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Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing
tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian
operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations
as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone
that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian
channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that
the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity
of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations
into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition,
and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary
phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels
are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification

of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.
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I. INTRODUCTION

Bosonic Gaussian states and Gaussian operations are im-
portant components in quantum information processing [1].
Despite involving an infinite-dimensional Hilbert space, they
are analytically tractable and, more importantly, easy to realize
in experiments. Lasers, phase-insensitive optical amplifiers,
and phase-sensitive optical amplifiers all produce Gaussian
states, viz., coherent states, amplified spontaneous emission
(thermal) states, and squeezed states, respectively [2]. In
addition, spontaneous parametric down conversion—the most
commonly used source of optical entanglement—produces
Gaussian states [2]. Important tasks, such as quantum key
distribution (QKD), can be performed with only Gaussian
sources, Gaussian operations, and Gaussian measurements [3].
Gaussian attacks have also been proven to be optimum for
one-way continuous-variable QKD protocols [4] and two-way
continuous-variable QKD protocols [5].

However, non-Gaussian states and non-Gaussian operations
are necessary for many other quantum information processing
tasks, e.g., entanglement distillation [6-9], quantum error
correction [10], optimal cloning [11], continuous-variable
quantum computation [12,13], and cluster-state quantum com-
putation [14,15]. It has been shown that under a few reasonable
assumptions, general quantum resources in the Gaussian do-
main cannot be distilled with Gaussian free operations [16].
Moreover, non-Gaussian states and non-Gaussian operations
can improve the quality of entanglement [17] and the perfor-
mance of tasks such as teleportation [18-20]. For this reason,
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non-Gaussian states (e.g., Fock states, NOON states [21],
Schrodinger-cat states [22,23]) and non-Gaussian operations
(e.g., photon-number addition (PNA) [24-26], photon-number
subtraction (PNS) [27-30], the cubic-phase gate [31], the
Kerr nonlinearity [32], sum-frequency generation [33], the
photon-added Gaussian channels [34], and other examples
[36]) are being theoretically analyzed and experimentally
realized.

An important task is thus to characterize and quantify the
non-Gaussianity (nG) utilized in each task. Quantum resource
theory (QRT) [37] answers this type of question. QRT has
been established in various areas of physics, e.g., quantum
coherence [38,39], superposition [40], athermality [41,42], and
asymmetry [43]. The QRT of nG is challenging because the
set of Gaussian states is not convex, so the usual framework
of QRT [37] does not apply directly, and because of the
infinite-dimensional Hilbert space that is involved. Despite
these difficulties, the QRT of non-Gaussian states has been
developed [44—46]. We explain the basic ingredients of tradi-
tional QRT via the example of non-Gaussian states: (i) resource
states (non-Gaussian states), (ii) free states (Gaussian states),
and (iii) free operations (Gaussian channels). A principal goal
of QRT is to quantify the resource with a monotone—a function
that maps quantum states or operations to real numbers—
that satisfies three conditions: (i) zero for all free states, (ii)
nonzero for all resource states, and (iii) nonincreasing under
free operations. Indeed, Refs. [44,45] defined such a monotone
based on quantum relative entropy [47,48], and evaluated the
nG of various non-Gaussian states. However, the above QRT
can only characterize the nG of quantum states, the nG of
quantum operations is not yet well understood.
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FIG. 1. Schematic of the resource-theory framework for non-
Gaussian operations. The set of free states (Gaussian states G) is closed
under the set of free operations (Gaussian operations Xg). X is closed
under the set of free superoperations Xg. §g[p] is the monotone for
nG of a quantum state p. It measures the difference between p and
the Gaussian state Ag(p) produced by the resource destroying map
Ag. 85[¢] is the monotone for nG of a conditional quantum map ¢
and it also measures the deviation from some Gaussian conditional
quantum map ¢g. G, X¢, and Xg are nonconvex.

In this paper, we establish a resource theory for nG of
bosonic quantum operations. In our framework, the main ingre-
dients of QRT for quantum operations are (see the schematic in
Fig. 1): (i) resource states (non-Gaussian states), (ii) free states
(Gaussian states), (iii) resource operations (non-Gaussian
operations), (iv) free operations (Gaussian operations), and
(v) free superoperations (concatenation and tensoring with
Gaussian channels). To quantify the nG of quantum operations,
we propose a monotone—the entanglement-assisted nG gener-
ating power—that is zero for all Gaussian operations, nonzero
for non-Gaussian operations, and nonincreasing under free
superoperations. Note that generating powers for coherence
[49-53], entanglement [54,55], and work [56] have been
considered in other QRTs. We also derive a lower bound and
an upper bound for the monotone. The lower bound—the
generating power of nG without entanglement assistance—has
been suggested in Refs. [45,46] to be a measure for nG of
operations. However, it is challenging to calculate, even for
unitary operations. Moreover, it is not nonincreasing under the
superoperation of tensoring with Gaussian channels.

Unlike the previous suggestion, our nG monotone is ana-
Iytically tractable for conditional unitary maps, including all
unitary operations. As examples, we evaluate the nG of PNS
and PNA. We find that the nG of both maps equals the nG
of the single-photon Fock state. Our nG monotone can thus
enable a quantitative characterization of nG for conditional
unitary maps. Despite the difficulty in the evaluation for
general operations, we have identified two classes of operations
through our nG monotone—the first class has finite nG while
the second class has diverging nG. PNS and PNA are in the
first class, while the binary phase-shift (BPS) channel and the
Kerr nonlinearity are in the second class. For the first class, nG
is finite, thus operations can be directly compared and ordered
in terms of nG; for the second class, further classification may
be possible by considering the rate of divergence of nG with
increasing input or output mean photon number.

By utilizing the nG monotone defined in this paper and its
properties, we show that all Gaussian-dilatable non-Gaussian
channels defined in Ref. [34,35] are in the finite-nG class. The
Gaussian-dilatable non-Gaussian channels are an important
class of non-Gaussian channels and a starting point for our
understanding of non-Gaussian operations, since their Kraus
operators and input-output relations in characteristic-function
form are analytically solvable. For example, this class includes
the bosonic noise channel defined in Ref. [57], where it has
been shown that additivity violation in classical capacity is
upper bounded by a constant. It is also conjectured in Ref. [34]
that the set of linear bosonic channels and the set of Gaussian-
dilatable channels are identical. For general bosonic channels,
our result means that going beyond Gaussian-dilatable chan-
nels is important for the full understanding of non-Gaussian
operations.

This paper is organized as follows. In Sec. II, we introduce
Gaussian states, quantum operations, and Gaussian operations,
and we review the QRT of nG for non-Gaussian states. In
Sec. III, we establish a framework for the QRT of nG for
quantum operations and give the monotone, with its lower
bound and upper bound. In Sec. IV, we evaluate the nG of two
conditional unitary maps—including PNS and PNA. In Sec. V,
we propose a classification of non-Gaussian operations. We
conclude the main text in Sec. VI with discussions and future
research directions. Details and proofs appear in Appendixes
A-L

II. PRELIMINARIES

Here we introduce some preliminary results. In Sec. [T A, we
introduce Gaussian states; In Sec. II B, we introduce quantum
operations; In Sec. IIC, we introduce Gaussian operations;
In Sec. IID, we summarize the QRT for non-Gaussian states.
A complete introduction to Gaussian states and Gaussian
channels can be found in Ref. [1].

