level system
is fully described by two-time correlation functions of the
environmental coupling operator.

2. Notation in this article

When superconducting qubits are capacitively or induc-
tively coupled to microwave cavities, their dipole moment
couples to the electric or magnetic field of the cavity. Since the
dipole coupling is considered transversal, it is intuitive to write
the coupling term proportional to a σ̂x operator. Therefore, even
though circuit QED systems consisting of a superconducting
qubit coupled to a set of microwave resonators are described
by the spin-boson Hamiltonian in Eq. (1), their Hamiltonian is
usually written down in a notation where the definitions of σ̂x

and σ̂z are interchanged, most typically in the context of the
Jaynes-Cummings model [28]. In the case of a transmon qubit
[54], the two energy levels correspond to two eigenstates of a
virtual particle in the same potential minimum.

To keep the notation comparable with Sec. II A 1, we
define the system parameters analogously to the above. We
then consider establishing the spin-boson Hamiltonian using
a superconducting qubit with energy splitting h̄�, coupled
to a set of microwave resonators, described by the total
Hamiltonian

Ĥ = h̄�

2
σ̂z + q0

2
σ̂x

∑
i

gi(b̂i + b̂
†
i ) +

∑
i

h̄ωi b̂
†
i b̂i . (6)

This corresponds to the case ε = 0, which is the regime that
shows the physically most relevant and nontrivial behavior [1].
This Hamiltonian is well implemented by a quantum circuit
based on the transmon qubit [54]. The spectral density, defined
in Eq. (3), becomes

J (ω) = π

h̄

∑
i

g2
i δ(ω − ωi). (7)

We note that the coupling parameter q0 could also be
incorporated in the definition of the coupling strengths gi .
Our separation is meaningful only when the variables ci x̂i =
gi(b̂i + b̂

†
i ) correspond to certain physical quantities. In this

article we fix the bath coordinates x̂i to correspond to voltage
fluctuations across the two capacitors of the qubit,

X̂(t) ≡ V̂ (t). (8)

Therefore, q0 has the dimension of charge. It describes an
effective charge shift of the artificial atom between its two
states as seen by the environment. The variable q0 then

FIG. 1. Qualitative behavior of spin dynamics in the three main
regimes of the spin-boson model with an Ohmic environment (s = 1).
The probability P (t) corresponds in the proposed system to the ex-
pectation value P (t) = 〈σ̂x(t)〉, when initialized to the +1 eigenstate
of σx at t = 0. For α < 0.5, (damped) oscillations prevail when
h̄�rn � αkBT , but change to incoherent relaxation when h̄�rn �
αkBT (exponential decay to zero). Localization effect leads to a decay
of P (t) towards a finite value and occurs for α � 1 and T = 0. In other
regimes, the system exhibits incoherent relaxation with subtle forms
of the decay rate [1].

absorbs all the information of the qubit and how it couples
to the voltage fluctuations: The following results are thereby
valid, in principle, for arbitrary superconducting qubits with
appropriate adaptations of coupling parameter q0. Within this
identification we then write

〈V̂ (t)V̂ (0)〉ω = 2h̄J (ω)

1 − exp
(− h̄ω

kBT

) , (9)

following from Eq. (5) and the identification made in Eq. (8).

B. Different bath spectral functions and predictions for the
relaxation dynamics of the spin-boson model

In the following, we briefly go through some central predic-
tions made for the spin dynamics when interacting with bosonic
environments of different spectral functions. We explain how
these predictions correspond to the dynamics in the considered
circuit QED system. A more detailed explanation of an exper-
imental realization is given in Sec. V. Central predictions for
an Ohmic environment are summarized qualitatively in Fig. 1.

1. Measured quantities

In the spin-boson model, a widely studied effect is the
hopping dynamics between the two trapped positions of the
fictitious particle (connected by the hopping amplitude �)
under a perturbation caused by coupling to the environment.
Here we are not interested in the environment itself, but in the
short- and intermediate-timescale evolution of the system when
subjected to a certain initial condition. The long-time behavior
is also interesting to study, but can be much more challenging
to observe in experiment. The theoretical restrictions to short
and intermediate timescales practically correspond to the
experimental restrictions due to the finite initialization time
and finite decoherence time of the superconducting qubit,
correspondingly.

We consider now the notation introduced in Sec. II A 2 and
follow the discussion given in Ref. [1]. If inserted initially in
the left-hand side well, the probability of the particle to be
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found from this well again at some later time depends on the
hopping amplitude and interaction with the environment. (For
a rigorous mathematical definition of the problem, particularly
the initialization of the system, see Ref. [1].) Such population
dynamics corresponds in our notation to the initialization of the
system at t = 0 to an eigenstate of operator σ̂x and measuring
the value of σ̂x at certain later time t > 0,

P (t) = 〈σ̂x(t)〉. (10)

Ideally, in the absence of interaction, we get (defining the left-
hand side as the +1 eigenstate of σ̂x)

P (t) = cos �t. (11)

When interacting with the environment, the hopping can
become damped, overdamped, or even totally forbidden (lo-
calization).

We note that in our realization, we are naturally not
restricted to the theoretical scenarios in the literature: One can
probe both σ̂z and σ̂x with different initialization conditions for
the two-level system as well as for the bath (see Sec. V). The
exact initialization of the bath affects the results essentially
in the case of strong couplings, while it is not a requirement
for the observation of the following effects (in particular the
localization).

2. Relaxation dynamics for different environments

A central example of the spin-boson model is the Ohmic
environment, which is described by a linear spectral density

J (ω) = ηωFc(ω). (12)

Here we have introduced a cutoff function Fc(ω). For instance,
this can be an exponential drop Fc(ω) = e−ω/ωc or a sharp
cutoff Fc(ω) = �(ωc − ω), with cutoff frequency ωc. An im-
portant parameter describing the coupling between the system
and the environment in the Ohmic case is the Kondo parameter

α = η
q2

0

2πh̄
. (13)

It can be qualitatively interpreted as an environment-induced
decay rate � normalized by the internal precession frequency
�, α ∼ �/�. In the limit α � 1, it directly corresponds to an
inverse quality factor of the weakly perturbed two-level system,
as derived in Sec. III D, and a similar result can also hold
for the quantum two-level system with α ∼ 1 [48,49], even
though here a separation between the system and environment
dynamics is not necessary that clearly defined.

It has been understood that we have practically two inde-
pendent variables that define the solution of the problem: the
interaction strength α and the (bath renormalized) two-level
system energy �rn [1]. Under the influence of the environment,
many qualitatively different behaviors of the well-hopping
dynamics can occur. For α < 1/2 we can have damped
oscillations (�rn � kBT α) changing to incoherent relaxation
(�rn � kBT α). For α > 1/2, all dynamics are expected to be
incoherent. In the regime α � 1 and T = 0, one expects a total
suppression of hopping, whereas for T � 0 very slow thermal
relaxation should occur [1]. In the simple Ohmic case with
a linear increase of J (ω), we therefore expect very different

types of behavior in various parameter regimes. The regimes
are summarized in Fig. 1.

It can be helpful to mention that the localization mechanism
in the spin-boson model is closely related to the Coulomb
blockade effect in superconducting tunnel junctions, i.e.,
Cooper-pair tunneling across a Josephson junction that is
voltage biased in series with an electromagnetic environment.
When the environmental (zero-frequency or characteristic
resonator) impedance is comparable to the resistance quan-
tum RQ = h/4e2, the system enters the Coulomb blockade
regime, where charge tunneling is strongly suppressed or even
completely prohibited [55–58].

The model for the general power-law behavior of J (ω) is
conveniently written in the form

J (ω) = Asω
sω1−s

c Fc(ω). (14)

Here the case s < 1 is called the sub-Ohmic regime and s > 1
is referred to as the super-Ohmic regime. In particular, s = 0
with T > 0 has been used as a model for 1/f noise [3,5]. The
super-Ohmic case appears in the electron tunneling in solids
with coupling to a (three-dimensional) phononic bath. The
extra scaling factor ω1−s

c has been introduced so that we can
define a dimensionless variable A = Asq

2
0/2πh̄, in analogy to

the Kondo parameter α. However, it has less physical meaning
here than in the Ohmic case. It also always appears together
with the scaling introduced by the cutoff Aω1−s

c [1]. In a
rough overall picture, the super-Ohmic case shows mostly
damped oscillations and does not exhibit localization, whereas
the sub-Ohmic case is less trivial; it is localized for weak
tunneling amplitudes � (depending on A) but even there, in
nonequilibrium, can show coherent oscillations [8]. Also as
opposed to the Ohmic case, here more than one relevant energy
scale of coherent dynamics exists.

C. Simulation in the rotating frame

Here we show how to establish an effective spin-boson
Hamiltonian in the rotating frame by additional microwave
driving. We take use of modified interaction during driven
evolution of the two-level system [59]. An important detail
of the following derivation is that even though rotating-wave
approximations (RWAs) can be taken in various places of
the derivation, one cannot be taken for the final effective
Hamiltonian, where the effect of counterrotating terms can be
essential.

1. Two-tone driving

Following Refs. [18,20], we consider driving this system
with two Rabi tones, both with transverse coupling to the qubit.
A Hamiltonian that describes such a driven system has the form

Ĥ + Ĥd, (15)

where the drive is accounted for by the term

Ĥd = h̄�1σ̂x cos ω1t + h̄�2σ̂x cos ω2t. (16)

Here �i is the amplitude and ωi the frequency of the drive i.
To obtain an immediate feeling of the drive frequencies and
amplitudes we use, we note that in the following scheme we
consider a situation where ω1 � ω2 and �1 � �2. During the
derivation, also the condition ω1 − ω2 = �1 is taken to obtain
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the desired form of the Hamiltonian (see below) and we will
have ωi � �i . The drive frequency can be assumed to be the
qubit frequency in the laboratory frame ω1 = �.

We enter now a rotating frame with respect to the stronger
transverse drive by performing a unitary transformation ac-
cording to

Û = exp

[
iω1t

(∑
i

b̂
†
i b̂i + 1

2
σ̂z

)]
. (17)

This is a combined rotating frame of the two-level system and
of all the bosonic modes. The Hamiltonian becomes now

Ĥ1

h̄
= 1

h̄
(ÛĤ Û † − iÛ ˙̂U †) = � − ω1

2
σ̂z + �1

2
σ̂x

+
∑

i

(ωi − ω1)b̂†i b̂i + q0

2h̄

∑
i

gi(b̂i σ̂+ + b̂
†
i σ̂−)

+ �2

2
(ei(ω1−ω2)t σ̂+ + e−i(ω1−ω2)t σ̂−). (18)

We have neglected the contributions

Ô1 = q0

2h̄

∑
i

gi σ̂+b̂
†
i e

2iω1t + �1

2
σ̂+e2iω1t

+ �2

2
σ̂+ei(ω1+ω2)t + H.c. (19)

This can be done if oscillations with the frequencies 2ω1

and ω1 + ω2 are much faster than frequencies �1 and �2. In
addition, coupling to modes in the bosonic bath, with couplings
q0gi/h̄, is negligible if the bath will include only modes in a
small frequency range ωc � 2ωi .

