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The repetition code is an important primitive for the techniques of quantum error correction. Here we implement
repetition codes of at most 15 qubits on the 16 qubit ibmqx3 device. Each experiment is run for a single round of
syndrome measurements, achieved using the standard quantum technique of using ancilla qubits and controlled
operations. The size of the final syndrome is small enough to allow for lookup table decoding using experimentally
obtained data. The results show strong evidence that the logical error rate decays exponentially with code distance,
as is expected and required for the development of fault-tolerant quantum computers. The results also give insight
into the nature of noise in the device.
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I. INTRODUCTION

The development of quantum computing is entering an
exciting new era. Prototype quantum processors based on
various physical architectures are beginning to appear, such as
those superconducting qubits [1,2], trapped ions [3], and spin
qubits [4]. Such devices are too small and noisy to fully realize
the promise of quantum computation. Many more qubits and
the ability to achieve fault-tolerance are required before the age
of quantum computers truly dawns. Nevertheless, current and
near-future devices can and have been used to generate many
significant proof-of-principle results.

An important challenge of this new era is to benchmark and
compare quantum processors. A quantitative starting point for
this is the “Quantum Volume” [5], designed to capture not
only the number of qubits in a device, but also some idea of
the circuit depth that can be achieved before the effects of noise
dominate.

More detail on the capabilities of a device can be obtained
by running simple programs. An obvious choice would be to
implement small instances of algorithms intended for large
fault-tolerant devices, such as Shor’s [6] or Grover’s [7]
algorithms. However, a better insight would arguably come
from algorithms that have been specifically designed to work
on small and noisy devices [8].

Fortunately, there are already a class of protocols designed
specifically for noisy systems: those of quantum error correc-
tion [9]. Many experiments have already been done based on
tasks in this area, such as error detection [3,10,11], correction
[1,12], and proof-of-principle tests of the required techniques
[2,13,14].

Several of these experiments have involved large Hilbert
spaces. However, most of these have either not allowed
both detection and correction [13], or not used the standard
paradigm of encoding in a many-qubit system [12]. Apart from
these, the largest number of qubits used so far for the detection
and correction of errors was a repetition code of nine qubits
[1]. This code is capable of both detecting and correcting errors
on a logical bit value stored in an array of qubits. Note that,
unlike most quantum error correcting codes, this does not allow
a logical qubit to be stored. However, the connectivity required

to implement codes which store qubits is beyond most current
devices [15,16].

Specifically, if the qubits of a device are represented as
the vertices of a graph, and edges are placed between all
pairs for which entangling gates can be directly performed,
full quantum error correcting codes require this graph to be
at least a two-dimensional planar lattice. Repetition codes,
however, have much more amenable needs: All they require
is a line. This code therefore represents the forefront of
current implementations of quantum fault-tolerance, and is an
important means to benchmark current devices.

At the time producing this study, the largest quantum
processor was the ibmqx3 of IBM [17]. This is a 16 qubit
device whose connectivity is described by the 2×8 square
lattice shown in Fig. 1. Since repetition code can only be
defined on an odd number of qubits, this device can be used
to implement a repetition code of up to 15 qubits. It is such
an implementation that we consider in this work. By doing
so, we can look for evidence of one of the key assumptions
and requirements of quantum error correction, namely that the
logical error rate decays exponential with code distance.

This exponential decay is typically dependent on another
assumption: That noise acts with finite probability on only a
finite number of qubits. This could be violated by sufficiently
long-range interactions between code qubits [18,19], or by the
operations used to implement the code inadvertently allowing
noise to spread [20]. In such cases, the noise threshold required
for successful error correction would become zero, signifi-
cantly limiting the degree to which errors can be suppressed.
Such effects could be effectively ruled out by demonstrating
that the exponential decay of logical error rate persists to
arbitrarily large code distances. In this study we will consider
this to a limited extent by considering a range of possible code
sizes. However, we will not be able to fully rule out such effects.

II. REPETITION CODE

The repetition code stores classical information through
repetition. A code with distance d stores the bit value b ∈ {0,1}
by simply repeating the value b across d bits.
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FIG. 1. The layout of the ibmqx3 device, with the numbering of
qubits used in this study. Lines connect pairs of qubits for which a
CNOT can be performed. Thick black lines show the CNOTs used in
our implementation of the repetition code.