A. Gaussian states

An n-mode bosonic continuous-variable system is de-
scribed by annihilation operators {a;,1 < k < n}, which sat-
isfy the commutation relation [ak,aj] = &j,lax,a;] = 0. One

can also define real quadrature field operators g; = ar +

a,]:, Pk = i(a,t —ay) and formally define a real vector x =

(q1,P15 - - - »qn, Pn), Which satisfies the canonical commutation
relation (7 = 2) [x;,x;] = 2i€;;, where = i ;_, Y and Y
is the Pauli matrix. A quantum state p can be described by
its Wigner characteristic function x (&) = Tr[p D(&)], where
£ is a vector of 2n real numbers and D(§) = exp (ix” Q&) is
the Weyl operator. A state p is Gaussian if its characteristic
function has the Gaussian form

X&) =exp(—3¢" (RAQT)E —i@D)E). (D)
Here the ¥ = (x),, is the state’s mean and
Aij = 5 ({xi —dixj —dj}),, (2)

is its covariance matrix, where {,} is the anticommutator and
(A), = Tr(Ap). We denote the set of normalized (i.e., unity
trace) Gaussian states with n modes as G[n]. The set of
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Gaussian states G is the union of all G[n], withn > 1. Any state
with a non-Gaussian characteristic function is non-Gaussian.

As an example of Gaussian state, the two-mode squeezed
vacuum (TMSV) state is

D) an = V1=22) 2" n) 1) a, 3)
n=0

where |n) is a Fock state with n photons. The covariance matrix
of a TMSV can be obtained as

_ (@Ns+ 1 2C,Z
A= < 2C,Z 2Nsg+ DI )’ )
where I, Z are Pauli matrices, Ny = Az/(l — 2?) is the mean

photon number per mode, and C, = +/Ns(Ns+ 1) is the
phase-sensitive cross correlation.

B. Quantum operations

Traditionally, a quantum operation 7 is defined as a linear
and completely positive (CP) map from density operators to
(unnormalized) density operators [47]. It can be expressed in
terms of a unitary operator U on the input in state p, and an
environment E in a pure state |{g), and a projector P onto E
[47] as

T(p) =Trel(P o U)p @ ¥i)l. &)

For simplicity, we have used the notation ¢ = |) (Y| to
denote the density operator of a pure state |y). We also use
the same notation U to denote the unitary channel that applies
unitary U on input states, i.e., U(p) = UpUT, and similarly
P(p) = PpP.

When 7 is also trace preserving (TP), it is a quantum
channel and can be implemented deterministically. 7 can
also be non-trace-preserving. In that case, 7 is implemented
probabilistically. The probability of the map 7 successfully
happening is given by Tr[7 (p)] < 1 and the normalized output
state is 7 (p)/Tr[T (p)]. In various scenarios, we are interested
in the enhancement provided only by the successful instances
of T, e.g., when operations such as PNA and PNS are used to
enhance entanglement [17-20]. In these cases, we care more
about the quantum state produced conditioned on success.
Thus, we define the following postselected completely positive
and trace-preserving (CPTP) maps.

Definition 1. A conditional quantum map ¢ takes input state
o and yields

#(p) = (P), (6)

1
o0
where 7T is a linear CP map.

Map ¢ can be linear, when 7 is TP (so 7 is a quantum
channel), thus conditional quantum maps include all quantum
channels. Map ¢ can also be nonlinear, which occurs when 7
is not TP, due to the normalization factor. The complementary
map of ¢ is given by ¢°(p) = T(p)/Tr[T(p)], where T¢
is the complementary quantum operation and we note that
Tr[7 (p)] = Tr[T(p)]. In the rest of the paper, without causing
confusion, we refer to conditional quantum maps as quantum
operations. Note that the notion of such conditional quantum
dynamics has been defined in quantum trajectory theory and
quantum control [58-62].

In this paper we are concerned with quantum operations in
infinite dimensions. We denote the set of density operators with
n modes as H[n], thus we have G[n] = H[n] [ G. Denote the
number of input modes to channel ¢ as ny and the input Hilbert
space is thus H[ng4]. Denote the identity operation on H[n] as
Z,. In certain cases, we will not explicitly state the dimension
for simplicity (e.g., write Z instead of Z,), as long as it does
not cause any confusion.

C. Gaussian operations

A quantum operation is Gaussian if it transforms Gaussian
states to Gaussian states [7]. Formally, the set of Gaussian
operations (conditional maps) X is defined as follows.

Definition 2. A conditional quantummap ¢ € Xg, iff Vpg €
Glng +nl,n €{0,1,---},we have(Z, ® ¢)(pg) € G.

Note that if in Eq. (6) ¢ € Xg, then the original linear CP
map 7 is also Gaussian. Additionally, if ¢ is linear, the require-
ment in Definition 2 is equivalent to the weaker condition:
Vog € Glngl,we have ¢(pg) € G [63,64]. Since on Gaussian
inputs, Gaussian measurements can also be transformed to TP
operations by postprocessing [7], we are particularly interested
in the set of Gaussian channels X é C Xg. Any quantum
operation outside X is non-Gaussian.

All quantum channels can be extended to unitaries on the
input and a vacuum environment (Stinespring dilation) [7],
Gaussian unitary operations X g are therefore essential among
Xg. Here we list a few Gaussian unitaries. A trivial Gaussian
unitary is the identity operation Z,. Less trivial unitaries
include single-mode displacement D, = exp (aa' — a*a),
single-mode phase rotation Ry = exp (—ifa'a), single-mode
squeezing S, = exp [r(a? — aTz) /2], and two-mode squeezing
S, =exp[—r(ab — a'b")]. In particular, S,, generates a
TMSV [&3) g4 from vacuum inputs |0) 4 [0) 4/, i.€., (&) sn =
$2.-(0aar), where A = tanh (r), (&) aa = 160 aar (Golaa and
0aa =10)410) 4 (O] 4 (Ol 4

All Gaussian unitaries can be expressed as affine maps x —
Sx + Ax in the Heisenberg picture. Commutation relation
preservation of [x;,x;] = 2i;; requires that SQeST =Q,ie.,
S is symplectic. In terms of the mean and covariance matrix,
the affine map leads to

¥ — S¥+Ax, and A — SAST. (7)

Moreover, this is true regardless of whether the input state is
Gaussian or not.

An arbitrary n-mode covariance matrix A has a symplec-
tic diagonalization, i.e., 38, such that SQST =Q and A =
S(EBi_; I)S” . Here ;s are the eigenvalues of i R A. Since
i1 is the covariance matrix of a thermal state with mean pho-
ton number (u; — 1)/2, this means that an arbitrary Gaussian
state can be transformed into a product of thermal states with
mean photon numbers {(i;y — 1)/2,1 < k < n} by a Gaussian
unitary. Thus, the entropy of such a Gaussian state S(p) =
i1 &k — 1)/2), where g(N) = (N + 1)log, (N + 1) —
Nlog, N is the entropy of a thermal state with mean photon
number N.

As an analog to the Schmidt decomposition for finite-
dimensional bipartite pure states, we have the following phase-
space Schmidt decomposition [65]. Consider an arbitrary
bipartite pure Gaussian state {45, with modes {A;,1 < k <
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na} and {By,1 < k < np}, where ny < np. There are local
Gaussian unitaries Uy,Up that transform 4p to a tensor
product of ny TMSV and ng — n4 vacuum states, i.e.,

(Ua ® Up)Wap) = [®[% G0 ® [&12,,4108] 3

D. Summary of nG resource theory for states

In a QRT, consider the set of free states to be the Gaussian
states G. To characterize the nG of a quantum state p, a relative-
entropy-based monotone, nonincreasing under free operations
of Gaussian channels X é ,has been established [44,45], namely

Sglp] = min S(pllog) = S(plirg(p)) = STAg(P)] — (o).