In the Hamiltonian of Eq. (18), the dominant term will be
the contribution proportional to �1. It is then favorable to move
to the interaction picture defined by this term. This means
performing another unitary transformation, this time according
to

Û = exp

[
i
�1

2
σ̂x t

]
. (20)

We also choose �1 = ω1 − ω2, which leads to

Ĥ2

h̄
= �2

4
σ̂z + q0

2h̄

∑
i

gi

2
σ̂x(b̂†i + b̂i)

+
∑

i

(ωi − ω1)b̂†i b̂i . (21)

We have again neglected fast oscillating terms

Ô2 = �2

2
σ̂z

(
sin2 �1t + 1

2

)

− �2

2
(σ̂1 sin �1t − σ̂y sin 2�1t)

+(� − ω1)(σ̂z cos �1t + σ̂y sin �1t)

+ q0

4h̄

∑
i

gi[(iσ̂y cos �1t + iσ̂z
ˆsin�1t)b

†
i + H.c.].

(22)

The first three terms on the right-hand side can be eas-
ily dropped with assumptions similar to those above. The

implications of dropping the fourth term need to be analyzed
more carefully, done below in Sec. II D.

2. Effective Hamiltonian and spectral density

We note that the Hamiltonian of Eq. (21) has the same (non-
RWA) interaction term as in Eq. (6), with modified parameters.
We then have the effective Hamiltonian

Ĥeff = h̄�eff

2
σ̂z + q0

2
σ̂x

∑
i

geff
i (b̂i + b̂

†
i )

+
∑

i

h̄ωeff
i b̂

†
i b̂i , (23)

where the new parameters have the form

�eff = �2

2
, (24)

ωeff
i = ωi − ω1, (25)

geff
i = gi

2
. (26)

We see that the two-level system and bosonic energies are tun-
able by the external drives. Since the coupling has kept its form
(up to a factor of 2), this allows for tailoring essentially stronger
relative couplings between the system and the environment
[18,20].

We also have a new coordinate operator of the environment.
To determine its properties we first write down the solution in
the rotating frame

V̂eff (t) = 1

2

∑
i

gi[b̂ie
−i(ωi−ω1)t + b̂

†
i e

i(ωi−ω1)t ]. (27)

Here the energies ωi − ω1 are the effective energies in the
rotating basis, which can be negative. The population of these
modes can be determined from the thermal population in the
laboratory frame. Using the spectral density in the original
frame J (ω), we get for the thermal average of the correlation
function

〈V̂eff (t)V̂eff (0)〉ω = h̄

2

J (ω + ω1)

1 − exp
(− h̄(ω+ω1)

kBT

) . (28)

The temperature T is the real temperature of the bath. In the
following, it is safe to assume that the real bath is at zero
temperature since practically ω1 � kBT /h̄. We have then

〈V̂eff (t)V̂eff (0)〉ω = h̄

2
J (ω + ω1). (29)

In order to have an exact connection between the effective
system in the rotating frame and the spin-boson model, the
created correlation function in the rotating frame has to simu-
late a finite-temperature bath. To construct a specific spectral
function in the rotating frame with an effective temperature
Teff , the spectral density in the laboratory frame is required
to have a contribution (δω > 0) below the frequency of the
rotating frame,

J (ω1 − δω) = J (ω1 + δω)
1 − exp

[− h̄δω
kBTeff

]
exp

[
h̄δω

kBTeff

] − 1
. (30)
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If this is satisfied for certain Teff , we have

〈[V̂eff (t),V̂eff (0)]+〉ω = 2h̄Jeff (δω) coth
h̄δω

2kBTeff
, (31)

where we have defined the effective spectral density in the
rotating frame

Jeff (δω) = 1

4
J (ω1 + δω)

{
1 − exp

[
− h̄δω

kBTeff

]}
. (32)

For Teff = 0 we have simply

Jeff (δω) = 1
4J (ω1 + δω). (33)

We note that even though the connection between these
two systems might seem trivial, just a frequency shift due
to the external drive, it is quite remarkable since it connects
two completely different many-body physics problems: one
problem including emission and absorption of photons with
same bosonic modes and another problem which includes
only dissipation to two different set of bosonic modes. The
only property that needs to be satisfied to connect these two
problems is the effective detailed balance (30).

D. Error estimation

Here we sum up the restrictions and the size of errors in
the quantum simulation that appear due to the approximations
taken when deriving the effective rotating-frame Hamiltonian.
Errors occur from dropping the terms in Eqs. (19) and (22).
Furthermore, errors also occur due to a finite anharmonicity of
the two-level system, which can lead to a finite population of
the third level of the superconducting qubit.

Most terms in Eqs. (19) and (22) can be dropped within
the assumptions �i/ωi � 1 and (ω1 − �)/�1 � 1, as well
as �2/�1 � 1. These conditions are easily realized in an
experiment [20]. However, the most important contribution we
neglected was the term

Ô = q0

4

∑
i

gi[(iσ̂y cos �1t + iσ̂z sin �1t)b
†
i + H.c.]. (34)

This sets a limit to the spectral width and the cutoff of the bath
since the term probes the bath in a completely similar way as
the central term

q0

4

∑
i

gi σ̂x(b̂†i + b̂i), (35)

in the effective Hamiltonian of Eq. (23), but with energies �1 ±
�2/2 ≈ �1.

To be more quantitative, let us assume that we have a residue
bath density at frequencies close to �1, which we now write
in the form

Jeff (�1) ≈ 2πh̄

q2
0

ᾱ
�2

2
. (36)

The dimensionless variable ᾱ then compares the effective qubit
frequency �2/2 to the spectral density at frequency �1. This
gives a bath-induced decoherence rate

�̄

�2/2
≈ πᾱ. (37)

In order to have a negligible contribution within the timescale
of the effective two-level system oscillations 1/�2, we require
that ᾱ � 1. Similarly, also a finite internal lifetime of the
two-level system, due to internal decay mechanisms, limits the
simulation length. Let us denote this rate by �internal. Ideally,
we would then like to engineer a bath which does not limit the
decay and dephasing times of the qubit itself, i.e., we would
like to be in the regime �̄ < �internal � �2/2.

The second important restriction to the parameter regime
is the finite anharmonicity of the qubit. The anharmonicity is
defined as the difference between the first and second energy-
level splittings

h̄�an = |(E2 − E1) − (E3 − E2)|. (38)

Too strong driving can induce transitions to the third state
of the artificial atom. The probability for the artificial atom
contributing through the third excited state is roughly

Perror ∼
(

�1

�an

)2

. (39)

Therefore, a large anharmonicity qubit is favorable in order
to avoid a strong additional upper bound in �1. The qubit
anharmonicity depends on the experimental realization. Flux-
based qubits can easily reach anharmonicities higher than
the lowest-energy-level splitting �an > �. In this article we
consider a realization based on a transmon qubit with �an � �

for its simple operation without the necessity of biasing
[54], the feasibility of a straightforward capacitive coupling,
and its superior coherence properties. For a qubit with � =
2π × 7 GHz and anharmonicity �an = 2π × 350 MHz, a
drive with �1 = 2π × 80 MHz leads to a reasonably low
error Perror ∼ 0.05. Combining this with the above analysis,
this would also mean that the bath spectral width has to be
smaller than 80 MHz in order to avoid unwanted transitions
due to the term in Eq. (34). We would then desire a bath
that has a rather sharp cutoff at ωc < �1 = 2π × 80 MHz,
Fc(ω) ∼ �(ωc − ω). Later, in Sec. IV, we show how to build
such a bath from a set of microwave resonators.

III. IMPLEMENTATION OF THE SPIN-BOSON MODEL
WITH A MICROWAVE CIRCUIT

In this section we study how a superconducting qubit
connected to a dissipative microwave-circuit element can be
used to realize the spin-boson Hamiltonian. We consider
explicitly the case of a transmon qubit. Our main goal is to
determine how the parameters of the spin-boson model, the
spectral density S(ω), the coupling q0, and the qubit energy �

depend on the properties of the microwave circuit. Section III A
briefly sums up the central results. In Sec. III B we describe
how to determine the effect of capacitance renormalization
in circuits considered in this article. In Sec. III C we detail
the derivation of the spin-boson parameters q0 and � and in
Sec. III D we show the derivation of the Kondo parameter α.
The approach we use is based on a linear circuit analysis, but the
results can also be derived by an exact Lagrangian quantization
[60–65]. In addition, we provide also a consistency check based
on the Born-Markov approach, in Sec. III B. Even though we
explicitly consider a transmon qubit, our formalism is generic
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FIG. 2. (a) Model of a transmon qubit connected to an impedance
Z(ω). The charge Q on the island between the Josephson junction
(crossed box) and the ground capacitor Cg is a conjugated variable to
the phase across the Josephson junction, providing anharmonic energy
levels and an effective two-level system. The impedance Z induces
voltage fluctuations V and dissipation. (b) Circuit that defines the
spectral density [Eqs. (41)–(43)].

and can be extended, in principle, to all superconducting qubit
architectures.

A. Spectral density and the system-bath interaction

Our superconducting qubit couples to environmental volt-
age fluctuations V̂ (t), which causes dissipation. The quan-
tity that describes its effect is the spectral density S(ω) =
〈V̂ (t)V̂ (0)〉ω. There are several equivalent ways of determining
this quantity for microwave circuits, which basically all seek
the eigenmodes of the relevant (noninteracting) linear system.
In this article we assume that we know the impedance Z(ω) of
the linear circuit connected to the superconducting qubit, an
example being the circuit we consider in Sec. IV. Guidelines
for a determination of the spectral density in open circuits is
given in Appendix A as well as in Refs. [60–65].

Voltage fluctuations across the impedance are described by
the operator V̂ . The exact circuit diagram of the considered
setup is shown in Fig. 2(a). Generally, voltage fluctuations in
a linear (free-evolution) electric circuit satisfy the quantum
fluctuation-dissipation theorem [56]

〈V̂ (t)V̂ (0)〉ω = 2h̄ω Re[Zeff (ω)]

1 − e−βh̄ω
. (40)

In this free-evolution solution, where the transmon island
charge is set to zero (see below), the impedance Z(ω) sees
a parallel capacitance Cint, which is the effective qubit capac-
itance [56,66,67]

Cint = (
C−1

J + C−1
g

)−1
. (41)

Here CJ and Cg denote the capacitances of the Josephson
junction and the capacitance to ground, respectively. The
effective impedance of the environment, to be used in Eq. (40),
assumes the form

Z−1
eff (ω) = iωCint + Z−1(ω). (42)

The equivalent circuit is shown in Fig. 2(b). Note that the
inductance of the Josephson junction, which determines the
qubit dynamics, does not enter the calculation of Z−1

eff (ω)
but only the effective qubit capacitance Cint that shunts the
effective bath impedance.

We also note that the scenario where a bath circuit is
used to tailor a dissipative qubit environment is fundamentally

different from the case where a certain impedance is used
to filter microwave transmission. The reason is a different
boundary condition at the qubit: In the case of the tailored
bosonic environment, radiation reflects at the capacitor Cint,
whereas in the case of a microwave filter, we would have an
impedance-matched load and no reflection.

A direct comparison of Eqs. (9) and (40) yields the relation
between the spectral density of the spin-boson model and the
effective impedance

J (ω) = ω Re[Zeff (ω)]. (43)

This equation is central for experimentally tailoring a bosonic
environment, relating the effective impedance to the resulting
spectral density J (ω). It has also been shown recently that the
parallel contribution Cint in the spectral density is indeed an
essential quantity for a consistent description of such systems
in all parameter regimes [64,65].

