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Symmetry boost of the fidelity of Shor factoring
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In Shor’s algorithm quantum subroutines occur with the structure FUF−1, where F is a unitary transform
and U is performing a quantum computation. Examples are quantum adders and subunits of quantum modulo
adders. In this paper we show, both analytically and numerically, that if, in analogy to spin echoes, F and F−1

can be implemented symmetrically when executing Shor’s algorithm on actual, imperfect quantum hardware,
such that F and F−1 have the same hardware errors, a symmetry boost in the fidelity of the combined FUF−1

quantum operation results when compared to the case in which the errors inF andF−1 are independently random.
Running the complete gate-by-gate implemented Shor algorithm, we show that the symmetry-induced fidelity
boost can be as large as a factor 4. While most of our analytical and numerical results concern the case of over-
and under-rotation of controlled rotation gates, in the numerically accessible case of Shor’s algorithm with a small
number of qubits, we show explicitly that the symmetry boost is robust with respect to more general types of
errors. While, expectedly, additional error types reduce the symmetry boost, we show explicitly, by implementing
general off-diagonal SU(N ) errors (N = 2,4,8), that the boost factor scales like a Lorentzian in δ/σ , where σ

and δ are the error strengths of the diagonal over- and underrotation errors and the off-diagonal SU(N ) errors,
respectively. The Lorentzian shape also shows that, while the boost factor may become small with increasing δ,
it declines slowly (essentially like a power law) and is never completely erased. We also investigate the effect of
diagonal nonunitary errors, which, in analogy to unitary errors, reduce but never erase the symmetry boost. Going
beyond the case of small quantum processors, we present analytical scaling results that show that the symmetry
boost persists in the practically interesting case of a large number of qubits. We illustrate this result explicitly for
the case of Shor factoring of the semiprime RSA-1024, where, analytically, focusing on over- and underrotation
errors, we obtain a boost factor of about 10. In addition, we provide a proof of the fidelity product formula,
including its range of applicability.
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I. INTRODUCTION

The second half of the 20th century saw the advent of
the information technology revolution. There is no doubt
about its profound impact on just about every aspect of
modern society. The technological innovation in computers
and networks enabled us to achieve tasks previously thought
to be impossible, such as weather forecast, telecommunication,
the Global Positioning System, and online banking.

While the current classical technology is already impres-
sive, yet another revolution has emerged: quantum information
technology [1]. Taking advantage of quantum superposition
and entanglement, a quantum information device is expected to
be more secure and faster than its classical counterpart. Epito-
mizing the former is Shor’s algorithm [1,2], which enables us to
factor a semiprime N = pq, where p and q are prime numbers,
exponentially faster than any classical algorithm known to
date. Shor’s algorithm is often associated with code breaking,
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since semiprime factorization is the key technology needed
to break the widely employed Rivest-Shamir-Adleman (RSA)
encryption scheme [1,3].

Despite all the theoretically predicted tremendous powers
of quantum information devices, we do encounter major chal-
lenges when it comes to a physical realization of these devices:
errors and defects. This is so because quantum information
processors are known to be susceptible to the detrimental
effects of inexact gate operations and decoherence, especially
for a quantum computer whose workings are based on exquisite
control of quantum superposition and interference. An early
list of the potentially dangerous physical mechanisms that
may destroy the proper functioning of a quantum computer
was compiled by Landauer [4], and much progress has been
made to fight these adverse mechanisms over the past couple of
decades. In particular, there are four different classes of errors
that may occur during the execution of a quantum algorithm
on a quantum computer [5–22].

(1) Environmental decoherence errors. This type of error
is caused by unknown and uncontrollable noise sources,
originating in the environment outside the quantum computer.
The paradigm here, in terms of quantum circuit terminology, is
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the bit-flip error, which can largely be handled by sophisticated
quantum error-correction circuitry. Most studies of quantum
error correction, with few exceptions, consider bit-flip errors
to occur during qubit idle times, which are then restored
by quantum error-correction circuitry. Excellent reviews of
quantum error correction are available in the literature, for
instance, by Devitt et al. [5], Terhal [6], Gottesman [7], and
Raussendorf [8].