9)
Here S(p|lo) = Tr[p(log, p — log, o)]is the quantum relative
entropy; a brief review of its properties is given in Appendix A.
The first formula is a natural definition and has been shown to
equal to the second formula in Ref. [44]. The second formula
is the original proposal from Ref. [45], and equals the third
formula, where )¢ is the resource-destroying map [66] p —
7,, with 7, € G having the same mean and covariance matrix as
p. We can obtain the following lemma (proof in Appendix B).

Lemma 1. g commutes with any Gaussian channel &g €
Xé, viz., Eg o Ag = Ag 0 &g.

When Gaussian channels are considered as free operations,
this condition guarantees that S(p||Ag(p)) is a monotone
[66]. In general, however, conditional Gaussian maps do not
commute with Ag. A counterexample is given in Appendix B.

Besides continuity, dg[-] satisfies the following [45].

Al Non-negativity. g[p] > 0, with equality if and only if
(iff) p € G.

A2 8glp1 ® p2] = dglp1] + 8glp2].

A3 If Xg(px)’s are equal, then

Zk Pidglox]-

A4 Invariance under a Gaussian unitary. 5g[ngUg] =
8glpl.YUg € X{.

A5 Monotonically decreasing under a partial trace.
dg[Tra(p12)] < dglo12].

A6 Monotonically decreasing through Gaussian channels.
3glpa(p)] < 8glp].Veg € X§.

Note that relative entropy is not superadditive in the tra-
ditional sense [67]. The free set of states G is not convex,
thus precluding the results about resource state conversion
in Ref. [37] to hold in the resource theory of nG. Property
A6 cannot be extended to Gaussian conditional maps, a
counterexample in which a Gaussian operation increases the
nG of a non-Gaussian state is given in Appendix C. This
shows that even Gaussian measurements can be reduced to
a Gaussian channel on Gaussian inputs by postprocessing, but
on non-Gaussian inputs they need to be treated differently from
Gaussian channels.

8Dk Prpx] <

III. RESOURCE THEORY OF NON-GAUSSIAN
OPERATIONS

The goal of this paper is to establish a resource theory for
nG of quantum operations. We define the set of free operations
to be Gaussian operations Xg. To formulate the resource

theory of non-Gaussian operations, we need to find a set of
superoperations that leave X¢ closed (schematic in Fig. 1).

Definition 3. The set of free superoperations Xg is a set of
maps that map each element in X¢ to an element in Xg. Here
we consider

Xg = {®d¢g, o ¢g.pgo}, (10)

which includes tensoring with a Gaussian channel (®¢g),
preconcatenation with a Gaussian channel (o¢g) and postcon-
catenation with a Gaussian channel (¢go).

All the above superoperations map a Gaussian operation
to another Gaussian operation. However, Xg does not include
general probabilistic mixing, because probabilistic mixing of
Gaussian states can be non-Gaussian. We also exclude from Xg
the action of taking the complement. The reason is as follows.
If nG is nonincreasing under taking the complement, then it
must be invariant under taking the complement, because taking
the complement twice gets back to the original map. How-
ever, one can construct a channel by swapping the incoming
state with a non-Gaussian pure state, the channel is clearly
non-Gaussian, but its complementary channel—the identity
channel—is Gaussian.

The crucial step in characterizing the nG of quantum
operations is to find a monotone. This monotone should be
nonincreasing under the set of free superoperations Xg. In
Sec. TIT A, we will propose a monotone 85[-] based on the
entanglement-assisted generating power of quantum opera-
tions. In Sec. III B, we obtain a lower bound dg[-] on Sg[-].
In Sec. IIIC, we obtain an upper bound Dgl[-] on &g[-] based
on distance measures between quantum operations. This upper
bound is in fact also a monotone. To summarize, we present two
monotones, Sg [-1and Dg[-], and alower bound dg[ -], satisfying
the following relation.

y Theorem 1. For all conditional quantum maps ¢, dg[¢] <
8gl] < Dglo).

The proof is given after we introduce each quantity. We
propose 8¢[-] instead of Dg[-] to be the measure of nG for
quantum operations, since 3g[~] is much easier to evaluate, as
we will show in Sec. IV. It is open whether the inequalities can
be strict.

A. Entanglement-assisted generating power as a monotone

In this section, we propose a monotone for nG of quan-
tum operations based on the entanglement-assisted generating
power.

Definition 4. For the input Gaussian state ps € G[ny] to
conditional quantum map ¢, consider its purification Y44 €
G[2ny]. We define the entanglement-assisted nG generating
power as follows:

3glgl = max 8g[(Z,, ® @) Waa)l. (11)
par€Glngl

Before proving the properties of 8g[-] that allow it to be a
monotone for nG, we justify the choice of the number of ancilla
modes by the following lemma.

Lemma 2. 5[] is invariant under local isometry on ancilla
A and giving ancilla A extra modes.

The proof is based on the phase space Schmidt decompo-
sition, details are in Appendix D. In Definition 4, we have
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chosen an ancilla with the minimum number of modes. Also,
maximization over py is equivalent to maximization over the
pure state Y44 due to this symmetry of purification. This
symmetry of purification also guarantees that pure states are
optimum, i.e., we have an equivalent definition of Sg['] as
follows.

Definition 5. For H[n + ng] with n > ns modes,
Sgl¢l= max 85(Z, ® $)(pg)l. (12)
pgeGln+ngl

This means that going to an arbitrary mixed state with
an arbitrary number of modes does not increase nG. The
proof that Definition 5 and Definition 4 are equivalent is
as follows. By Property AS, we have §g[(Z, ® ¢)(pg)] <
36[(Zantn, ® PI(Wp)), where ¥y, € G[2n + 2ny] is the pu-
rification of pg € G[n +ny]. Combined with symmetry
of purification, we have max,,cgnin,] 9gl(Zn ® P)(0g)] <
maxl//pg €G[2n+2n4] 3g [(IZIH—nd, by ¢)(wpq) = 59 [#]. On the other
hand, the reverse inequality is trivially satisfied by taking pg
to be the product of the pure state in Definition 4 and extra
vacuum ancilla.

Now we give properties of 8g[-], The proofs are given in
Appendix E.

B1 Non-negativity. §g[¢] > 0,with equality iff ¢ € Xg.

B2 Invariance under tensoring with Gaussian channels.
Vog € X§, we have 3l ® ¢gl = 8g(4].

B3 Invariance under concatenation with a Gaussian uni-
tary. VUg € X§, 86[Ug o ¢] = 8¢ o Ugl = 5g[¢].

B4 Monotonically decreasing under concatenation with
partial trace. For ¢ with output AB, we have Sg[TrA o] <
8]

B5 Monotonically increasing under Stinespring dilation
with a vacuum environment. Note this property is only for
channels, not for general operations. Suppose Yp,¢(p) =
Trg o Uy(p ® 0g), we then have Sg [¢] < Sg[U¢,].

B6 Nonincreasing under concatenation with a Gaussian
channel. Vg € XL, (i) Postconcatenation: &gl[pg o ¢] <

8g [¢]. (ii) Preconcatenation: 8g[¢> ¢g] (Sg[d)]

B7 Superadditivity. 8g [¢1 ® o] > 3g[¢1] + 3g[¢2].

It is open whether this superadditivity B7 can be strict.
Due to superadditivity, if one wants invariance under tensor-
ing with itself, a regularization can be introduced 550 [¢] =
lim,,_, o0 85[¢®"1/n, such that Sgo[¢®2] = Sgo[qb]. However,
unlike the case in communication capacity, where joint encod-
ing between multiple channel uses is natural to consider; here
we can simply regard ¢ and ¢®2 as two different quantum
operations, thus regularization is not compulsory for our
resource theory.