In the considered circuit, the transmon interacts with the en-
vironmental voltage fluctuations through the operator [66,67]

Ĥint = βQ̂V̂ ≡ Q̂intV̂ , (44)

β = Cg

CJ + Cg

. (45)

Here Q̂ is the charge operator of the transmon island. The
interaction charge Q̂int accounts for an internal transmon-
qubit capacitive shunting through parameter β, reducing the
coupling to the island charge Q̂ [54]. The parameter β is not
affected by renormalization effects. However, for determina-
tion of the resulting spin-boson Hamiltonian parameter q0, one
generally needs to consider also the possible qubit-capacitance
renormalization due to coupling to the impedance, as analyzed
in Sec. III B. The final result reads

q0 = 2eβ

√
RQ

πZJ

. (46)

Here the characteristic impedance of the transmon is defined as
ZJ = RQ

√
2EC/π2EJ , where EJ is the Josephson coupling

energy, EC = e2/2(CJ + C0
g ) is the charging energy, and the

effective ground capacitance C0
g depends on the realization

(see Sec. III B). In the simplest case C0
g = Cg . Finally, the

normalized two-level system energy � for typical transmon
parameters becomes [54]

� ≈ 1

h̄

√
8EJ EC. (47)

In the following section we show how to determine EC and
demonstrate that the given identifications are consistent with
the alternative approach of including the interaction term
of Eq. (44) using a Born-Markov approximation. It is also
consistent with the exact derivation when using an open circuit,
given in Appendix A.

B. Capacitance renormalization

The impedance Z(ω) can affect the Hamiltonian of the
transmon. The effect is generally twofold: It renormalizes
(i) the effective transmon capacitance and (ii) the Joseph-
son coupling energy EJ . Effect (i) is analogous to mass
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renormalization in the spin-boson model [1] and here can
be significant. Effect (ii) is analogous to tunneling-amplitude
renormalization in the spin-boson model, before going into the
spin-boson representation [1], and here stays small due to small
environmental impedances considered Z � RQ and low qubit
energies in comparison to the superconducting energy gap.

1. Hamiltonian of an isolated transmon

The Hamiltonian of a superconducting artificial atom can be
derived by applying a Lagrangian formalism to electric circuits
[68]. The Hamiltonian of an isolated transmon is of the form
[54]

Ĥ isolated
tr = −EJ cos ϕ̂ + Q̂2

2(CJ + Cg)
. (48)

The first term on the right-hand side describes Cooper-pair
tunneling across the superconducting junction as a function of
the superconducting phase difference ϕ̂ across the Josephson
junction. The second term describes the capacitive (Coulomb)
energy related to the island charge Q. In this isolated circuit,
the effective island capacitance is the sum of CJ and Cg . The
phase and the charge are conjugated variables[

Q̂

2e
,eiϕ̂

]
= eiϕ̂ . (49)

The commutation relation is presented in this (periodic) form
since the island charge takes only values that are multiples of
2e or, equivalently, the phase distribution here is by definition
2π periodic.

2. Accounting for the counterterm

Finding the capacitance renormalization is analogous to
identifying the counterterm in general system-reservoir models
[1,2]. In this analysis, we study two equivalent forms of the total
Hamiltonian

Ĥtotal = Ĥtr + Ĥbath + Ĥint, (50)

Ĥtotal = Ĥ 0
tr + Ĥbath + [Ĥint + Ĥct], (51)

where then

Ĥ 0
tr = Ĥtr − Ĥct. (52)

In addition to the qubit, bath, and interaction Hamiltonians,
we have introduced a term Ĥct, counteracting the qubit Hamil-
tonian renormalization (coherent embedding of the environ-
ment) coming from the interaction term Ĥint. It is here the
interaction-normalized Hamiltonian Ĥ 0

tr that should be used
when theoretically reducing the transmon to a two-level system
and whose dynamics is observed in the experiment.

Strictly speaking, the renormalization is determined the-
oretically by first evaluating the Hamiltonian of Eq. (50),
for example, by using a Lagrangian approach (Appendix A)
and then estimating the embedding due to the interaction
term Ĥint = Q̂intV̂ . However, we find that in circuits we
consider the contributions Ĥct, Ĥtr , and Ĥ 0

tr can be deduced
more straightforwardly from the following coherent solutions:
(a) the solution when the resistor lead is connected but its
resistivity is set to zero, giving H 0

tr , and (b) the solution when

FIG. 3. Two environmental impedances Z(ω), whose capacitance
renormalization is considered explicitly in this section.

the resistive part is disentangled from the circuit, for example,
with an additional capacitorCdis → 0 in series with the resistor,
giving Htr .

To illustrate the mathematics of this approach, let us con-
sider the simple case of a bare Ohmic impedance Z(ω) = R.
We first identify the Hamiltonian of the circuit when resistivity
is set to zero. This fully coherent system corresponds to the one
in Eq. (48),

Ĥ 0
tr = Ĥ isolated

tr . (53)

In the second stage, we identify the transmon Hamiltonian
when disconnected from the resistor lead, which has the form
(Appendix A)

Ĥtr = −EJ cos ϕ̂ + Q̂2

2CJ

. (54)

Using this, we find for the difference

Ĥct = Ĥtr − Ĥ 0
tr

= Q̂2

2CJ

− Q̂2

2(CJ + Cg)
= Q̂2

int

2Cint
. (55)

Let us now consider the circuit shown in Fig. 3(b), which
is analogous to our proposal presented in Sec. IV. When the
resistance is set to zero, an environmental capacitive remains
with contribution C + Cc, leading to

Ĥ 0
tr = −EJ cos ϕ̂ + Q̂2

2
(
CJ + C0

g

) , (56)

where

C0
g = [

C−1
g + (C + Cc)−1

]−1
. (57)

In the second stage, we get for the Hamiltonian corresponding
to the disconnected resistor

Ĥtr = −EJ cos ϕ̂ + Q̂2

2(CJ + Cg′)
, (58)

where we have defined an effective gate capacitance

Cg′ = (
C−1

g + C−1
)−1

. (59)

This is since C appears in a series connection with Cg . To
evaluate the counterterm, let us consider explicitly the case
C → 0. We get for the difference

Ĥct = Ĥtr − Ĥ 0
tr = Q̂2

2(CJ + Cg′)
− Q̂2

2
(
CJ + C0

g

)
= Cc

Cc + Cint

1

2Cint
Q̂2

int. (60)
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To show that the above results are sound, we can estimate
the embedding due to the interaction term Ĥint = Q̂intV̂ by
an alternative method, using a Born-Markov master equation.
Such an approach assumes that the effect of the environment
(beyond the counterterm) is weak, but its result is valid also
more generally since the embedding of the environment is
the same for all R. Here we start from the Hamiltonian Ĥtr ,
where the resistor lead is decoupled from the transmon, and
estimate the renormalization explicitly. Considering the circuit
of Fig. 3(a), we then use the property that for an Ohmic
environment with resistance R and cutoff defined by the
parallel capacitor (RCint)−1 = ωc, we have transition rates and
energy-level renormalization terms

lim
s→0

∫
dt ei(ω+is)t 〈V̂ (t)V̂ (0)〉

= h̄ω

1 − e−βh̄ω
Re[Z(ω)]

− i
h̄ωc

2
Re[Z(ω)] + i

h̄ω

2π
Re[Z(ω)]�̃(ω), (61)

where Re[Z(ω)] = R/[1 + (ω/ωc)2] and �̃(ω) is defined by
a digamma function [67]. The last (imaginary) contribution
is for practical systems, with finite temperatures, of the same
size as the real part: It stays small for environments inducing
weak transition rates for the laboratory-frame qubit, which
we assume to be true in this article. More specifically, this
extra contribution is assumed to be small compared to the
anharmonicity of the qubit. The other (and possibly large)
imaginary term is independent of the resistance at usual
frequencies which are well below ωc and produces a constant
−i/2Cint. As this enters a master equation through the matrix
elements of Q̂int , one obtains finally a coherent renormalization
term Q2

int/2Cint, as obtained also in Eq. (55). This is the desired
result. In the same way, such consistency of the capacitance
renormalization between the two approaches can also be shown
to hold for the circuit of Fig. 3(b) with a counterterm as in
Eq. (60). The analysis of this section also holds exactly for
C > 0.

C. Parameters � and q0 for a transmon qubit

After theoretically identifying the capacitance renormal-
ization caused by the environment to the superconducting
artificial atom, we reduce the transmon to a two-level system
using the Hamiltonian Ĥ 0

tr [Eq. (52)]. We can now make a
connection between the parameters of the transmon qubit and
the spin-boson parameter q0.

For typical transmon parameters, the energy-level differ-
ence between the ground and the first excited state is

� ≈ 1

h̄

√
8EJ EC. (62)

Here, for example, for the Hamiltonian of Eq. (56) the charging
energy EC = e2/2(CJ + C0

g ). The transmon is practically a
nonlinear resonator, which reduces to a two-level system
when maximally only the two lowest-energy levels are pop-
ulated. The relevant quantity describing this reduction is the
anharmonicity (difference between the first and the second

energy-level differences)

h̄�an = E2 − E1 − (E3 − E2) ≈ EC. (63)

This variable will play an important role in a practical re-
alization, since the drive amplitudes �i of Eq. (16) need to
be smaller than the nonlinearity of the qubit, as discussed in
Sec. II D.

The transverse matrix element of the operator Q̂, on the
other hand, is

|〈↓|Q̂|↑〉|2 = e2

√
EJ

2EC

= e2 RQ

πZJ

. (64)

Applying the result of Eq. (64) and comparing to the form of
the spin-boson Hamiltonian of Eq. (6), we get the connection

Q̂int = βQ̂ = βe

√
RQ

πZJ

σ̂x ≡ q0

2
σ̂x, (65)

where now

q0 = 2eβ

√
RQ

πZJ

. (66)

Here again β = Cg/(CJ + Cg), where the ground capacitance
is the unnormalized (original) one Cg , whereas in the definition
of the charging energy and system energy levels the effective
ground capacitance C0

g appears.

D. Parameter α for a transmon qubit (Ohmic spectral density)

A central situation in the spin-boson theory is the case
of an Ohmic environment. Assuming an Ohmic impedance
Re[Zeff ] = R, we have J (ω) = Rω ≡ ηω. This yields a Kondo
parameter

α = 1

π
β2 R

ZJ

. (67)

The coupling α scales linearly with R and is reduced by the
capacitive shunting by the ground capacitance (β < 1). The
relevant quantity to compare R is the characteristic impedance
of the Josephson junction ZJ . The size of α when realized in
the rotating frame is studied in Sec. IV.

Moreover, for a transmon qubit and for α � 1 (weak-
coupling limit) there is a direct connection between α and the
quality factor of the qubit. A golden rule calculation gives for
the decay rate [3] (inverse quality factor)

�↓
�

= β2 R

ZJ

= πα. (68)

The limit β = 1 (no shunting of voltage fluctuations) is
the result for a dissipative classical resonator. This direct
connection appears since we have treated the transmon as
a harmonic oscillator, with weak nonlinearity, which is a
good approximation since EJ � EC . The relation between
the energy decay rate �↓ and the spin-boson parameter α was
studied recently in Ref. [49] in the case of a high-anharmonicity
flux qubit coupled to an open transmission line.