(2) Hardware errors. This type of error, sometimes called
control errors, occurs when control signals directed at a
physical qubit, such as laser pulses acting on a two-level qubit,
consistently or randomly over- or underrotate the phase of
this qubit. As a specific example let us consider a quantum
computer represented as a unitary operator Q̂(�θ1,�θ2, . . . ,�θM ) =∏M

j=1 Û
(τj )
j (�θj ) in the form of a sequence of M gate applica-

tions, where Û
(τj )
j (�θj ) is the unitary operator representing gate

type τj , j is the sequence number, and �θj are the ideal (circuit-
specified) control parameters that determine the action of gate
number j . Specifying the initial state |φi〉 of the quantum
computer, Q̂(�θ1,�θ2, . . . ,�θM ) takes the initial state |φi〉 into
the final state |φf (�θ1,�θ2, . . . ,�θM )〉. Experimentally, because
of unavoidable control errors, the control parameters will be
different from quantum-computer run to quantum-computer
run, i.e., �θj → �ϑj , |φf 〉 → |ϕf 〉, and we need to characterize
the sensitivity of the output state |ϕf (�ϑ1,�ϑ2, . . . ,�ϑM )〉 with
respect to the perturbed control parameters �ϑj . We do this by
computing the fidelity. If we denote by |ϕ(n)

f 〉 the output state
obtained after run number n, the fidelity is computed according
to F =∑N

n=1 |〈ϕ(n)
f |φf 〉|2/N , where N is the number of runs.

While each run number n yields a pure output state |ϕ(n)
f 〉 =

|ϕf (�ϑ (n)
1 ,�ϑ (n)

2 , . . . ,�ϑ (n)
M )〉, where the control parameters ϑ

(n)
j are

the actual settings for this specific run, the output state of the
combined ensemble of states produced by repeated runs of Q̂ is
a mixed state, best characterized by a density matrix [23] ρ =∑N

n=1 |ϕ(n)
f 〉〈ϕ(n)

f |/N . Using this mixed-state density matrix,
the fidelity is computed according to F = 〈φf |ρ|φf 〉 and
yields exactly the same result as before. Therefore, generating
pure states and then averaging, or viewing this process as
a state-generation machine (a beam) that generates a mixed
state, produces identical results for the fidelity F . The mixed
state will show a reduction of the coherences of the density
matrix [23], i.e., a reduction of the sizes of the off-diagonal
matrix elements of ρ with respect to the density matrix
corresponding to the ideal settings �θj of the control parameters.
This decoherence, a consequence of hardware errors and fully
included in our simulations, should not be confused with
environmental decoherence, as discussed in point 1 above: In
the presence of environmental decoherence, a mixture results
even after a single run of the quantum computer. Since, in
general, different gate types are implemented with different
hardware (for instance, different laser pulse sequences), it
makes sense to correlate hardware errors with gate types. We
define typed errors according to �ϑ (n)

j = �ϑ (n)
j ′ whenever τj = τj ′ .

Without such correlation we call the hardware errors nontyped.
We emphasize that the above discussion applies to typed as well
as nontyped errors. Hardware errors, and how to counteract
them in quantum processors realized with physical gates, are
the main focus of this paper.

(3) Gate approximation errors. Only a limited set of
standard gates can be protected in a straightforward way
by quantum error-correction circuitry. Gates that cannot be
protected easily need to be represented as products of more
elementary, protectable gates. The longer the approximation
sequence is, the better a given gate is approximated by the
sequence. However, for sequences of finite lengths, i.e., the
only type that exists in an actual physical realization of a quan-
tum computer, a finite approximation error always remains.
That these sequence approximations always converge largely
rests on a theorem by Kitaev [24], and excellent reviews of the
current state of the art in sequence approximations and their
resulting errors are available in the literature [9–11]. While, on
the one hand, as mentioned above, longer gate approximation
sequences result in smaller gate approximation errors, longer
sequences, on the other hand, provide more chances for type-1
errors (decoherence) and type-2 errors (hardware errors) to
counteract the desired improvement in the approximation of a
specified target gate. Focusing on type-2 errors, it was shown
in [25] that the tug-of-war between type-2 and type-3 errors
leads to an optimum in the sequence length, i.e., under realistic
conditions it is not always true that longer sequences lead to
smaller errors. Analytical formulas for the optimal sequence
length may also be found in [25].