B. Generating power as a lower bound

Suppose we trace out the ancilla in Definition 5, we can
define another function as follows.

Definition 6. (nG  generating power)
max p,egin,] 9619 (0g)1-

This has been suggested in Refs. [45,46] to be a measure
for the nG of quantum operations. By considering an input
in a product state with the ancilla, it is easy to see that
Sglo] = dg [Z,, ® ¢1 = dgl¢], by Property AS. Thus the first
part of Theorem 1 is true. If the above inequality can be strict

dgl¢] =

(which seems plausible), because the identity Z,,, is a Gaussian
channel, we cannot prove invariance nor nonincreasing under
tensoring with Gaussian channels. Moreover, dg[¢] = 0 only
implies Yog € G,¢(pg) € G, which does not necessarily mean
¢ € Xg according to Definition 2. Thus, it only satisfies
Properties B3-B7 (see Appendix F for details). Additionally, it
is difficult to calculate dg[-] even for unitary operations, since
it requires maximization over mixed states and the entropy of
anon-Gaussian mixed state is difficult to calculate. In contrast,
5g can be analytically evaluated, as we will show in Sec. IV.

C. Upper bound: Distance as a monotone

Another natural definition for the nG of quantum operations
can be obtained from a geometric approach. Since the diamond
norm [68] is difficult to calculate, here we introduce the
following.

Definition 7. Consider conditional quantum maps ¢; and
¢, each with the n input modes. We define a measure for their
difference by

Dg(¢1.¢2) = yomax SI(Zn ® 1Y HI(Ln @ $2)(Wg)],

(13)
which is equivalent to

Dg(¢1,¢2) = max S[(Zn ® ¢1)(P)I(Ln @ $2)(pg)]. (14)

In the first formula, we have restricted the state to be pure
and within G[2n]. An argument similar to Lemma 2’s proof
gives the second formula. Now, one can define a measure of
nG by the distance from the closest Gaussian conditional map
with the same number of input modes.

Definition 8. (nG distance) Dg[¢] = ming,cx, Dg(¢,g).

Now we show that the second part of Theorem 1 is true. We
will not explicitly state the dimension in the following proof
for simplicity.

Dgl¢] = ¢Ign€1n max S[(Z ® )Vl ® g)(¥g)l
> max min S[(Z ® ¢)(Wo)l(Z ® ¢dg)(Wg)]
YgeG pgeXg
> max mm SIZ @ $)(Wg)llpgl
Yg€G pge

= max 86L(Z ® P)(Yg)] = 8gl¢].

The first inequality is due to the max-min inequality [69], the
second inequality is due to the fact that (Z ® ¢g)(¥g) € G, and
the last equality is due to Eq. (9) and Definition 4.

We can show that Dg[-] satisfies Properties B1-B6, which
qualifies it to be a measure of nG for quantum operations (see
Appendix G for details). Moreover, we can show that it satisfies
Dgl¢1 ® ¢2] > max (Dgl¢i1, Dgl¢,]). It is open whether this
can be improved to superadditivity.

IV. EXAMPLE: CONDITIONAL UNITARY MAPS

We now introduce conditional unitary maps.

Definition 9. A conditional quantum map is a conditional
unitary map if it is one-to-one and maps all pure states to pure
states.
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Conditional unitary maps include unitary operations, such
as the single-mode self-Kerr unitary [46], and operations such
as PNA and PNS [17,70]. For a conditional unitary map U,
because the output ancilla is jointly pure when the input ancilla
is pure, combining Eq. (9) and Definition 4 gives

3glU] = max S{Agl(Z @ U)(Wan)l}- (15)

For fixed par, S{Ag[(Z ® U)(¥aa)]} can be analytically ob-
tained by calculating the entropy of the Gaussian state
Agl(Z ® U)(Yaa)], which can be obtained from its covariance
matrix. Moreover, the Gaussian state p 4 being maximized over
can be fully characterized by its mean and covariance matrix.
Thus, the overall maximization can be solved analytically
without too much difficulty. For example, in the single-mode
case, the general input-ancilla state

[Ve,0,r3) an = DaRoSr 100) anr (16)

only depends on four parameters—the displacement «, phase
rotation 6, squeezing r, and two-mode squeezing 1. Note here
that Dy, Ry, and S, act on the input A’.

Below, we consider two specific single-mode conditional
maps—the PNS ¢pns and PNA ¢pya—and evaluate their nG’s
analytically. For simplicity, we consider the ideal ¢pns and
¢dpna, Which are described by the annihilation and creation
operators a and a' [17,70]. Experimental schemes of PNS and
PNA can be found in Refs. [24-30]. Both ¢pns and ¢pna are
one-to-one and produce a pure state when the input is pure,
thus they are conditional unitary maps.

Photon-number subtraction. When the input and ancilla
are in the joint state given by Eq. (16), the joint state
of the output and ancilla is |¥),p = NpNsaB|Va,0,r0) A
where the normalization factor is Npns = {|a|> + [(1 + 2Ns)
cosh(2r) — 1]/2}’1/2. Because of Property A4, |/) 45 has the
same nG as

&) a5 = SIRIDY W) 45

= Nens(e " (cosh(r)ap — sinh(r)aly) + @) 18) 4p »
(17)

where |£),p is a superposition of photon-number added
TMSYV, photon-number subtracted TMSV, and TMSV, so it
is non-Gaussian. By changing the global phase properly, we
can choose o > 0.

To calculate the covariance matrix of &up, we
consider the expectation values of operators X €
{aA,aB,ai,aé,aLaA,aLaB,aLaB,aAaB}, which can be found
from

(X)e,, = (Elap X 1E)ap = N*{a? (X),,
+ e cosh (r) (Xag),, — ae™" sinh (r) (Xa}),,

+ ae' cosh r) (a};X) — we'? sinh (r) <LIBX>5A

o3

+ cosh? (r) (a};XaB){_A + sinh (r)? (aBXaL){_A

— Lsinh@r)((apXap),, + (apXap), )}.  (18)

Since TMSV ¢, has zero mean, each term can be solved
by Gaussian moment factoring. The covariance matrix can
be obtained by the method in Appendix H, however, the

expression is too lengthy to display here. With the covariance
matrix in hand, the entropy can be obtained easily by the
method in Sec. IIC.

After the maximization over r,«,0, Ng, we find that

Sglpens] = 8glI1) (1]] = 2, (19)

which is achieved by o = 0 and arbitrary r,0, Ng. This result
equals the lower bound d; obtained in Ref. [71] for the special
case of Ng = 0,0 = 0.

Photon-number addition. The nG analysis for PNA parallels
what we have done for PNS. The joint state of the output
and ancilla is |[Y) 45 = NPNAag [Va.6,r0) 4> Where Npna =

(le|> + ((1 4+ 2Ng) cosh (2r) + l)/2)_1/2. Because of Prop-
erty A4, |{) 45 has the same nG as

1€) a5 = SIR} DL 1¥) 45

= Npna (€' (cosh(r)al, — sinh(r)ag) + a*) |8) a5 -
(20

Intuitively, since it is again a superposition of photon-number
added TMSYV, photon-number subtracted TMSV, and TMSYV,
the maximum nG should be the same as that of ¢pns. How-
ever, because cosh () > sinh (), the parameter space here is
slightly different. This difference can be dealt with by realizing
that the new expectation values can be obtained by exchanging
—sinh () with cosh(r) and 6 with —0 in Eq. (18) (fixing
o > 0), and using the new normalization factor.
After the maximization over r,c,0, Ng, we find that

Sglppnal = Sglgpens] = 8glI1) (111 =2, 1)
which is achieved by « = 0 and arbitrary r,6, N.