We note that if we would consider the Cooper-pair box
qubit, working in the limit EJ � EC , we would have q0 = 2e,
leading to α = R/RQ. There, a resistance R = RQ is needed
to reach α = 1.
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IV. TAILORING AN OHMIC BATH
IN THE ROTATING FRAME

In this section we consider constructing an Ohmic bath
in the rotating frame from multiple microwave resonators
with broadening. Each such resonator can be, for example,
a superconducting lumped element LC resonator integrated
with a resistive element R or a superconducting coplanar
resonator with a leakage to an open transmission line. After
a qualitatively analysis of the achievable Kondo parameter α

(Sec. IV A), we introduce our method and show a numerical
example of the bath construction (Sec. IV B). Analytical rela-
tions for bath properties are derived in Sec. IV C and robustness
against parasitic coupling between neighboring resonators is
analyzed in Sec. IV D.

A. Ohmic spectral density in the rotating frame

Let us first apply the idea presented in Sec. II C to realize
an effective Ohmic environment in the rotating frame. We first
note that in our effective system

ωc � ω1, (69)

where ω1 is the dominant Rabi frequency, which is tuned to the
energy of the superconducting qubit, � ∼ 2π × 7 GHz, and
the cutoff frequency ωc � 2π × 100 MHz. This means that
we practically need a linearly increasing impedance to create a
linearly increasing Jeff (ω), since here J (ω) = ω Re[Z(ω)] ≈
ω1Re[Z(ω)].

Let us now assume that a parameter R = η in some
Ohmic environment of the original system describes also the
maximum value of the spectral density in the constructed
effective system. Practically, such a parameter corresponds
to a characteristic impedance of the microwave transmission
line or resonator. In this discussion, for simplicity, we neglect
the factor 4 difference between the laboratory-frame and the
rotating-frame spectral densities. Let us denote by ωq the
frequency where the maximal impedance is reached in the
effective system and the two impedances meet, so we have
J (ωq) = Rωq , as depicted in Fig. 4. This gives for the coupling
parameter in the rotating frame

ηeff = R
ωq

ωq − ω1
= R

(
1 + ω1

ωc

)
. (70)

FIG. 4. Qualitative forms of the impedance Re[Z(ω)] and spectral
density J (ω) of two different environments, one being Ohmic in the
laboratory frame (blue lines) and one being Ohmic in the rotating
frame (red lines). For the same value of impedance at a certain
frequency ωq � ω1, Re[Z(ωq )] = R, the coupling parameter η =
∂J (ω)/∂ω can be essentially larger in the rotating frame.

We see that establishing a linear increase of J (ω) in the rotating
frame, we can realize an essentially larger ηeff , with the same
maximal impedance R. It can also be interpreted that the
impedance of the environment is effectively increased, without
a change in the material design.

By applying this idea for a system with a transmon qubit
we then get for the effective coupling in the rotating frame
(accounting for the factor 4)

αeff = β2

4π

ηeff

ZJ

= β2

4π

R

ZJ

(
1 + ω1

ωc

)
. (71)

The individual multiplied contributions play an important role
in determining the magnitude of αeff . The term β2/4π reduces
the coupling at least by an order of magnitude. Also the
(maximal) resistivity needs to be relatively small, R/ZJ < 1.
If we assume that these two contributions reduce the coupling
by two to three orders of magnitude, then (in this example) it is
the role of the term 1 + ω1/ωc ≈ ω1/ωc to counteract this con-
tribution. For example, we would need ω1/ωc ≈ 102 in order
to reach very strong couplings αeff ∼ 0.1–1. This corresponds
to a relatively narrow-bandwidth environment ωc � 2π × 100
MHz. This qualitative demand should be considered together
with the restriction to drive strengths �1 that are much weaker
than the transmon qubit anharmonicity �an � 2π × 350 MHz
and that the Rabi frequency has to be above the cutoff of the
effective environment �1 > ωc (see Sec. II D).

B. Bath engineering with multiple resonators

In this work we consider constructing the environmental
impedance by using a set of LCR resonators, each of them cou-
pled through a coupling capacitor Cci , as shown in Fig. 5. We
desire a method that is based on a feasible manipulation of res-
onator parameters. Possible methods for tailoring the spectral
density are varying the individual couplings of the resonators
to the qubit and varying the spacings between the resonance

FIG. 5. We consider constructing the bosonic environment from
multiple LCR resonators coupled capacitively to a superconducting
qubit. Each resonator can be a superconducting lumped element LC

resonator integrated with a resistive element R or, for example, a
superconducting coplanar resonator with leakage to an open trans-
mission line. The qubit itself contributes to the effective impedance
through the interaction capacitance Cint [Eq. (41)]. The resonators are
also assumed to be in parallel with an extra capacitor C, describing
the coupling of the qubit antenna to ground.
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FIG. 6. Effective Ohmic spectral density with three different
Kondo parameters α in the rotating frame at ω1/2π = 7 GHz.
The impedance is constructed from N = 20 dissipative resonators
with internal Q ≈ 2.2 × 103. A linear decrease in bath impedance
Re[Z(ω)] is obtained here by reducing the coupling capacitance from
0.5 fF quadratically to zero [∼1 − (i − 1)2/N 2, where i is the number
of the resonator] while increasing the inductance linearly (with i).
Different couplings α correspond to different parallel capacitors
C such that C + Cint takes the values 70 fF (α = 1),

√
2 × 70 fF

(α = 1/2), and 2 × 70 fF (α = 1/4). The used transmon parameters
are ZJ = 200 �, β = 1/

√
2, and resonator ZLC ≈ 113 �.

frequencies. A general recipe that can be implemented in an
experiment is the following.

(i) Realize all resonators with slightly different frequencies,
by varying their inductances Li and/or capacitances Ci .

(ii) Shape the spectral function by changing individual cou-
pling capacitances Cci and/or resonance-frequency spacing.

The resonator broadenings, defined by variables Ri , can be
used to shape the spectral function of the bath as well, but more
importantly it is closely connected to the achievable Kondo
parameter α, as shown below.

A practical example of bath shaping using our approach
is shown in Fig. 6, where an effective Ohmic impedance is
constructed from N = 20 resonators by varying inductances
Li and coupling capacitances Cci . A straightforward method
for calculating the total impedance (and thereby the spectral
function) of similar circuits is given in Appendix C.

C. Analytical relations

More fundamental connections between the chosen param-
eters and the achievable spectral density exists. Below we
first show analytically how the broadening and coupling of
individual modes relate to α. After this we consider explicit
formulas for the size of the individual couplings and study
how the size of the constructed (smooth) impedance depends
on resonator properties and the resonance-frequency density.
We also estimate the size of the transmon-capacitance renor-
malization.

1. Kondo parameter α

Let us first analyze how the linear increase of spectral den-
sity relates to the coupling to individual broadened resonators.
It is reasonable to assume that the steepness of the spectral
density at low effective frequencies (see, for example, Fig. 6)
is similar to, or limited by, the spectral steepness related to the
individual broadened resonators. The following discussion is
made for a laboratory-frame system, but the qualitative result
is independent of the chosen frame.

We then evaluate the decay rate of the qubit due to single
environmental broadened resonator. According to the golden
rule, the decay rate is

� = γ

γ 2 + 4ω2
g2, (72)

where γ is the width (decay rate) of the resonator, ω the
frequency with respect to the resonance frequency, and g ≡
q0gi/h̄ the total coupling. The result for the decay rate is
strictly valid for small couplings g � γ , but this formula
indeed provides a general connection between an individual
resonator spectral density and a coupling to the qubit. The
derivative of the golden rule decay rate is

∂�

∂ω
= −8

(
g

γ

)2 ω
γ[

1 + 4
(

ω
γ

)2]2 . (73)

This has a maximal value �(g/γ )2. Assuming that we synthe-
size a linear increase of the spectral density which qualitatively
follows this steepness, we can relate this directly to the
parameter α,

∂�

∂ω
= πα ∼

(
g

γ

)2

. (74)

We then find that for couplings α ∼ 1 at least some of the
resonators are in the strong-coupling regime (g ∼ γ ). It is,
however, not needed that individual resonators are in the
ultrastrong-coupling regime. This seemingly fundamental re-
sult states that the onset of the single-resonator strong-coupling
regime, which comes together with the non-Markovian system-
environment interaction, is closely related to the strong cou-
pling in the spin-boson model (α ∼ 1), when the environment
is constructed from multiple resonators.

2. Coupling to individual resonators

Let us consider now how the coupling to an individual res-
onator g relates to the system parameters. Here a Hamiltonian
for the qubit coupled to a single (nondissipative) resonator with
inductance L1 and capacitance C1 is of the form

H ≈ h̄�

2
σ̂z + h̄ω1b̂

†b̂ − 1

2
β

Cc

C + Cint

×
√

CT

C1
h̄
√

�ω1(b̂† − b̂)(σ̂+ − σ̂−), (75)

where h̄� = √
8EJ EC , EC = e2/2CT , CT = CJ +

CCg/(C + Cg), ω1 = 1/
√

L(C1 + Cc), and we have assumed
that Cc � CJ ,C1,Cg . For equal system frequencies � = ω1

we get

g = β
Cc

C + Cint

√
CT

C1
�. (76)
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A practical example is β = 1/
√

2, Cc = 0.1 fF, C + Cint =
70 fF, C1 = 2CT = 200 fF, and �/2π = 7 GHz, which gives
g/2π = 5 MHz. In the rotating frame the coupling is halved
to 2.5 MHz.

When constructing the spectral density using multiple
resonators with internal losses, the coupling to individual
resonators is reduced. This is due to the collective capacitance
due to all other resonators

C total
c ≡

N∑
i=1

Cci. (77)

We assume here that N � 1, so the considered resonator can
be included in the sum with negligible error. The effect of
coupling to a single resonator is the same as increasing the
extra capacitance to ground as C → C + C total

c . The coupling
to qubit is then approximately

g = β
Cc

C + Cint + C total
c

√
CT

C1
�. (78)

Here also h̄� = √
8EJ EC and EC = e2/2CT , but now with

CT = CJ + (C + C total
c )Cg/(C + C total

c + Cg).

3. Value of constructed smooth impedance

Let us now study the size of impedance synthesized within
our method. For this we consider first establishing a rectangular
impedance between certain frequencies ω1 and ω1 + ωinterval.
Two parameter limits lead to simple analytical formulas:
(i) when the collective coupling C total

c � Cint + C and
(ii) when C total

c � Cint + C.
Let us first consider the case C total

c � Cint + C. In this case,
the effective parallel capacitive shunting is not due to the qubit
or the capacitance C but due to all the other resonators. Here,
assuming the same coupling capacitance Cci = Cc for all N

resonators, we get a reduction of the impedance seen by the
qubit of one resonator (due to shunting of the other resonators)
by a factor (

Cc

NCc

)2

=
(

1

N

)2

. (79)

Each resonator contributes to the real part of the effective
impedance (before the considered reduction) with a Lorentzian
of area ωiZLCi and a width δω = ωiRi/ZLCi , where the
characteristic impedance of resonator i is

ZLCi =
√

Li

Ci

. (80)

Then the average value of the real part of the environmen-
tal impedance is (assuming a nearly constant characteristic
impedances and an interval ωinterval � ω1)

R ≈ 1

ωinterval

∫ ω1+ωinterval

ω1

Re[Z(ω)]dω

≈ 1

ωinterval

(
1

N

)2

Nω1ZLC

= ZLC

ω1

ωinterval

1

N
. (81)

We see that a fundamental limit is set by the characteristic
impedance of the resonators. Indeed, for a typical set of

parameters we find numerically that

R ∼ ZLC. (82)

However, the effect of such impedance to the transmon is
actually large, since the transmon impedance is usually of the
same magnitude, which is not the regime we want to be in.