For example, this encoding step correponds to the following
for d = 5,

0 → 00000, 1 → 11111.

To implement this code using a quantum device, we simply
replace the bits with qubits. The value 0 is then stored with the
state |0〉⊗d , and 1 is stored with |1〉⊗d .

For the example of d = 5, this is then

0 → |00000〉, 1 → |11111〉.
If no errors occurred, the result at output would be to simply
regain the initial |0〉⊗d or |1〉⊗d . Decoding the stored bit value
in this case would trivially be an inversion of the encoding,
such as

|00000〉 → 0, |11111〉 → 1.

When errors do occur, the result will most likely be a bit string
with a mixture of 0’s and 1’s. Decoding is then typically done
by majority voting: If the error rate is low, the majority of
qubits can still be expected to be correct. Deducing that the
majority value is the one that was encoded will therefore allow
the encoded information to be retrieved in most cases. The
probability that the decoding is incorrect is known as the logical
error probability.

For example, suppose errors are bit flips which occur with
probability p < 0.5. If the result |01000〉 is obtained for d = 5,
it could have resulted from two possible processes. One is that
a logical 0 was encoded, followed by an error on the second
qubit. The other is than a 1 was encoded, and errors occurred
on all but the second qubit. The probability of the former is
much higher than that of the latter due to the much smaller
number of errors. So the decoding would be |01000〉 → 0.

For the error rate to be low enough for good decoding to
be possible, the stored information must be retrieved quickly
after being first encoded. However, error correction typically
aims to store information over long time scales. When the
repetition code is implemented classically, this can be achieved
by periodically measuring the bits of the code to keep track of
errors as they occur.

This tactic is not compatible with the needs of quantum error
correction, in which our techniques should not be allowed to
collapse a superposition of a stored 0 and a stored 1, which
would be encoded in the code qubits as α|0〉⊗d + β|1〉⊗d . We
therefore need a corresponding method that detects errors,
but does not need to readout the stored bit at the same
time. This process corresponds making to so-called “stabilizer
measurements” [21], which lie at the heart of most prominent
quantum error correcting codes.

FIG. 2. The basic circuit for a d = 3 repetition code. The case
shown is that for which the encoded logical bit value is 1. This value
is encoded in the three code qubits (c0, c1, and c2) by rotating the
initial |0〉 value to |1〉 using an X gate. The case for an encoded logical
0 is the same, but without the X gates. The qubit s is not part of the
code, but is used to compare the code against the case of encoding
the same bit value in a single qubit. The qubits 0 to 5, according to
the numbering of Fig. 1, are used to implement this code.

Stabilizer measurements for the repetition code are achieved
using the circuit of Fig. 2. In addition to the d code qubits,
d − 1 ancilla qubits are used. The code and ancilla qubits are
arranged alternately on a line. Each pair of neighboring code
qubits therefore always has an ancilla located between them.
Controlled-NOT (CNOT) gates are then performed, with a code
qubit as control and an ancilla qubit as target in each case. For
each ancilla, a CNOT is applied with both neighbors. The end
effect of this on the ancilla does not depend on the encoded
bit value. It depends only on whether the computational basis
states of the neighboring code qubits agree (as they should due
to the repetition) or not (a signature of error). By measuring the
ancillas we can then extract information about errors, without
collapsing any encoded superposition.

This portion of the circuit (CNOTs and ancilla measure-
ments) can be repeated indefinitely to keep track of errors as
they arise. When it is time to read out the bit value, the code
qubits should also be measured. The entire output can then
be used to deduce the original intended value. As long as the
probability of error between ancilla measurement rounds is
sufficiently low, the probability of a logical error will decay
exponentially as d is increased.

The decoding in this case can no longer be done simply
using majority voting. Instead a decoding method such as the
Blossom algorithm for minimum weight perfect matching can
be used [22], as can other methods designed for the case of the
surface code with perfect syndrome measurements [23–25].