V. CLASSIFICATION: FINITE nG AND DIVERGING nG

In the above examples, nG is finite. However, for other
quantum operations there is a potential divergence caused by
the infinite dimensionality of states in G. Consider Definition
4. If the overall output energy is bounded by Ny, then
dgld] < max,, cgin,1 S[Ag(pap)l < ng(Ng/n). The factor n
is the total number of modes in the output and ancilla. Since
g(Ns) ~ log, Ng, when N > 1, the growth rate of §5[¢] with
the allowed output energy is at most logarithmic. It may be
tempting to constrain the input or output energy in Defini-
tion 4 to define an energy-constrained version of generating
power. However, because concatenation of Gaussian channels
can change the energy constraint on the input or output of
the original conditional quantum map, such constraints will
invalidate Properties B3 and B6. So an energy-constrained
generating power is not a meaningful monotone for nG.

Based on the above observation, we classify non-Gaussian
operations into two classes [schematic in Fig. 2(b)]. The first
class of operations has finite 5; despite allowing the input to
have infinite energy. We denote this class of operations @ .

Definition 10. Finite-nG class.

® = {conditional quantum map ¢ | 0 < 8g[¢] < o0}.
(22)
As we have shown in Sec. IV, PNA and PNS both belong to
this class, i.e.,

¢pNs € Pr.gpna € Dr. (23)
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(b) Classification of

Arbitrary non-Gaussian operations

pure state

Y Bt Gaussian [
Unitary
p — U —>

¢ léap (p)

(a) Gaussian dilatable
channels

FIG. 2. (a) Schematic of a Gaussian-dilatable channel ¢gp, Vg
is the environment in an arbitrary pure state. (b) Schematic of the
classification of non-Gaussian operations into: (i) finite-nG class @,
including ¢pys, ¢pna and Gaussian-dilatable non-Gaussian channels
dap, and (ii) diverging-nG class @, including the binary phase-shift
channel ¢gps and the self-Kerr unitary Ugey.

For operations in ® y, we can compare and rank their nG based
on the §g[¢] value.

The second class of operations has diverging §g, when the
output energy increases. We denote this class of operations as
D

Definition 11. Diverging-nG class.

®,, = {conditional quantum map ¢ | 5g[¢] = o0}.  (24)

To identify the diverging-nG class, it is often useful to consider
the lower bound

8l > dgl#] > 8lp(la) (@], (25)

where the coherent state |«) is the input to the map. If we can
show that 8g[¢(|er) (|)] diverges to oo as || increases, then
we can conclude that ¢ € ® . In the following, we give more
examples of operations in @y and ® .

Gaussian-dilatable channels. In Ref. [34], a class of non-
Gaussian channels called Gaussian-dilatable non-Gaussian
channels is introduced. A channel is Gaussian dilatable if it
has a Stinespring dilation composed of a Gaussian unitary
Uy € X and an ancilla in a fixed pure state ¥ with finite
energy [schematic in Fig. 2(a)]. A Gaussian-dilatable channel
¢gp’s output on arbitrary input p can be written as

¢cp(p) = Tre[Us(p @ ¥p)l. (26)

All Gaussian channels are trivially Gaussian dilatable. ¢gp
is non-Gaussian when ¥ is non-Gaussian. For Gaussian-
dilatable channels, the output’s characteristic function can be
analytically obtained from the input’s characteristic function
and the Kraus operators are also analytically attainable. Thus,
Gaussian-dilatable channels are an important starting point
for the study of non-Gaussian channels and operations. For
example, it includes the bosonic noise channel defined in
Ref. [57], where it has been shown that its additivity violation
in classical capacity is upper bounded by a constant. It is also
conjectured in Ref. [34] (see Conjecture 1 in the reference)
that the set of linear bosonic channels and the set of Gaussian-
dilatable channels are identical.

The nG of a Gaussian-dilatable channel satisfies
Sglpap] = H}/fax 3Ly, ® (Trg o Up))(Yg ® YE)]

< max 5g1(Z, ® Up)(Vg @ V)
= rrxlpagx dg(Wg ® YE) = dglYel, 27)

where the first inequality is from Property AS, the second
equality is from Property A4 and the last equality is from
Property A2. Because the nG of the state ¥ is finite and does
not depend on the input or output, we immediately have the
following theorem.

Theorem 2. Every Gaussian-dilatable non-Gaussian channel
is in the finite-nG class, i.e.,

¢cp € Pr. (28)

The fact that Sg[quD] < 8g[YE] is intuitive, since all nG of
this channel comes from the non-Gaussian environment and
all other operations are Gaussian. Here we have considered
an ancilla with finite energy. An ancilla with infinite energy
is only meaningful when one considers a sequence of ancilla
with increasing finite energy. However, the ancilla of a fixed
channel cannot depend on the energy of the input state, thus
in terms of the growth with the input energy, the amount of
nG is bounded for Gaussian-dilatable channels.! Note that our
argument does not rule out the possibility that all channels
might be approximately Gaussian dilatable. The formulation
of approximate Gaussian-dilatable channels still requires more
work.

Binary phase-shift channel. Consider a single-mode chan-
nel that applies a phase shift R, with probability 1/2, i.e.,

¢eps(p) = 1o+ SR:pR]. (29)

Let the input be a coherent state |@) (¢ > 0), so that the
mean and covariance matrix of the output ¢pps(|a) (¢|) =
% |a) (o] + % |—a) (—a| are (0,0) and Diag(4ot2 +1,1). The
entropy of the Gaussian state with the same mean and covari-
ance matrix is g[(v/4a2 + 1 — 1)/2], while S[¢pps(|a) {@])] <
1. Thus we have 8g[¢pps(|a) (@])] = gl(v4a? +1 —1)/2] —
1, and equality is achieved as o — oo. It is diverging as «
increases. Thus §g[¢pps(|e) (@ ])] diverges as « increases, so

¢Bps € Poo. (30)

In fact, if one considers the input and ancilla to be in a
TMSYV, it is straightforward to show (details in Appendix I)
that Sg[(bes] > 2g(Ng/2) — 1, when the output and ancilla
have total energy constraint Ng. Thus the rate of divergence is
log, (Ns), which is the maximum rate of divergence.

Self-Kerr unitary. Consider now the single-mode self-Kerr
unitary

Ukerr = exp(—iy(a'a)?). 31)

The lower bound §g[Uxker (o) (¢|)] has been found to diverge
maximally, as log, (Ns), where Ny = loe|? [46]. So we have

Ukerr € Po. (32)

'In principle, one can encode all possible output states into an ancilla
with infinite energy, thus considering an infinite-energy ancilla is not
meaningful.
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We have classified non-Gaussian operations into two classes
@ and @ . Within the class ® r, nG is finite and thus compar-
ing and ordering different operations is straightforward. Within
the class @, even though all nG are infinite, they can have
different rates of divergence. So classification based on those
rates is possible.

It is an open question whether all linear maps (quantum
channels) in ®y are Gaussian dilatable. If it is true, then
because of Theorem 2, it would imply that the class of
Gaussian-dilatable non-Gaussian channels and the class of
finite-nG channels are equal. It is also open whether there
is a minimum set of operations in ®r, such that any other
operations in @ can be simulated by this set of operations
and Gaussian operations in Xg, in terms of the generation of
non-Gaussian states from Gaussian inputs.

VI. CONCLUSIONS

Gaussian states and Gaussian operations are inadequate
for various tasks, such as universal quantum computing,
entanglement distillation, and quantum error correction. So
non-Gaussian states and operations are naturally considered
as resources for these tasks. A quantum resource theory for nG
in states and operations is a starting point for understanding
the utility of nG.