In the case C total
c � Cint + C, the effective parallel shunting

is due to the qubit contribution Cint and capacitance C. This
is practically the regime of our proposed system. Here the
preceding results are valid with an additional reduction factor
[NCc/(Cint + C)]2. We then estimate for the (rectangular)
impedance achieved by the considered method

R ∼
(

NCc

Cint + C

)2

ZLC

ω1

ωinterval

1

N
. (83)

In this regime, the size of the dimensionless coupling parameter
α can then be controlled by the capacitance C, which is done
in the simulation of Fig. 6.

4. Transmon capacitance renormalization

The environmental impedance can affect the qubit param-
eters through a capacitance renormalization. Applying the
approach described in Sec. III B, we identify the Hamiltonian
of the circuit when resistances are set to zero. Here the parallel
LCR circuits become effectively shorts. The environmental
capacitance as seen by the qubit is then

Cenv = C total
c + C. (84)

This fully coherent system corresponds to the Hamiltonian of
Eq. (56) with

C0
g = [

C−1
g + (Cenv)−1

]−1
. (85)

Depending on the size of the term of Eq. (84) in comparison
to Cg , the contribution of this can be significant (for example,
when Cenv < Cg and CJ ∼ Cg). This correction then needs to
be included in the free Hamiltonian (56).

We note that the same result is obtained also by reducing the
characteristic impedance of resonators to zero, by taking the
resonator capacitances to infinity. This gives for the effective
capacitance of each resonator lead Cci and thereby again an
effective environmental capacitance as in Eq. (84).

D. Robustness against parasitic coupling

Here we numerically study deviations in the spectral func-
tion due to a parasitic mutual coupling of bosonic bath res-
onators. As described in Appendix C, we assume a capacitive
nearest-neighbor coupling between resonators, with cyclic
boundary conditions. Unwanted substructure that is introduced
by this mutual coupling is suppressed when resonators nearby
in frequency are arranged also spatially adjacent (except at
the boundary from the largest to the smallest). A numerical
simulation of the effect of parasitic coupling is provided in
Fig. 7. We generally find that the resonator-resonator coupling
should be of the same order as or less than the coupling of
individual resonators, so that our construction method works.
In the opposite limit, the individual peaks are pushed away
from each other and become visible. We can then summarize
two important findings for tailoring the impedance for Kondo
couplings α ∼ 1 using the presented method.
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FIG. 7. Effect of parasitic resonator-resonator coupling to the
impedance of the system in Fig. 6. Here p = Cp/Cmax

i corresponds to
the relative strength of the parasitic coupling, where Cp is the nearest-
neighbor parasitic capacitance and Cmax

i = 0.5 fF is the maximal
coupling between a resonator and qubit. The other parameters are
as in Fig. 6 for α = 1. The curves have been separated by 0.04 GHz
and the dashed lines correspond to the spectral densities with α = 1.
We find that the low-frequency part of the impedance is practically
unchanged when parasitic coupling is of the same magnitude or less
than the (maximal) qubit-resonator coupling.

(a) Coupling between the qubit and at least some of the
resonators has to be in the strong-coupling limit g ∼ γ .

(b) Parasitic coupling between resonators should be maxi-
mally of the same order as the maximal coupling to the qubit g.

V. EXPERIMENTAL REALIZATION

In this section we provide a brief description of an experi-
mental realization of a spin-boson quantum simulator based
on a modular flip-chip approach. In addition, we discuss
experimental protocols that allow one to access interesting
quantities of the two-level system in the spin-boson simulator.
They include the bath initialization, qubit-state preparation,
and qubit-state measurement.

A. Flip-chip approach

In our preliminary experimental realization of the spin-
boson model, we place the two-level system and the bosonic
bath on two physically different chips. Both samples are
mounted in a specifically designed sample box on top of each
other in a flip-chip fashion [69,70]. The qubit sample at the
bottom is mounted on the ground level of the sample box, which
allows for the required bond connections to the coaxial control
lines, while the upper sample containing the bosonic bath is
flipped upside down and therefore facing the qubit chip. The ca-
pacitive coupling between the qubit and bosonic bath is medi-
ated via electric fields in the volume between the two samples.

We implement a bosonic bath formed by N = 20 lumped-
element resonators that individually couple to the qubit via
coupling antennas. The resonators are equipped with resistive

elements that allow us to tailor their internal dissipation such
that they overlap in a restricted frequency band and form a
bosonic bath of a smooth spectral function. A shaping of
the bosonic bath impedance Z(ω) is achieved by adjusting
the individual coupling strengths between the qubit and the
bosonic resonator modes, as described in Sec. IV. The two-
level system is formed by a concentric transmon qubit [71],
which allows for an approximately equal coupling in any
direction in its plane due to its rotational symmetry.

In a preliminary experiment, we have demonstrated that the
qubit decay rate can be dominated by the engineered bosonic
bath in a spectral range of ∼500 MHz. The bath-induced qubit
decay rate at different frequencies corresponded here directly
to the noise at different frequencies in the spin-boson model
(α � 1) and thereby shows that quantum simulation using the
flip-chip approach is possible. A more detailed description of
this experiment is provided in Ref. [70].

B. Measurement protocols

In order to experimentally observe specific dynamics of the
spin-boson model, we propose two possible pulse sequences
that allow us to access the expectation values of σ̂x [well
population function P (t)] as well as of σ̂z (energy decay)
with different bath initializations. A brief description for
the expected behavior of the well-population dynamics, the
function P (t), is given in Sec. II B 2 and in Fig. 1.

1. Qubit initialization and measurement of 〈σ̂z〉 and 〈σ̂x〉
Observing the time evolution of the expectation values 〈σ̂z〉

or 〈σ̂x〉 can be performed with an extension of the measurement
protocol applied in Ref. [20] [see Figs. 8(a) and 8(b)]. The qubit
in the laboratory frame is initially biased to a frequency outside
the spectral location of the bosonic bath. In the frequency space
shown in Fig. 8(b), this is referred to as qubit control. The
qubit is excited to the equatorial plane of the Bloch sphere
by applying a π/2 rotation [see Fig. 8(a)]. By controlling
the relative phase of the successive Rabi drives [20], we can
prepare the qubit in an eigenstate of σ̂x . This allows us to also
initialize the effective qubit state, because at t = 0 eigenstates
remain unchanged during the transformation into the rotating
frame. Alternatively, the qubit can stay in its ground state or
be prepared in its excited state by applying a π rotation prior
to the start of the simulation sequence at t = 0. With a fast
frequency tuning pulse, the qubit is brought into resonance
with the bosonic bath during the simulation time τ , where we
apply the drive tones with frequencies ω1 and ω2 (see Sec. II C).
As can be seen in the pulse sequence depicted in Fig. 8(b), the
laboratory frame qubit frequency is tuned to the lower cutoff
frequency ω0 of the bosonic bath. This also corresponds to zero
frequency in the effective frame, given by the rotating frame
frequency ω1 = ω0. After the simulation of time τ , we apply
an optional π/2 rotation prior to qubit readout. This allows us
to measure 〈σ̂x〉 of the qubit state. If no rotation is applied, we
measure the qubit state along its quantization axis 〈σ̂z〉.

2. Bath initialization

Within the above formalism we are able to probe the relax-
ation of qubit excitations for both 〈σ̂z〉 and 〈σ̂x〉. For a direct
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FIG. 8. Measurement protocols for the spin-boson simulator.
(a) Pulse sequence for preparing an eigenstate of σ̂z or σ̂x , with the
qubit out of resonance with the bosonic bath, followed by interaction
with the bath during time τ and readout. The qubit is tuned into
the presence of the bosonic bath with a fast detuning pulse. Prior
to dispersive qubit readout, we can rotate the qubit state in order to
measure 〈σ̂z〉 or 〈σ̂x〉. (b) Schematic location of the drive frequencies
ω1 and ω2. The spectral location of the bosonic bath with individual
mode frequencies ωi is schematically depicted in blue, indicating its
spectral function S(ω). (c) Proposed pulse sequence for measuring
P (t) including a bath initialization scheme. The qubit is initially
prepared in an eigenstate of σ̂x via a π/2 rotation. At ti < t < 0,
we initialize the bosonic bath via a strong bath drive of amplitude �R

and frequency ω1. For t > 0, we set �R = 0.

comparison with the spin-boson theory, for example, presented
in Ref. [1], the environment has to be properly initialized
in addition. On the other hand, a comparison between the
results obtained using different initialization methods allows
for experimentally exploring the effect of bath initialization in
the spin-boson model.

In order to observe the well population function P (t) as
discussed in Ref. [1], the qubit in the spin-boson system is
initially required to be in an eigenstate of σ̂x for t < 0, with the
bath being relaxed in thermal equilibrium within this condition.
This can be achieved experimentally by applying a Rabi drive
at the rotating frame frequency ω1 of enhanced amplitude
�R = �1 + A(t). After the transformation in the interaction
picture, this leaves an additional term in the effective spin-
boson Hamiltonian

Ĥeff + A(t)σ̂x, (86)

with Ĥeff given in Eq. (23). Initialization is applied at an
effective amplitude A(t) = �R − �1 � g, where g is the
typical coupling strength between the qubit and the individual
bosonic mode. Figure 8(c) shows a schematic of the proposed
pulse sequence. Bath initialization takes place during ti < t <

0, with ti defined by the inverse spectral width of the bosonic

bath. The simulation starts at t = 0, where the initialization
drive is switched off, A(t) = 0, and the Rabi drives of the
simulation scheme are switched on. To recover the well
population function P (t), we π/2 rotate the qubit state before
readout in order to measure 〈σ̂x〉.

C. Bath heating

Dissipation of the bosonic bath can be implemented by
adding an ancillary transmission line, providing a loss channel
for bath excitations [72]. In our approach, dissipation takes
place by Ohmic dissipation on chip and therefore involves
Joule heating. The effect gives rise to a small modification
of the bath spectral function. The main source of on-chip
dissipation can be assumed to be the Rabi drive with amplitude
�1 and frequency ω1, which in a realistic experiment also
couples directly to the bath.