The use of such algorithms is not required if the output is
sufficiently small (due to small d and few ancilla measure-
ment rounds). In such cases, a look-up table decoder can be
calculated from experimental data.

Specifically, the look-up tables are conditional probability
distributions π (R|E), where R is a bit string of representing
the final output of a code, and E ∈ {0,1} is the encoded bit
value. These distributions can be determined experimentally
for codes of limited size using the results of many runs. Once
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known, they can be used to decode an arbitrary output R. This
is done simply by finding the value of E for which π (R|E) is
highest. This then gives the most likely value for the encoded
bit, assuming that the priors for the two values are equal, and
so is taken to be the decoded bit value.

The probabilities for logical errors can be determined from
the same look-up tables used for the decoding. For a given
encoded bit value E, the probability P (R|E) that the result R

occurs and causes a logical error is clearly

P (R|E) =
⎧⎨
⎩

π (R|E), if π (R|¬E) > π (R|E).
π (R|E)/2, if π (R|¬E) = π (R|E).
0, otherwise.

(1)

The second case here reflects the possibility that the decoding
is ambiguous, and so the decoded value is chosen randomly.

The total probability for a logical error for a given encoded
bit value E can then be obtained by summing over all possible
outcomes

P (E) =
∑
R

P (R|E). (2)

In our experiment we consider codes with a maximum of d = 8
(and so 15 qubits in total). Also, due to restrictions of the API
for the IBM Quantum Experience [26], it is not possible to
measure the ancilla qubits repeatedly. We therefore do only a
single round of CNOTs and ancilla measurements, the last of
which are done simultaneously with the final readout of code
qubits. The circuit applied is therefore exactly that shown in
Fig. 2 for d = 3, or generalizations thereof for higher d. Due
to this limited size, we perform the look-up table decoding
described above.

III. CONDITIONS FOR SUCCESS

To determine how well the device implements the repletion
code, concrete conditions for success must be defined.

The most straightforward is to compare a bit stored in a code
with one stored in only a single qubit. The promise of quantum
error correction is that the nonlocal storage of information
across many qubits is more reliable than the single qubits
themselves. We must therefore confirm that this the case. To
do this, each run of the repetition code with a given encoded
bit value is accompanied by a single qubit in which the same
value is encoded. This additional qubit, which we will refer to
as qubit s, is shown at the bottom of Fig. 2.

Another obvious test is to ensure that the probability of a
logical error does indeed decrease with d, as expected. This
should certainly be the trend for large increments d, though
exceptions may be found between closely related values. These
could give an interesting insight in to the nature of noise on the
device. Also, note that the minimum number of errors required
to cause incorrect decoding is �d/2� [the number of flips on
code qubits required to change (for odd d) or create ambiguity
regarding (for even d) the majority]. Since this number is
the same for each odd d and the even d + 1 that follows it,
there might not be a significant decrease in the logical error
probability between these pairs.

For an additional test, note that the output of the code
qubits alone is enough to perform decoding. This would not be
true if many rounds of CNOTs and ancilla measurements were

applied. In this case, the amount of noise built up on the code
qubits would be too high for reliable decoding, and only with
the history of ancilla measurement results can the original
encoded value be deduced. However, in the case of the single
ancilla measurement round as we consider, the noise level
should be low enough to allow decoding using the code qubit
results alone.

The result of this is that the code could satisfy the previously
mentioned conditions (the code performing better than a single
qubit, and ever better as d increases) even if the CNOTs
completely failed to occur. This would in no way be any
proof-of-principle of quantum error correction, and so these
conditions are clearly not sufficient to ensure success.

The use of the CNOTs and ancilla measurements in our ex-
periment has both benefits and drawbacks. The former is due to
the extra information that can be extracted about the errors that
occur. The latter is due to the additional noise suffered by the
code qubits due to imperfections in the CNOTs. For a proof-of-
principle demonstration of quantum error correction, it must be
shown that the benefits significantly outweigh the drawbacks.