In this paper, we extended the resource theory of non-
Gaussian states in Refs. [44—-46] to non-Gaussian operations
and established a monotone to quantify the amount of nG.
This monotone can be analytically calculated for conditional
unitary maps such as PNS and PNA. We also provided a lower
bound and an upper bound for this monotone to assist in the
calculation and analysis of nG.

More importantly, our monotone enables us to classify
non-Gaussian operations into (1) the finite-nG class, and
(2) the diverging-nG class. Within the first class, nG is
finite, thus direct comparison and ordering of operations is
straightforward. Within the second class, nG diverges as the
output energy increases. Further classification may be possible
through comparing rates of divergence.

We gave several examples of quantum operations in each
class. In particular, we showed that all Gaussian-dilatable
non-Gaussian channels are in the finite-nG class. Thus, not
all non-Gaussian channels are Gaussian dilatable. Gaussian-
dilatable channels are important because their properties, such
as their Kraus operators, are relatively easy to obtain, making
them a starting point for studying of non-Gaussian channels
and operations. For example, recent results [57] show that the
nonadditivity violation in a bosonic noise channel, which is
Gaussian dilatable, is mild. However, our results suggest that
focusing on Gaussian-dilatable channels is not enough for the
full understanding of non-Gaussian channels.

An important future research direction is the operational
resource theory of non-Gaussian operations, such as the one
for coherence [39]. For example, how to quantify the power
of different non-Gaussian operations for specific tasks, such
as quantum computation and entanglement distillation, is
worthy of investigation. This problem is also related to channel
simulation in terms of production of non-Gaussian states. One
can also ask whether there is a finite set of universal non-
Gaussian operations, such that all non-Gaussian states can be

produced by this set of non-Gaussian operations and arbitrary
Gaussian operations starting from Gaussian states. The answer
is yes, because universal quantum computation is possible with
Gaussian operations plus one single non-Gaussian operation
[12]. However, it is not clear whether the class of finite-nG
operations can enable universal quantum computing or it is
necessary to have operations from the diverging-nG class.

Another important future task is the further classification
of non-Gaussian operations. As an analog, there are bound
entanglement states [72] that have zero distillable entangle-
ment, and cannot be directly used to enhance teleportation.
Similarly, a mixture of Gaussian channels, e.g., the BPS
channel, seems less useful than the Kerr nonlinearity for many
tasks such as universal computation, while they are both in the
diverging-nG class with the same rate of divergence. A more
delicate classification, based on the convex resource theory of
non-Gaussianity [73,74], which distinguishes these two types
of non-Gaussian operations is an important step towards the
full classification of non-Gaussian operations.
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APPENDIX A: PROPERTIES OF QUANTUM
RELATIVE ENTROPY

The relative entropy of two quantum states p and o is de-
fined as S(p|lo) = Tr[p(log, p — log, o)]. Besides continuity,
it has the following properties [47,48].

O1 Non-negativity (Klein’s inequality). S(p|lo) = 0.

02 Joint convexity.

S[pp1 + (A = p)p2llpor + (1 — p)os]
< pS(pillo) + (1 = p)S(pzllor).

03 Monotonically decreasing under partial trace.

S(Trap12 (I Tr2012) < S(pi2llor2).

04 Monotonically decreasing under quantum operation.
Sle(p)lle(o)] < S(pllo). Equal when ¢ is an isometry.

O5 Additivity of product states.
S(p1 ® p2llor ® 02) = S(pillor) + S(p2ll02).

06 2S8(p12llo12) = S(pillor) + S(p2ll02). Superadditivity
can be established by a better multiplicative constant [75].

APPENDIX B: PROOF OF LEMMA 1

Proof. A Gaussian channel & can be extended to a Gaussian
unitary on its input and an environment [1,7], which can be
expressed as a linear transform on the mean and covariance
matrix in Eq. (7). The output can be obtained by tracing
out part of the joint output of this Gaussian unitary. Thus
&g produces a state (not necessarily Gaussian) with mean
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and covariance matrix (¥',A’) as function of the mean and
covariance matrix (¥,A) of the input p. So (Ag 0 &g)(p) is
a Gaussian state with mean and covariance matrix (¥’,A’).
On the other hand, (&g o Ag)(p) is also a Gaussian state with
mean and covariance matrix (¥, A’). Since a Gaussian state is
uniquely specified by its mean and covariance matrix, we have
(g 0 Ag)(p) = (Ag 0 &g)(p),Vp.

A counterexample for the generalization to conditional
Gaussian maps is constructed here. Consider the conditional
map

(a|apanlo) o
Tra (ol apanle) 4

Ta(pan) = (B1)
which projects on A’ and outputs A, where |a), is the co-
herent state with amplitude « > 0. Consider the input o44 =
(o) 4 (o] ® [a) g0 {et] + |—t) 4 {—at| ® |—at) o {—at])/2. Inthe
following, we show that (Ag o Ty)(0aa’) and (T, 0 Ag)(Taa’)
have different means and are thus different Gaussian states.
We have that

Taloan) = 1=y (0l + € [ (=a,
(B2)
where expectation value is
| — =%
(@) T (o0n) = Treo (B3)

From results in Appendix H, the mean of a4 4 is (0,0,0,0), and
its covariance matrix is

402 +1 0 402 0
0 1 0 0
Ao = 402 0 4e*+1 0 (B4)

0 0 0 1

The density matrix of Ag(o44) can be obtained through the P
function [1] as

© 1
Ac(oan) = do e 22 |a o1 ® o) 4 {aq] -
(Oan) f_oo e )y (] @ e (e

(BS)
|

The output of the map is (7, okg)(oAA/)O(ffooo doj exp
o

— 5z — (a12 +a? — 2a10)) |ay) 4 (] . It is then straightfor-

ward to see that

203
1+a?
which is not equal to (@), .7.(0,,) = (@) 7,(0,,) &iVen in
Eq. (B3) for finite @ > 0.

(@) Toong(on) = (B6)

APPENDIX C: COUNTEREXAMPLE

Consider a non-Gaussian state paa > /€ |a) 4 (@] ®
|n)4 (| + /1 —€|—a)y (—o| @ pa, where e K 1, > 1
and ps € G. We have 8g[paa] < 1 from continuity. For the
Gaussian conditional map in Eq. (B1), we have Ty(paa/) =~
n)a (n]. This means that 3g[Ta(paa)] = 8glln), (nl] >
8glpaal, i.e., nG can increase under a Gaussian conditional
map.

APPENDIX D: PROOF OF LEMMA 2

Proof. We use methods similar to those in Ref. [76]. Any
pure Gaussian state Y44/, with A having n > ng modes and
A’ having ng modes, has phase-space Schmidt decomposition
[Eq. (8) in main text]

Ur(Wan) = [®Z=n¢+1 04,] ® [U);/(®Zil(§xk)AkA’k)]~

Thus, U, can allow a Gaussian isometry u, from H[n] to
Hlng] such that Yau = [(u;' 0 us) ® L, 1(Yran).

Now let Yra,a0 = (ua ® Z,,, ) (Y an) € G[2n4]. Due to rel-
ative entropy’s invariance under isometries, u, € Xé, and
Lemma 1, we get

8gl(Zy ® P)(Yraa)]
= S[(Zy @ P)Waa)rg(Zy ® P) (Y an))]
= S[(uar @ P)(Waa)llua o rig(Zn ® ) (WYan))l
= S[(Zy, ® D)WY a,a)lIAg((ua @ $)(Yran))]
= ¢l(Zn, ® P)(Wa,a)l- (D1)

APPENDIX E: PROOFS OF PROPERTIES B1-B7

In most proofs we use Definition 5 as a starting point, and we will simplify the notation for the domain of maximization,
e.g., writing pg € G[n + ny] as pg € G. Also, we will not explicitly state the dimension of the identity operator Z when it’s not

necessary.