If we assume that the coupling between the drive and
the bath is mediated by the qubit, the effective drive of the
environment is of an approximate amplitude (Cci/Cint)�1

per resonator i. Each resonator will couple to the drive with
separate coupling. In the system considered in Sec. IV, each
resonator has an approximative width γi � 2π × 5 MHz. Con-
sidering explicitly the highest-energy resonator, with the off-
resonance drive ωi − ω1 ∼ 2π × 50 MHz, we get an average
photon number in this resonator

〈n̂i〉 ≈
(

Cci

Cint

)2(
�1

ωi − ω1

)2

� 10−2. (87)

This leads to a photon dissipation rate �dis = γi〈n̂i〉 � 1 MHz.
Due to the specific form of the designed impedance, the
result is approximately the same for all individual resonators.
The length of the one measurement process is roughly 1 μs,
which implies that during one measurement each on-chip
resistor absorbs on average less than one photon. The effect
of this on the temperature of each resistor is small, but can
set a minimal (cooling) time interval between two successive
measurement protocols. Specific pulsing schemes that relax
the environmental resonators to their ground states just before
the quantum simulation can also be used [73–75].

VI. CONCLUSION AND DISCUSSION

We have shown that a quantum simulation of the spin-boson
model can be performed in a wide parameter range using a
superconducting qubit connected to a microwave circuit. In
order to probe numerically difficult parameter regimes, we
considered an extension of the driving scheme proposed in
Ref. [18]. This effectively down-converts the system dynamics
from the gigahertz to the megahertz regime, while preserving
the order of the coupling strength between the two-level
system and the environment. The approach allows for the
observation of a quantum phase transition in a regime of a
large effective Kondo parameter α ∼ 1, also without the use
of a high-anharmonicity superconducting qubit. We find that
this requires strong coupling between the qubit and microwave
resonators in the laboratory frame. The phase transition region
in the spin-boson model corresponds to a regime with an energy
decay rate of the two-level system that is comparable to its
effective transition frequency.
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We discussed how to experimentally probe the well popu-
lation dynamics P (t) under different initialization conditions
of the bosonic bath. For this purpose we provided concrete
measurement pulse sequences, based on well-established con-
trol and detection schemes from circuit QED. In the system
considered, probing the well population dynamics corresponds
to measuring the expectation value of the σ̂x(t) operator. It is
also straightforward to study other two-level system correlation
functions, such as of the σ̂z(t) operator, as well as the effect of
bath initialization.

The proposed approach allows for engineering a rather
arbitrary spectral function in a restricted frequency range.
We estimated that for a realization with a transmon qubit
the spectral width of the environment must be in the range
of 100 MHz. By controlling the drive and qubit frequencies,
we can adjust the zero-frequency condition of the tailored
bosonic bath, which allows us to choose the effective system
temperature Teff . By controlling the amplitude of the weaker
Rabi drive �2, we can tune the effective two-level system
energy relative to the temperature and the cutoff frequency
ωc, which is of central importance in the spin-boson theory.
In particular, Kondo physics can be observed for an effective
temperature below the Kondo temperature TK . At the Toulouse
point (α = 1/2) one can estimate [7] kBTK ∼ h̄�2

2/ωc, which
can be adjusted by �2. Hence, our system can access a large
parameter space of the spin-boson model via experimental
drive control. The proposed experimental approach, based on
the flip-chip technique, also features a modularity that allows
one to probe various fabricated bosonic environments with the
same qubit in successive experiments.
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APPENDIX A: DERIVING SPIN-BOSON MODEL
PARAMETERS USING AN OPEN-CIRCUIT METHOD

In this Appendix we introduce the open-circuit method
which can be used to model the considered dissipative cir-
cuits by treating the on-chip resonators by equivalent open
transmission lines. For simplicity, we consider here the model
of a Josephson junction coupled to a single dissipative LCR

circuit, as shown in Fig. 9. The generalization to many res-
onators is straightforward but technically more involved than
if determining the effective impedance classically, as done in
the main text. Working with such explicit circuits helps one to
check the validity of results based on more phenomenological
approaches.

FIG. 9. Open-circuit model of a Josephson junction capacitively
coupled to dissipative LC resonator.

1. Lagrangian

We consider a Josephson junction coupled to one dissipative
resonator, as shown in Fig. 9. By representing the resistor as
a semi-infinite transmission line, the total Lagrangian can be
written as

L = Lenv + Lint + LJJ , (A1)

where the environmental part corresponds to the Lagrangian
of a semi-infinite transmission line

Lenv = C�̇2
1

2
− �2

1

2L
+

∞∑
i�2

δxC ′�̇2
i

2
−

∞∑
i�2

(�i − �i−1)2

2L′δx
.

(A2)

The variable �i(t) corresponds to the magnetic flux at node i

and �̇i is the corresponding voltage. The interaction part reads

Lint = Cc(�̇1 − �̇0)2

2
(A3)

and the Josephson-junction part

LJJ = EJ cos

(
�0

h̄/2e

)
+ CJ �̇2

0

2
. (A4)

2. Hamiltonian

Derivation of the Hamiltonian starts from the identification
of the conjugated variables of the fluxes. These are defined as
Qi = ∂L/∂�̇i . We get

Q0 = Cc(�̇0 − �̇1) + CJ �̇0, (A5)

Q1 = Cc(�̇1 − �̇0) + C�̇1, (A6)

Qi�2 = δxC ′�̇i . (A7)

The inverse transformation has the form

�̇i�2 = Pi

δxC ′ , (A8)

�̇1 = Q1
Cc + CJ

C(Cc + CJ ) + CcCJ

+ Q0
Cc

C(Cc + CJ ) + CcCJ

≡ Q1
1 + CJ /Cc

C̃
+ Q0

C̃
, (A9)

�̇0 = Q0
Cc + C

CJ (Cc + C) + CcC
+ Q1

Cc

CJ (Cc + C) + CcC

≡ Q0
1 + C/Cc

C̃
+ Q1

C̃
. (A10)
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Our Lagrangian corresponds to the Hamiltonian

H = Henv + Hint + HJJ , (A11)

where

Henv = �2
1

2L
+ Q2

1

2(C + Cp1)
+

∑
i�2

Q2
i

2δxC ′

+
∑
i�2

(�i − �i−1)2

2L′δx
. (A12)

Here we have defined the series capacitance as seen by the
resonator, 1/Cp1 ≡ 1/Cc + 1/CJ . If we identify Cc = Cg (as
in the main text) we have Cp1 = Cint. As the Lagrangian and
Hamiltonian terms for Q0 are the same as for Q1, within the
swap CJ ↔ C1, we must have

HJJ = −EJ cos

(
2e

h̄
�0

)
+ Q2

0

2(CJ + Cp0)
, (A13)

where analogously 1/Cp0 ≡ 1/Cc + 1/C. The junction and
resonator capacitances are now renormalized as expected. The
interaction term gets the form

Hint = Q0Q1

C̃
, C̃ = CJ + C + CJ C

Cc

. (A14)

We note that in the main text the operator Q̂0 is marked
simply Q̂.

3. Solution

We have now determined the form of the Hamiltonian
corresponding to the circuit of Fig. 9. The next step is to
establish the solution when the interaction term is turned off.
In the transmission line one obtains a wave equation whose
solution can be written in the form

�̂(x > 0,t) =
√

h̄R

4π

∫ ∞

0

dω√
ω

[b̂in(ω)ei(−kωx−ωt)

+ b̂out(ω)ei(kωx−ωt) + H.c.]. (A15)

Here the characteristic impedance R = √
L′/C ′ and the wave

number kω = ω
√

L′C ′. The bosonic terms b̂
†
in(ω) and b̂in(ω)

correspond to incoming photon-field creation and annihilation
operators. They (as well as the out-field operators) satisfy
[b̂in(ω),b̂†in(ω′)] = δ(ω − ω′).

The Heisenberg equations of motion at i = 1 read

ˆ̇�1(t) = Q̂1

C + Cp1
+ 0 × Q̂0

C̃
, (A16)

ˆ̇Q1(t) = − �̂1

L
+ �̂2 − �̂1

δxL′

→ − �̂1

L
+ 1

L′
∂�̂(x = 0,t)

∂x
. (A17)

In Eq. (A16) we have set the interaction term (boldface) to zero.
The junction is now decoupled from the dissipative resonator.
These equations lead to the relation

(C + Cp1) ˆ̈�(x = 0,t)

= − �̂(x = 0,t)

L
+ 1

L′
∂�̂(x = 0,t)

∂x
. (A18)

This is a boundary condition between the incoming and out-
going fields. The solution is obtained by Fourier transforming,
which gives

ω2(C + Cp1)[b̂in(ω) + b̂out(ω)]

= 1

L
[b̂in(ω) + b̂out(ω)] + i

ω

R
[b̂in(ω) − b̂out(ω)].

(A19)

The solution is

b̂out(ω) = −
1 + i

Lω/R

1−(ω/ω1)2

1 − i
Lω/R

1−(ω/ω1)2

b̂in(ω). (A20)

We find that at zero as well as at infinite frequency, the boundary
condition gives âout + âin = 0. Similarly, we find

b̂in(ω) + b̂out(ω) = −2i
Lω/R

1 − (ω/ω1)2 − iLω/R
b̂in(ω)

≡ A(ω)b̂in(ω). (A21)

This is proportional to the impedance of the parallel LCR

circuit

Zeff (ω) = 1
1
R

+ 1
iωL

+ iω(C + Cp1)
= R

2
A∗(ω), (A22)

Re[Zeff (ω)] = R

4
|A(ω)|2. (A23)

The solution for the interaction voltage has the form

Vint(t) ≡ Q̂1(t)

C̃

= −i
Cc

Cc + CJ

√
h̄R

4π

∫ ∞

0
dω

√
ωA(ω)b̂in(ω)e−iωt

+ H.c., (A24)

〈Vint(t)Vint(0)〉T =0 =
(

Cc

Cc + CJ

)2
h̄

π

×
∫ ∞

0
dω ω Re[Zeff (ω)]e−iωt . (A25)

This agrees with the results given in the main text.

APPENDIX B: SINGLE-MODE VERSUS
CONTINUOUS-MODE TREATMENT OF A

MICROWAVE RESONATOR

In this Appendix we study the connection between single-
and continuous-mode treatments of a microwave resonator. In
the preceding Appendix we already derived an example of the
connection between single-mode and multimode treatments,
by deriving an exact form of the amplitude function gi ∝ A(ω)
in the case of a transmon coupled to a single dissipative
LCR resonator [Eqs. (A22)–(A25)]. In this Appendix we
consider relations between the single- and continuous-mode
treatments by using the representation in (numerable) bosonic
operators b̂i .
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For simplicity, we consider here the case q0 = 2e (Cooper-
pair box), generalization to other cases is straightforward.
In the single-mode analysis, the relative coupling strength
between the qubit and a mode of frequency ωr (divided by the
mode frequency) is given (in the absence of coupling capacitor)
by

g =
√

πZLC

RQ

, (B1)

where ZLC is the characteristic impedance of a microwave res-
onator. On the other hand, for the continuous-mode description
of the same broadened mode, it is the area of the peak that
matters,

q2
0

2πh̄

∫
dω J (ω) = 1

RQ

∑
i

g2
i = ω2

r

g2

2
, (B2)

where we have used the information that in the case considered
the integration over J (ω) is proportional to the characteristic
impedance ZLC . Here the values g2

i form a peak around the
central frequency ωr , describing a broadened resonator. We
then obtain a connection between the single-mode and the
continuous-mode treatments of the same peak in the spectral
density

g2 = 2

RQ

∑
i

(
gi

ωr

)2

= 1

πh̄

∑
i

(
q0gi

ωr

)2

. (B3)

We see that the (squared) total effective strength is proportional
to the sum of the squared strengths of individual modes. Note
also that in comparison to couplings gi , the coupling g is
normalized by ωr , which means that it depends only on the
characteristic impedance of the resonator [see Eq. (B1)].