To do this, we compare results for two types of decoding.
One is “full decoding” in which the look-up tables of Eq. (1)
use the results from both the code and ancilla qubits (and
therefore each R is a string of 2d − 1 bits). The other is “partial
decoding,” in which only results from the code qubits are
used to construct the look-up tables (and so each R is a d

bit string). Since only the former benefits from the syndrome
measurement round, since this records additional information
about the errors on the ancilla qubits, it should lead to
significantly lower logical error probabilities. By showing this,
we would demonstrate that the effect of the CNOTs and ancilla
measurements in extracting additional information truly has
a powerful effect. Note that this form of test was originally
proposed in [27] for the surface code.

IV. RESULTS

Repetition codes of size between d = 3 and d = 8 were
studied. For each, the look-up tables where populated using
8192 samples. Note that this is significantly less than the total
possible number of measurement outcomes, 22d−1, for d = 8
and not significantly greater than that for d = 6 or d = 7.
Statistical inaccuracies in the look-up table can therefore be ex-
pected to affect the quality of the decoding. To get an idea of the
extent of this effect, logical error probabilities for each case are
calculated from ten different runs and a mean is taken. The stan-
dard deviation of these values is used as an estimate of error.

Simulated runs were also used to produce data that could be
used for comparison. These runs were done in the same way
as above, but only up to d = 6.

The simulations also include artificially introduced noise
since they would be otherwise perfect. This was done using
partial rotations about the X axis (which rotates between |0〉
and |1〉). The rotation angle depends on whether the qubit was
initialized in state |0〉 or |1〉 at the encoding step. For the former,
an angle of π/20 was used. For the latter, π/10 was used.
This mimics the greater probability of |1〉 → |0〉 transitions in
the real device. Noise was added to all qubits at three points:
immediately after encoding, between the two rounds of CNOTs
and immediately before measurement. This noise mechanism
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FIG. 3. The state of each qubit at the end of the process, char-
acterized by the probability of the outcome |1〉 when measured. The
extreme examples of d = 3 and d = 8 are shown. Results for the
encoded bit value 0 are shown in blue (circle markers), and those for
1 are in orange (triangle markers). Qubits alternate between code and
ancilla qubits, finally ending in a code qubit at 2d − 2. Qubit s is
located at 2d − 1. Any remaining qubits are unused.

is chosen for its simple implementation, and is not expected
to accurately reproduce the true noise processes in the real
device. The values of π/20 and π/10 are chosen because they
reproduce some values and features of the results from the real
device.

Full details of the implementation for both the real device
and the simulation, including source code and raw data, can be
found at [28].

The results in Fig. 3 show the state of each qubit at the end
of the process. In the case of no noise, all qubit states should
be |0〉, except for code qubits and qubit s when the bit value
1 encoded. The results show good agreement to these expect-
ations. Qubits expected to be |0〉 typically have a fidelity of
more than 90%, and those expected to be |1〉 have a fidelity
of more than 80%. For the bit stored in the single qubit s,
the lowest probability of a logical error is around 0.5% for a
stored 0 and 10% for a stored 1. The values for the simulator
show good agreement to those for the real device, though this
is due only to the fact that the simulated noise parameters were
chosen to obtain such an agreement.

The results in Fig. 4 show the logical error probabilities as
a function of code distance. These probabilities are found to
be much lower than the corresponding values for the qubit s

in the case of an encoded bit value of 0. The effect is not so
strong for the encoded 0, however, this is due to the fact that
the noise tends cause qubits to decay towards |0〉 in all cases,
which happens to be advantageous when 0 is encoded.

The results show that the trend is indeed for the error
probability to decrease with code distance, as we would expect.
A notable exception is found at d = 6 for an encoded bit value
0. However, note that this is the first code that uses the qubit

FIG. 4. Probabilities of logical errors for both full and partial
decoding. As a comparison, the minimum value of the single qubit
memory from all code sizes is plotted across the graph.

numbered 9 in Fig. 3, which can be seen to be particularly noisy.
Also, the error probability after full decoding is significantly
less than that after partial decoding in almost all cases, which
is again in line with expectations.