B1 Proof. Non-negativity follows directly from Property AlL. If ¢ € Xg, it is easy to see that 5glp]l =0since Z® ¢ € Xg.
Now we prove the reverse part. Suppose g[¢] = 0, then by Definition 5, Vpg € G, we have §g[(Z ® ¢)(pg)] = 0. By Definition

2 and Property Al, we get ¢ € Xg.

B2 Proof. (i) 5gl¢ ® ¢g] = max,,eg [(Z ®@ ¢ ® dg)(pg)] > max; g sl ® qﬁ)(p/g)] = 8g[¢]. The inequality is obtained

by taking trace over the output of ¢g and using Property AS.

(i) 8glp ® Ppg] = max,,eg 3gl(Z ® ¢ ® ¢g)(pg)] = Max,,eg 8l ® ¢ ® Ly )L ® L, ® Ppg)(pg)] < max,;eg dg[(Z ®

$ QT
symmetry of purification in Lemma 2.

)(p’g)] = Sg [#], where the inequality follows since Z ® Z,,, ® ¢g(pg) € G and in the last equality we have used the

B3 Proof. (i) From Property A4, 8glUg o ¢] = max,eq 8g[(Z ® Ug) o (T ® ¢)(pg)] = max pseg 86[(Z ® ¢)(pg)] = Sglo].
(i) dglp o Ugl = max,,eg 8g[(Z ® ¢) o (T ® Ug)(pg)] = max,eg 8g[(Z ® ¢)(pg)] = églp]l, where we have used

Z®Ug)9) =6.

B4 Proof. 8g[Tra o ¢] = maxy,eg 86{[Z ® (Tra 0 $)1(pg)} = max g 86{Tral(Z ® $)(pg)]} < maxyyeg 86[(Z ® $)(pg)] =

5g[¢]. The inequality follows from Property A5.
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B5 Proof. 3g[¢] = max g 8g{[Z ® (Tr o Up)l(pg ® 0)} < maxeq 8g{[Z ® (Trg o Up)l(p})} = 8g[Trz 0 Uyl < 8gLUy1.
The first inequality is due to expanding the set of states over which the maximization is performed. The second inequality is
because of Property B4.

B6 Proof. (i) From Property A6, 8glg o ¢] = max,,cg 8gL(Z ® ¢g) o (T ® $)(pg)] < Max p,eg 8g[(Z ® $)(0g)] = Sgl ).

(ii) dgl¢ o pg] = max,,eg Ig[(Z ® @) o (I ® Ppg)(pg)] < max,;eg 5g[(Z ® ¢d)(pg)] = 8g[#]. The inequality uses the fact
that (Z ® ¢g)(pg) € G.

B7 Proof. In Definition 5, choose the ancilla to be in H[ng]® H[ngl, so we can write I =71 ®1,,

where Z; is the identity operator on H[ng], thus Sgl¢) ® ¢o] = MaX p;eGi2n,, +2n4,1 0611 ® ¢1 @ o ® $2)(pg)] =

MAaXp, eg[2n,, ] MAX p,eg(on,, | Sl(Zi @ P1 @ Th @ h2)(p1 ® p2)] = Sg[fﬁl] + Sg [¢2], where in the last step we used Property A2.

APPENDIX F: PROPERTIES OF dg

C1 Invariance under concatenation with a Gaussian unitary. YUg € X g , we have dg[Ug o ¢] = dgl¢ o Ug] = dgl¢].
Proof. (1) dg[Ug o ¢] = max ;< g{Ugl¢(0g)]} = max,,cg dgldp(0g)] = dg[¢], where we used Property A4.
(ii) dg[¢ o Ug] = max 5;eg 06l 0 Ug(pg)] = max ,;eg 8g[¢(0g)] = dgl¢], where we have used Ug(G) = G.
C2 Monotonically decreasing under the concatenation with partial trace. For ¢ with output A B, we have dg [Tra o @] < dglo].
Proof. dg[Tra o ¢] = max;eg 8g[Tra o ¢(pg)] = max,,eg Sg{Trale(pg)l} < max, g 3glg(pg)l = dgl$]. The inequality
follows from Property AS.
C3 Monotonically increasing under Stinespring dilation with a vacuum environment. Note this property is only for channels,
not for general operations. Suppose Vp,¢(p) = Trg o Uy(p ® 0g), we have dg[¢] < dg[Uy].
Proof. dg|¢] = max;eg 0g[Tre o Ug(pg ®@ 0g)] < max, g 8g[TrE o U¢(,0g)] =dg[Trg o Uy] < dg[U¢] The first inequality
is due to expanding the set of states over which the maximization is performed. The second inequality is from Property C2.
C4 Nonincreasing under concatenation with a Gaussian channel. V¢g € X 5 , (1) Postconcatenation: dg[¢g o ¢] < dgl¢]. (ii)
Preconcatenation: dg[¢ o ¢g] < dgle].
Proof. (1) dgl¢g o ¢] = max;eg dgl{dgld(pg])} < max,;eg Sgld(pg)] = dgl¢], where we used Property A6.
(ii) dgleh 0 b1 = Max,yeq 861 © Pg(pe)] < MaXpyepoi) S6[d(0)] < dgle], where we have used ¢g(G) C G
CS5 Superadditivity. dg[¢1 ® ¢2] = dgl¢1] + dgl2].
Proof. dgl$1 ® ¢2] = maxpeging, +n4,1 961(#1 ® ¢2)(0g)] = Max,, e, | MAXp,eginy,1 5g[(P1 @ $2)(p1 ® p2)] = dgld1] + dg
[¢2], where in the last step we used Property A2.

APPENDIX G: PROPERTIES OF Dg

D1 Non-negativity. Dg[¢] > 0,with equality iff ¢ € Xg.

Proof. This follows from Property B1 of §5[¢] and Theorem 1. Alternatively, this result can be obtained from the non-negativity
of quantum relative entropy.

D2 Invariance under tensoring with a Gaussian channel. V&g € X%, we have Dg[¢ ® &5] = Dglé].

Proof. (1) First we prove Dg[¢ ® &g] = Dgl¢].

Dgl¢ ® £g] = min max S[(Z ® ¢ ® &6)(pg)II(Z ® pg)(pg)] = min max S[Z ® ¢ ® &g(pg ® p)IIZ ® dg(pg @ p1)]
$geXg pgeG $pgeXg p;eG

= min max S[Z ® ¢(pg) ® &G(p)IIZ ® pg(pg ® p1)] > mm max SI(Z ® P)PH)IT @ (Tre, 0 pg)(pG @ p1)]

bgeXg pgeg

= min max SUZ ® ) p)IIT ® dg)(pg)] = Dgl¢]. (GD)

¢(;EX9 PgE

The first inequality is from limiting the maximization to states of the form p; ® pi. The second inequality is from relative entropy’s
monotonically decreasing under partial trace. The last equality is because V¢g € Xg, (Trg, o ¢g) is a Gaussian operation that
takes input o and outputs to H[n4], and every Gaussian operation with the same input and output dimension with ¢ can be
extended to another Gaussian operation by trivially tensoring with the identity.