We could also interpret such a single-mode peak as a single
slice of an Ohmic spectrum, at frequency ωr , with width dω

and total coupling g. This interpretation gives a relation

q2
0

2πh̄

∫
dωJ (ω) = ω2

r

g2

2
= αωrdω. (B4)

This leads to the identification

α = 1

2

ωr

dω
g2. (B5)

The variable dω is so far arbitrary and stands here for the width
of the chosen slice of the Ohmic spectrum. Also the variable
g is not fixed.

If we decide to fix the frequency-normalized coupling g

(not ωrg), i.e., keep the characteristic impedances independent
of the frequency of the chosen slice, then the frequency
interval between resonators dω has to decrease with the
position ωr . This can be interpreted as the quality factors of
individual resonators needing to be identical: The resonators
are equivalent up to a frequency conversion. On the other hand,

FIG. 10. Lumped-element model of the resonator bath with addi-
tional parasitic couplings Cpi .

if we decide to fix dω, we obtain that the coupling needs
to behave as g2 ∝ αdω/ωr . This increases when decreasing
ωr . However, equivalently, the unnormalized couplings should
behave as (ωrg)2 ∼ g2

i ∼ αωrdω. This then shows that the
actual (squared) couplings g2

i need to increase linearly with
frequency, as expected.

It should be noted that when constructing an effective bath
at high frequencies instead, the contributions of individual
resonator frequencies ωi in the effective couplings ωig can
be treated as a constant. The bath can then be constructed by
varying the resonator density or by manipulating couplings g

by additional coupling capacitors, as described in the main text.

APPENDIX C: DETERMINING THE IMPEDANCE
OF THE ENVIRONMENT

We consider the generalized circuit shown in Fig. 10. We
mark the voltage of island i, which is located between the
capacitor Cci and LCRi element, by Vi . The impedance
can then be evaluated from the conditions for the current
conservation

V − V1

ZC1
= V1

ZLCR1
+ V1 − V2

ZP 1
+ V1 − VN

ZPN

,

V − V2

ZC2
= V2

ZLCR2
+ V2 − V3

ZP 2
+ V2 − V1

ZP 1
,

(C1)
...

V − VN

ZCN

= VN

ZLCRN

+ VN − V1

ZPN

+ VN − VN−1

ZP (N−1)
.

Here we represent each circuit element by their equivalent
impedance, for the coupling capacitor i this being ZCi =
(iωCci)−1, for the parasitic coupling Zpi = (iωCpi)−1, and
for the LCR element ZLCRi = (iωCi + 1/iωLi + 1/Ri)−1.
The above set of equations can be represented as the matrix
equation for island voltages Vi ,

⎛
⎜⎝

V/ZC1

V/ZC2

. . .

V /ZCN

⎞
⎟⎠ =

⎛
⎜⎜⎝

1
ZC1

+ 1
ZLCR1

+ 1
ZP 1

+ 1
ZPN

− 1
ZP 1

· · · − 1
ZPN

− 1
ZP 1

1
ZC2

+ 1
ZLCR2

+ 1
ZP 2

+ 1
ZP 1

− 1
ZP 2

· · ·
· · · · · · · · · · · ·

− 1
ZPN

· · · − 1
ZP (N−1)

1
ZCN

+ 1
ZLCRN

+ 1
ZPN

+ 1
ZP (N−1)

⎞
⎟⎟⎠

⎛
⎜⎝

V1

V2

· · ·
VN

⎞
⎟⎠.

(C2)
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The relative voltages Vi/V can then be straightforwardly solved numerically using matrix inversion. The impedance Z is solved
using the relation

I =
∑

i

V − Vi

ZCi

, (C3)

which then leads to the equation for impedance Z,

1

Z
≡ I

V
=

∑
i

[
1

ZCi

− 1

V

Vi

ZCi

]
. (C4)

As discussed in the main text, the total effective impedance as seen by the qubit includes also capacitors C and Cint. The answer
for the total effective impedance is then

Zeff = (iωC + iωCint + Z−1)−1. (C5)

[1] A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, and
W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[2] U. Weiss, Quantum Dissipative Systems, 3rd ed. (World Scien-
tific, Singapore, 2008).

[3] A. Shnirman, Y. Makhlin, and G. Schön, Phys. Scr. T102, 147
(2002).

[4] P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. B 87,
014305 (2013).

[5] M. Marthaler and J. Leppäkangas, Phys. Rev. B 94, 144301
(2016).

[6] K. Le Hur, Phys. Rev. B 85, 140506 (2012).
[7] M. Goldstein, M. H. Devoret, M. Houzet, and L. I. Glazman,

Phys. Rev. Lett. 110, 017002 (2013).
[8] F. B. Anders, R. Bulla, and M. Vojta, Phys. Rev. Lett. 98, 210402

(2007).
[9] I. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153

(2014).
[10] E. Manousakis, J. Low Temp. Phys. 126, 1501 (2002).
[11] D. Porras, F. Marquardt, J. von Delft, and J. I. Cirac, Phys. Rev.

A 78, 010101(R) (2008).
[12] C. Schneider, D. Porras, and T. Schaetz, Rep. Prog. Phys. 75,

024401 (2012).
[13] A. Lemmer, C. Cormick, D. Tamascelli, T. Schaetz, S. F. Huelga,

and M. B. Plenio, arXiv:1704.00629.
[14] S. Mostame, P. Rebentrost, A. Eisfeld, A. J. Kerman, D. I.

Tsomokos, and A. Aspuru-Guzik, New J. Phys. 14, 105013
(2012).

[15] F. Mei, V. M. Stojanović, I. Siddiqi, and L. Tian, Phys. Rev. B
88, 224502 (2013).

[16] J.-M. Reiner, M. Marthaler, J. Braumüller, M. Weides, and G.
Schön, Phys. Rev. A 94, 032338 (2016).

[17] L. García-Álvarez, J. Casanova, A. Mezzacapo, I. L. Egusquiza,
L. Lamata, G. Romero, and E. Solano, Phys. Rev. Lett. 114,
070502 (2015).

[18] D. Ballester, G. Romero, J. J. García-Ripoll, F. Deppe, and E.
Solano, Phys. Rev. X 2, 021007 (2012).

[19] J. Li, M. Silveri, K. Kumar, J.-M. Pirkkalainen, A. Vepsäläinen,
W. Chien, J. Tuorila, M. Sillanpää, P. Hakonen, E. Thuneberg
et al., Nat. Commun. 4, 1420 (2013).

[20] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H.
Rotzinger, M. Weides, and A. V. Ustinov, Nat. Commun. 8, 779
(2017).

[21] M. Haeberlein, F. Deppe, A. Kurcz, J. Goetz, A. Baust, P. Eder,
K. Fedorov, M. Fischer, E. P. Menzel, M. J. Schwarz et al.,
arXiv:1506.09114.

[22] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031
(2008).

[23] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008).

[24] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).
[25] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).
[26] X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori,

Phys. Rep. 718-719, 1 (2017).
[27] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[28] J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A.

Blais, and A. Wallraff, Nature (London) 454, 315 (2008).
[29] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero,

M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis
et al., Nature (London) 459, 546 (2009).

[30] G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba,
S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R.
Huber, Nature (London) 458, 178 (2009).

[31] A. A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G.
Biasiol, L. Sorba, and F. Beltram, Phys. Rev. B 79, 201303(R)
(2009).

[32] J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E.
Solano, Phys. Rev. Lett. 105, 263603 (2010).

[33] P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E.
Solano, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett.
105, 237001 (2010).

[34] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano
et al., Nat. Phys. 6, 772 (2010).

[35] A. Baust, E. Hoffmann, M. Haeberlein, M. J. Schwarz, P. Eder,
J. Goetz, F. Wulschner, E. Xie, L. Zhong, F. Quijandría et al.,
Phys. Rev. B 93, 214501 (2016).

[36] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and
K. Semba, Nat. Phys. 13, 44 (2016).

[37] Z. Chen, Y. Wang, T. Li, L. Tian, Y. Qiu, K. Inomata, F.
Yoshihara, S. Han, F. Nori, J. S. Tsai et al., Phys. Rev. A 96,
012325 (2017).

[38] S. J. Bosman, M. F. Gely, V. Singh, A. Bruno, D. Bothner, and
G. A. Steele, Quantum Inf. 3, 46 (2017).

052321-18

https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1238/Physica.Topical.102a00147
https://doi.org/10.1238/Physica.Topical.102a00147
https://doi.org/10.1238/Physica.Topical.102a00147
https://doi.org/10.1238/Physica.Topical.102a00147
https://doi.org/10.1103/PhysRevB.87.014305
https://doi.org/10.1103/PhysRevB.87.014305
https://doi.org/10.1103/PhysRevB.87.014305
https://doi.org/10.1103/PhysRevB.87.014305
https://doi.org/10.1103/PhysRevB.94.144301
https://doi.org/10.1103/PhysRevB.94.144301
https://doi.org/10.1103/PhysRevB.94.144301
https://doi.org/10.1103/PhysRevB.94.144301
https://doi.org/10.1103/PhysRevB.85.140506
https://doi.org/10.1103/PhysRevB.85.140506
https://doi.org/10.1103/PhysRevB.85.140506
https://doi.org/10.1103/PhysRevB.85.140506
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1103/PhysRevLett.110.017002
https://doi.org/10.1103/PhysRevLett.98.210402
https://doi.org/10.1103/PhysRevLett.98.210402
https://doi.org/10.1103/PhysRevLett.98.210402
https://doi.org/10.1103/PhysRevLett.98.210402
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1023/A:1014295416763
https://doi.org/10.1023/A:1014295416763
https://doi.org/10.1023/A:1014295416763
https://doi.org/10.1023/A:1014295416763
https://doi.org/10.1103/PhysRevA.78.010101
https://doi.org/10.1103/PhysRevA.78.010101
https://doi.org/10.1103/PhysRevA.78.010101
https://doi.org/10.1103/PhysRevA.78.010101
https://doi.org/10.1088/0034-4885/75/2/024401
https://doi.org/10.1088/0034-4885/75/2/024401
https://doi.org/10.1088/0034-4885/75/2/024401
https://doi.org/10.1088/0034-4885/75/2/024401
http://arxiv.org/abs/arXiv:1704.00629
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1103/PhysRevB.88.224502
https://doi.org/10.1103/PhysRevB.88.224502
https://doi.org/10.1103/PhysRevB.88.224502
https://doi.org/10.1103/PhysRevB.88.224502
https://doi.org/10.1103/PhysRevA.94.032338
https://doi.org/10.1103/PhysRevA.94.032338
https://doi.org/10.1103/PhysRevA.94.032338
https://doi.org/10.1103/PhysRevA.94.032338
https://doi.org/10.1103/PhysRevLett.114.070502
https://doi.org/10.1103/PhysRevLett.114.070502
https://doi.org/10.1103/PhysRevLett.114.070502
https://doi.org/10.1103/PhysRevLett.114.070502
https://doi.org/10.1103/PhysRevX.2.021007
https://doi.org/10.1103/PhysRevX.2.021007
https://doi.org/10.1103/PhysRevX.2.021007
https://doi.org/10.1103/PhysRevX.2.021007
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1038/ncomms2383
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
http://arxiv.org/abs/arXiv:1506.09114
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1038/nature07112
https://doi.org/10.1038/nature07112
https://doi.org/10.1038/nature07112
https://doi.org/10.1038/nature07112
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature07838
https://doi.org/10.1038/nature07838
https://doi.org/10.1038/nature07838
https://doi.org/10.1038/nature07838
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevB.93.214501
https://doi.org/10.1103/PhysRevB.93.214501
https://doi.org/10.1103/PhysRevB.93.214501
https://doi.org/10.1103/PhysRevB.93.214501
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1038/s41534-017-0046-y
https://doi.org/10.1038/s41534-017-0046-y
https://doi.org/10.1038/s41534-017-0046-y
https://doi.org/10.1038/s41534-017-0046-y


QUANTUM SIMULATION OF THE SPIN-BOSON MODEL … PHYSICAL REVIEW A 97, 052321 (2018)

[39] J. P. Martínez, S. Léger, N. Gheereart, R. Dassonneville, L.
Planat, F. Foroughi, Y. Krupko, O. Buisson, C. Naud, W.
Guichard et al., arXiv:1802.00633.