A. Fit to an exponential decay

To further analyze these trends, the data are fit to an
exponential decay. The simplest possible model of the repe-
tition code is used to avoid over fitting, or unstable fits. This
model has a single free parameter p, which corresponds to
the probability of a bit-flip error for each qubit. Decoding is
done simply by using the majority voting of the code qubits
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FIG. 5. Probabilities of logical errors for both full and partial
decoding, as shown in Fig. 4, with additional fit lines for an expo-
nential decay. The results for d = 3 were omitted to reduce finite-size
effects.

The logical error probability for a given code distance d is
therefore the probability of such errors on at least half of the
qubits within the code, and so decays exponentially with a
factor of [p/(1 − p)]�d/2�. Note that the supremum here results
in this factor being equal for each odd d and the corresponding
d + 1, due to the lack of a clear majority in the even case.

This simple model corresponds most closely to the case
considered for partial decoding, and so is directly used to
fit this data. The results are shown in Fig. 5. The fitting
was done using a least squares method on the logarithms
of the logical error probabilities. The values for the fitting
parameter were found to be 0.088 ± 0.001 for encoded 0
and 0.102 ± 0.001 for encoded 1. These values represent the
combined effect of preparation, measurement and entangling
gate errors, which are each measured to be on the order of 1%
using randomized benchmarking [17]. The fitting parameters
are therefore certainly of the right order to represent their
combined effect. However, the possibility that correlated noise
can also form a significant contribution cannot be ruled out.

For the fitting of data from full decoding, let us consider
two extremes. First, consider the case for which all CNOTs and
ancilla qubits are perfect. Full decoding would then effectively
factor into two rounds of error correction, each of which can be
modelled in the same way as partial decoding. We will refer to
the values of the physical error probability for these rounds as
p0 and p1, respectively. Clearly p = p0(1−p1) + p1(1−p0),
though we will use the approximation p = p0 + p1 for sim-
plicity.

The second extremal case is that for which the syndrome
measurements result in no useful information being placed on
the ancillas. This could either be due to the CNOTs being com-
pletely ineffective, or the ancillas being completely decohered.
In this case, the ancilla results can be ignored. Full decoding
could then be treated as a single round of partial decoding.

We will therefore fit the data for full decoding to two rounds
of the simple model. This will be done by first assuming that
one round has the error probability p0 = p, found from the
fit to the partial decoding data, and the other has no errors
(p1 = 0). The fit will then optimize over all other possible p0

and p1 given the p = p0 + p1 constraint.
The resulting p0 and p1 can then be used to determine the

degree to which we can factorize the error correction into two
rounds. If one of these probabilities is found to dominate, it
would suggest that the effectiveness of the syndrome measure-
ment approaches the worst-case scenario described above.

A more even split would support the notion that the
syndrome measurement round is indeed effective. However, it
is not a complete proof. Similar results could occur if the CNOTs
were ineffective, but suffered correlated noise. Full proof of
effectiveness would therefore require a deeper understanding
of the effects of noise in the system.

Fitting the data for the full decoding in this way yields
p0 = 0.054 ± 0.001 and p1 = 0.034 ± 0.001 for stored 0 and
p0 = p1 = 0.051 ± 0.001 for stored 1. These do show a clear
sign of factoring into two distinct rounds, which strengthens the
argument that the syndrome measurement round significantly
increases the performance of the code.

The data can be seen to show a clear agreement with the
exponential decay of the fit lines. However, the data and fitted
lines do differ by a typical factor of around 2. This is due to
disagreement in the form of the even or odd effects. In some
cases, such as partial decoding for an encoded 0, the data and fit
show opposite even or odd effects. This is likely due to biased
noise changing the nature of the decoding, as will be discussed
below. The even or odd effects in the data also appear to be
less prominent, with partial decoding for an encoded 1 as the
clearest example. These differences could be accounted for by
fitting to a more complex model that accounts for biased and
correlated noise. However, this would increase the number of
fitting parameters. A full study of these effects must therefore
be deferred to future experiments with larger devices, such that
more data points can be taken. Future experiments would also
benefit from greater access to the raw data from devices, rather
than the postprocessed outputs of 0 and 1 as supplied currently.