(i) Now we prove Dg[¢ ® &g] < Dgl].

gl ® &gl = ml}l{l max SIZ ® ¢ ® £ (P I(Z ® pg)(pg)] < ¢mei)r(1 max SUZ ® ¢ ® £g)(p)II(Z ® B ® E)(pg)]

< min max S[(Z' ® $)(pg)II(Z' ® ¢)(pg)] = Dgl]. (G2)

doeXg PgEG
The first inequality is due to limiting the minimization to operations of the form ¢; ® &g. The last inequality is due to relative
entropy’s monotonically decreasing under quantum operations and symmetry in the ancilla.

D3 Invariance under concatenation with a Gaussian unitary. YUg € X g , we have Dg[Ug o ¢] = Dgl¢ o Ug] = Dgl¢].
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Proof. (i) Ug has inverse Ug ' So

Dg[Ug o ¢] = mln | max S{[Z ® (Ug o ))IWa)II(Z @ ¢g) (o)}

= min max SIZ @ DWH)IIZ @ (Ug ' 0 dpo)l(Wg)} = mm 0 max SIZ ® )Y ® ¢5)(¥g)l = Dglg].

$geXg Yge

(G3)
We have used the invariance of relative entropy under isometries.
(i) Vg € Xg. let ¢, = pg o U; ' € Xg.
Dgl¢ o Ug] = ¢Ignln max S{Z ® (¢ o UL @ ¢g)(Wg)}
= ¢m1)r(1 max SIZ® (¢ o Ug)¥o)lIZ ® (¢g o Ug)(g)l = ¢m1)r(1 max SIZ ® )W)IT ® p5) ()] = Dglol.

cE€Xg Vg€ GE€XG Vg

(G4

We have used Ug(G) = G.
D4 Monotonically decreasing under concatenation with a partial trace. For ¢ with output A B, we have Dg[Tr4 o ¢] < Dglo].
Proof. Dg[Tr4 o ¢]

= min max S{[Z ® (Tra o )I(Ve)II(Z ® ¢g)(¥g)} < mln max S[Z ® (Tra o )WL & (Tra o ) (Wg)]
$g€Xg YgeG €Xg Yge

< min max S[(Z ® ¢)(Ya)ll(Z ® ¢5)(¥g)]l = Dglal. (G5)

pgeXg Yg€G

The first inequality is due to limiting to minimization over ¢g that can be written as Tr4 o ¢;. The second inequality is due to
relative entropy’s monotonically decreasing under a partial trace.

D5 Monotonically increasing under Stinespring dilation with a vacuum environment. Note this property is only for channels,
not for general operations. Suppose Yp,¢(p) = Trg o Ug(p ® 0r), then Dgl¢p] < Dg[Uy].

Proof. We have

Dgl¢] = ml)r(l max S{[Z ® (Trg 0 Up)I(¥g ® 0p)II(Z ® ¢g)(Vg)}

< min max S{[Z ® (Trg o Up)I(Yg ® 0p)II[Z ® (Tre o $pp)1(Yg ® 0p)}

¢c€Xg Ygeg

< ¢m1)1(1 wmax SI(Z ® Ug)(¥g @ 0p)II(Z ® ¢p5) (g ® 0£)] < ¢mi)13 yaé SIZ ® Up)(Y)IZ @ ¢p) ()] = DglUsl.
;€Xg VoG €Xg Yge
(Go)

The first inequality is from limiting the set of operations ¢g over which the minimization is performed; the second inequality is
from relative entropy’s monotonically decreasing under a partial trace; and the third inequality is from expanding the set of states
over which the maximization is performed.

D6 Nonincreasing under concatenation with a Gaussian channel. V&g € X é, (1) Postconcatenation: Dg[&g o ¢] < Dgl¢]. (ii)
Preconcatenation: Dg[¢ o £g] < Dglé].

Proof. (i) Dgl&g o ¢]

= min max S{[Z ® (§g © )W) (T ® ¢g)(¥g)} < ¢H£)I(1’ max S{IZ ® (5g o PIW)IIZ ® (5 0 px)1(Vrg)}

dgEXg YgeG

< min max SIZ ® $)(p)IIZ ® dpg)(pg)] = Dgl¢]. (G7)

¢( €Xg pge

The first inequality is due to limiting to minimization over ¢g that can be written as &g o ¢; and the second inequality is due to
relative entropy’s monotonically decreasing under a quantum operation.
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(i) Dg[¢ o &g]
= ﬁlel?g max S{Z ® (¢ 0 &)W ® pg)(¥rg)}
< ¢m1)1(1g max SIZ® (¢ 0 &x)(WIIZ ® (¢ 0 Eg)(Yg)] < mln max SIZ ® )P ® dpg)(pg)] = Dglgl.  (G8)
gE

The first inequality is due to limiting to minimization over ¢¢ that can be written as ¢ o &g; and the second inequality is due to
Z®&)Wg) €.

D7 Dgl¢1 ® ¢2] = max(Dgl¢1], Dgl¢2]).

Proof. Dg[¢1 ® ¢2]

= min max SIZ ® ¢1 ® 2)(P)I(Z ® pg)(pg)] > min max S[Z ® ¢1 @ ¢2(pg ® o)L ® dg(pg ® 0)]

$g€Xg pgeG $g€Xg p;eG

> min max S[Z ® ¢ (o) I(T ® $) ()] = Dglébi]- (G9)

¢geXc pge

The first inequality is due to limiting to maximization over pg that has a product form pg ® o, where o € G[ng,] is fixed. The
second inequality is by taking a trace over the input to ¢, and that ¢; = Tr, o ¢g is a Gaussian channel. Similarly, one can prove

Dglo1 ® ¢2] = Dgléo].

APPENDIX H: COVARIANCE MATRIX AND CORRELATIONS

The 4 x 4 covariance matrix A of a two-mode (denote them as A and B) quantum state o can be obtained as follows. Note
that A = AT. The first diagonal block is given by

A(1,1) = 2Re(a}) +2(ayas), + 1 — (2Re(as),),
A2,2) = —2Re(a}) +2(ahas), + 1 — (2Im (a4),)’,
A(1,2) = 2Im (a3} — 4Re (ax), Im (aa),,.

The second diagonal block is given by replacing A with B and A(i, j) with A(i 4+ 2,j 4 2) in the above equations.
The cross terms are given as follows:

A(1,3) = 2Re((aaap), + (ahas),) — 4Re (aa), Re (ag) .

AQR.4) = 2Re((akag) , — (anag),) — 4m (as), Im (ag),.

A(1,4) = 2Im((aap), + (anap),) — 4Re (aa), Im (a),.

A(2.3) = 2Im((asag), — (ayap) ) —4Im (a,), Re (ag),,.

APPENDIX I: MIXED UNITARY CHANNELS

The binary phase-shift channel ¢gpg is a probabilistic mixture of Gaussian unitaries. We begin our analysis of it by considering
the general case of probabilistic mixing of K Gaussian unitaries {Uy,1 < k < K}, with probabilities {py,1 < k < K}, i.e.,

K
Pmix(p) = Y UpUy. an

From Definition 4 and Eq. (9), with pap =7y @ Gmix(Yas) = Zf;l pkUkI//AA/U]j, we have 0 < S(pap) < h({pi}) =
- Zle prlog, pi. Let S§™ = max,, cg S[Ag(pap)]. We have,

3G [Pmix] = max S[rg(pa)] — S(pap) (I12)

€ [Sg™ — h({pr}), S5 1. (I3)

Because i ({ pi}) is finite, if one can show that either ng or Sg [#mix] diverges, then the rate of divergence of Sg [@mix] is the same
with Sg.

For the case of ¢pps, we have h({ pr}) = 1 and when the output and ancilla have total energy Ny, S o = 2g(Ns/2)is achieved
by input-ancilla in a TMSV.
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