[40] R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano,
R. Blatt, and C. F. Roos, Nature (London) 463, 68
(2010).

[41] M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J.
Faist, Phys. Rev. Lett. 108, 106402 (2012).

[42] C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella,
R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, Phys.
Rev. B 90, 205309 (2014).

[43] C. Ciuti, G. Bastard, and I. Carusotto, Phys. Rev. B 72, 115303
(2005).

[44] M.-J. Hwang, R. Puebla, and M. B. Plenio, Phys. Rev. Lett. 115,
180404 (2015).

[45] S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010).
[46] J. Leppäkangas, M. Marthaler, D. Hazra, S. Jebari, R. Albert,

F. Blanchet, G. Johansson, and M. Hofheinz, Phys. Rev. A 97,
013855 (2018).

[47] A. F. Kockum, V. Macrí, L. Garziano, S. Savasta, and F. Nori,
Sci. Rep. 7, 5313 (2017).

[48] P. Forn-Díaz, J. García-Ripoll, B. Peropadre, J.-L. Orgiazzi, M.
Yurtalan, R. Belyansky, C. Wilson, and A. Lupascu, Nat. Phys.
13, 39 (2016).

[49] L. Magazzú, P. Forn-Díaz, R. Belyansky, J.-L. Orgiazzi, M. A.
Yurtalan, M. R. Otto, A. Lupascu, C. M. Wilson, and M. Grifoni,
Nat. Commun. 9, 1403 (2018).

[50] A. Mezzacapo, U. L. Heras, J. S. Pedernales, L. Di-
Carlo, E. Solano, and L. Lamata, Sci. Rep. 4, 7482
(2017).

[51] N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A.
Bruno, F. Luthi, D. J. Thoen, A. Endo, and L. DiCarlo, Nat.
Commun. 8, 1715 (2017).

[52] W. Qin, A. Miranowicz, P.-B. Li, X.-Y. Lü, J. Q. You, and F.
Nori, Phys. Rev. Lett. 120, 093601 (2018).

[53] C. Leroux, L. C. G. Govia, and A. A. Clerk, Phys. Rev. Lett.
120, 093602 (2018).

[54] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[55] G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).
[56] G.-L. Ingold and Y. V. Nazarov, Single Charge Tunneling:

Coulomb Blockade Phenomena in Nanostructures (Plenum,
New York, 1992).

[57] S. Dambach, B. Kubala, V. Gramich, and J. Ankerhold, Phys.
Rev. B 92, 054508 (2015).

[58] J. Leppäkangas, M. Fogelström, M. Marthaler, and G. Johans-
son, Phys. Rev. B 93, 014506 (2016).

[59] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve,
F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl et al., Phys.
Rev. B 72, 134519 (2005).

[60] B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984).
[61] D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York,

1998).
[62] M. Wallquist, V. S. Shumeiko, and G. Wendin, Phys. Rev. B 74,

224506 (2006).
[63] R. Loudon, The Quantum Theory of Light (Oxford University

Press, New York, 2010).
[64] M. Malekakhlagh and H. E. Türeci, Phys. Rev. A 93, 012120

(2016).
[65] A. Parra-Rodriguez, E. Rico, E. Solano, and I. L. Egusquiza,

Quantum Sci. Technol. 3, 024012 (2018).
[66] A. Shnirman and Y. Makhlin, J. Exp. Theor. Phys. Lett. 78, 447

(2003).
[67] J. Leppäkangas and E. Thuneberg, Phys. Rev. B 78, 144518

(2008).
[68] M. H. Devoret, in Quantum Fluctuations in Electrical Circuits,

Proceedings of the Les Houches Summer School of Theoretical
Physics, LXIII, 1995, edited by S. Reynaud, E. Giacobino, and
J. Zinn-Justin (Elsevier, Amsterdam, 1995).

[69] Z. K. Minev, K. Serniak, I. M. Pop, Z. Leghtas, K. Sliwa, M.
Hatridge, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys.
Rev. Appl. 5, 044021 (2016).

[70] J. Braumüller, Ph.D. thesis, Physikalisches Institut, Karlsruhe
Institute of Technology, 2018.

[71] J. Braumüller, M. Sandberg, M. R. Vissers, A. Schneider,
S. Schlör, L. Grünhaupt, H. Rotzinger, M. Marthaler, A.
Lukashenko, A. Dieter et al., Appl. Phys. Lett. 108, 032601
(2016).

[72] G. Rastelli and I. M. Pop, Phys. Rev. B 97, 205429
(2018).

[73] C. C. Bultink, M. A. Rol, T. E. O’Brien, X. Fu, B. C. S. Dikken,
C. Dickel, R. F. L. Vermeulen, J. C. de Sterke, A. Bruno, R. N.
Schouten et al., Phys. Rev. Appl. 6, 034008 (2016).

[74] D. T. McClure, H. Paik, L. S. Bishop, M. Steffen, J. M. Chow,
and J. M. Gambetta, Phys. Rev. Appl. 5, 011001 (2016).

[75] S. Boutin, C. K. Andersen, J. Venkatraman, A. J. Ferris, and A.
Blais, Phys. Rev. A 96, 042315 (2017).

052321-19

http://arxiv.org/abs/arXiv:1802.00633
https://doi.org/10.1038/nature08688
https://doi.org/10.1038/nature08688
https://doi.org/10.1038/nature08688
https://doi.org/10.1038/nature08688
https://doi.org/10.1103/PhysRevLett.108.106402
https://doi.org/10.1103/PhysRevLett.108.106402
https://doi.org/10.1103/PhysRevLett.108.106402
https://doi.org/10.1103/PhysRevLett.108.106402
https://doi.org/10.1103/PhysRevB.90.205309
https://doi.org/10.1103/PhysRevB.90.205309
https://doi.org/10.1103/PhysRevB.90.205309
https://doi.org/10.1103/PhysRevB.90.205309
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1103/PhysRevB.72.115303
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.97.013855
https://doi.org/10.1103/PhysRevA.97.013855
https://doi.org/10.1103/PhysRevA.97.013855
https://doi.org/10.1103/PhysRevA.97.013855
https://doi.org/10.1038/s41598-017-04225-3
https://doi.org/10.1038/s41598-017-04225-3
https://doi.org/10.1038/s41598-017-04225-3
https://doi.org/10.1038/s41598-017-04225-3
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1038/s41467-017-01061-x
https://doi.org/10.1103/PhysRevLett.120.093601
https://doi.org/10.1103/PhysRevLett.120.093601
https://doi.org/10.1103/PhysRevLett.120.093601
https://doi.org/10.1103/PhysRevLett.120.093601
https://doi.org/10.1103/PhysRevLett.120.093602
https://doi.org/10.1103/PhysRevLett.120.093602
https://doi.org/10.1103/PhysRevLett.120.093602
https://doi.org/10.1103/PhysRevLett.120.093602
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevB.93.014506
https://doi.org/10.1103/PhysRevB.93.014506
https://doi.org/10.1103/PhysRevB.93.014506
https://doi.org/10.1103/PhysRevB.93.014506
https://doi.org/10.1103/PhysRevB.72.134519
https://doi.org/10.1103/PhysRevB.72.134519
https://doi.org/10.1103/PhysRevB.72.134519
https://doi.org/10.1103/PhysRevB.72.134519
https://doi.org/10.1103/PhysRevA.29.1419
https://doi.org/10.1103/PhysRevA.29.1419
https://doi.org/10.1103/PhysRevA.29.1419
https://doi.org/10.1103/PhysRevA.29.1419
https://doi.org/10.1103/PhysRevB.74.224506
https://doi.org/10.1103/PhysRevB.74.224506
https://doi.org/10.1103/PhysRevB.74.224506
https://doi.org/10.1103/PhysRevB.74.224506
https://doi.org/10.1103/PhysRevA.93.012120
https://doi.org/10.1103/PhysRevA.93.012120
https://doi.org/10.1103/PhysRevA.93.012120
https://doi.org/10.1103/PhysRevA.93.012120
https://doi.org/10.1088/2058-9565/aab1ba
https://doi.org/10.1088/2058-9565/aab1ba
https://doi.org/10.1088/2058-9565/aab1ba
https://doi.org/10.1088/2058-9565/aab1ba
https://doi.org/10.1134/1.1633315
https://doi.org/10.1134/1.1633315
https://doi.org/10.1134/1.1633315
https://doi.org/10.1134/1.1633315
https://doi.org/10.1103/PhysRevB.78.144518
https://doi.org/10.1103/PhysRevB.78.144518
https://doi.org/10.1103/PhysRevB.78.144518
https://doi.org/10.1103/PhysRevB.78.144518
https://doi.org/10.1103/PhysRevApplied.5.044021
https://doi.org/10.1103/PhysRevApplied.5.044021
https://doi.org/10.1103/PhysRevApplied.5.044021
https://doi.org/10.1103/PhysRevApplied.5.044021
https://doi.org/10.1063/1.4940230
https://doi.org/10.1063/1.4940230
https://doi.org/10.1063/1.4940230
https://doi.org/10.1063/1.4940230
https://doi.org/10.1103/PhysRevB.97.205429
https://doi.org/10.1103/PhysRevB.97.205429
https://doi.org/10.1103/PhysRevB.97.205429
https://doi.org/10.1103/PhysRevB.97.205429
https://doi.org/10.1103/PhysRevApplied.6.034008
https://doi.org/10.1103/PhysRevApplied.6.034008
https://doi.org/10.1103/PhysRevApplied.6.034008
https://doi.org/10.1103/PhysRevApplied.6.034008
https://doi.org/10.1103/PhysRevApplied.5.011001
https://doi.org/10.1103/PhysRevApplied.5.011001
https://doi.org/10.1103/PhysRevApplied.5.011001
https://doi.org/10.1103/PhysRevApplied.5.011001
https://doi.org/10.1103/PhysRevA.96.042315
https://doi.org/10.1103/PhysRevA.96.042315
https://doi.org/10.1103/PhysRevA.96.042315
https://doi.org/10.1103/PhysRevA.96.042315