B. Analysis of finite-size effects

An exception to the decay of the logical error rate can be
seen in Fig. 4 for d = 3 and an encoded bit value of 0. This
occurs both for the real device and the simulator. It may seem
counterintuitive that better results could come from ignoring
some information. However, this effect is due to the way the
probabilities are calculated and the biased nature of the noise.

For example, consider an extreme case for which noise
on the code qubits causes very strong relaxation, such that
the code qubits always end in state |0〉 when 0 was encoded,
and almost always end in state |0〉 even when 1 is encoded.
Partial decoding using only these results would then lead to
the decoding guessing that 0 was encoded in almost all cases.
There would then never be a logical error for an encoded 0, but
a logical error would be almost certain for an encoded 1.

More informed decoding could be achieved using the ancilla
results. If these show signs that extensive errors have occurred,
it would be likely that the code qubits start in in state |1〉. Many
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FIG. 6. Probabilities for different numbers of 1’s in the output of
the code qubits.

cases for which a logical error would have occurred when
using partial decoding could then be successfully decoded
using this full decoding. However, for some cases, such as
many measurement errors on ancilla qubits, it is possible for
an encoded 0 to be misidentified as a 1. The use of a less biased
decoder therefore may be more effective in overall, but it can
be less effective for the specific case of an encoded 0.

The reason for the effect in this specific case can be seen
from Fig. 6. Here results are shown for d = 3 and d = 6. These
graphs show how probable it is to get each possible number of
the outcome 1 in the output of the code qubits. For an encoded
0 it is most probable to have a small number of 1’s since each
is an error deviating from the perfect output in which all are
0. For an encoded 1 the output is most likely to have a large
number of 1’s, since each 0 would be an error in this case.

For unbiased noise, the crossover between the curves for
encoded 0 and encoded 1 would occur at d/2. Any output with
less 1’s than this should therefore be decoded as a 0, and any
with more should be decoded as a 1. For codes with even d, for
which it is possible for the number of 1s in the output to be the
marginal value of d/2, the decoding can be chosen randomly
in this case.

For the biased noise, as present in the real device and
our simulations, the decoding can deviate from this simple
majority voting. This can be seen in the results for d = 6. The
crossover point has shifted, resulting in d/2 no longer being
the marginal case that would result for unbiased noise. Instead,
having this number of 1’s in the output is recognized as being a
strong indicator that the encoded bit value was 1 and would be

decoded accordingly. Similar effects occur for all other code
distances, with the exception of d = 3.

For d = 3 there is a similar shift of the crossover point.
This shift is by approximately the same fraction of d as in the
d = 6 case. However, the smaller nature of the code means that
there is less freedom to alter the decoding accordingly. In fact,
since finding two 1’s in the output is still slightly more likely
to correspond to an encoded 0, the optimal decoding will still
correspond to majority voting.

Nevertheless, outputs with two 1’s are found to be very close
to being a marginal case, with encoded 0 only being slightly
more likely. Decoding these as 0 in all cases will therefore
lead to a unfair advantage for this encoded value, causing the
feature found in Fig. 4.

V. CONCLUSION

The logical error probabilities of the code sizes considered
agree with expectations in most cases, showing that current
technology is certainly capable of achieving this simple exam-
ple of quantum error correction on a relatively large scale. The
exceptions found shed light on the nature of noise in the system,
with the bias induced by relaxation being the dominant effect.

The quantum part of the code is the mapping of information
about errors to ancilla qubits via controlled operations. This
is a central technique of quantum error correction. Due to
only a single round of ancilla measurements being used, it
is possible to compare the effectiveness of decoding both with
and without the ancilla results. This allowed direct insight into
the effectiveness of the quantum part. It was found that it did
indeed allow for significantly better results.

The next major goal of experimental quantum error correc-
tion is to build a logical qubit that can be stored as successfully
as the logical bit here. The analysis used in this paper, such as
the look-up table decoding and comparison of full and partial
decoding, would be just as valid in that case [27]. It would
therefore be highly interesting to see corresponding results in
future.

The Jupyter notebook containing source code for this
project can be found at [28]. The raw data are also provided,
allowing the analysis of this paper to be repeated and expanded
upon. The most recent version of the notebook at the time
of publication is included with this paper as supplemental
material [29] .
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