(4) Loss. This type of error, discussed, e.g., in [21,22],
occurs when the quantum computer loses information-carrying
photons, phonons, or electrons. Thus, this type of error is a
nonunitary error.

This list of quantum-error types helps to better contrast
the hardware errors that we focus on in this paper with other
types of errors not considered in this paper. In particular, in
this paper, we focus on errors that most closely resemble
type-2 errors, i.e., random over- and underrotations of the
phases of qubits. As detailed in [25], no quantum hardware
is perfect. Therefore, every single component of a quantum
computer is necessarily flawed. It is impossible to build an ideal
mathematically precise gate. All physical equipment is limited
by finite accuracy and precision. Consequently, even when
protected by quantum error protection circuitry, as proved in
[25], the resulting quantum computer, even if all gates are
encoded, still contains random over- and underrotations of
the phases of qubits with certainty. Therefore, hardware errors
are an important class of errors that we study in this paper with
the help of several error models.

The impossibility of realizing mathematically perfect quan-
tum gates in physical quantum computer implementations is
not a trivial observation that can be dismissed without serious
investigation. For instance, akin to the existence of exponential
sensitivity to errors in classically chaotic systems [26], it
may be possible that quantum computers are exponentially
sensitive to hardware errors, which would immediately negate
their potential exponentially superior performance with respect
to classical hardware. While this, because of the linearity of
quantum mechanics, may not be so, it may be discounted only
after serious investigation. The fundamental fact that it is im-
possible to eliminate hardware errors provides the motivation.
At the very least, the precise law of proliferation and scaling of
hardware errors in large-scale quantum processors needs to be
investigated in order to provide physicists and engineers with
some benchmarks of how precisely particular quantum gates
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need to be realized to guarantee acceptable quantum computer
performance. First steps in this direction, including analytical
estimates, valid in the regime of a large number of qubits, have
already been taken [25,27–29].

Apart from their fundamental importance, there is another
reason why we chose to focus on type-2 quantum hardware
errors. In discussions with experimentalists at the University
of Maryland, who are currently engaged in constructing a
quantum computer, projected to be capable of demonstrating
quantum supremacy [30] over classical computers, we learned
that these researchers, for their quantum-computer architec-
ture of choice (trapped-ion architecture [31,32]), consider
environmental decoherence errors as secondary and hardware
errors as primary in determining the limits of their quantum
computers. This evaluation is supported by the following
general arguments. Previously, two-level systems were re-
alized in the optical regime, where the coherence time is
small due to the large transition frequency between the two
levels. Now, however, moving into the direction of realizing
the computational space in terms of microwave transitions,
the coherence time is much longer, of the order of minutes,
simply because the frequency is reduced [33–35]. Therefore,
for microwave-based implementations of quantum computers,
environmental decoherence, so far typically assumed and
discussed in the literature as the most detrimental kind of error
to occur in a quantum computer, is taking a back seat and the
irremovable hardware errors are now the limiting factor that
determines whether a quantum computer works or not.

Our paper is structured as follows. In Sec. II, keeping the
above discussion in mind, we define our error models. In light
of the above discussion, based on fundamental and physical
grounds, we reiterate and emphasize the importance and sig-
nificance of our error models. Then, in Sec. III, we present our
results, demonstrating that the effect of hardware errors may
be mitigated and counteracted by symmetry. In particular, we
present our central result, i.e., symmetry is capable of boosting
Shor factoring fidelity by significant factors. In Sec. IV we
illustrate the symmetry boost with a concrete example: Shor
factorization of the semiprime RSA-1024 [36]. This example
illustrates two points: (a) Our analytical methods are powerful
enough to cover the case of a large number of qubits and
(b) symmetry boosts of about an order of magnitude can
be obtained even for a large quantum processor with qubit
numbers in the thousands. While Secs. II–IV focus on the
analytically treatable case of over- and underrotations of the
target qubits of controlled rotation gates, we show in Sec. V
that the symmetry boost is robust and does not vanish if
more general types of errors are considered. We discuss and
conclude our paper in Sec. VI. Technical material is relegated
to four Appendixes. In Appendix A we derive two formulas
that serve as the starting point for much of the discussion in
Sec. III. In Appendix B, for the benefit of the reader and to
further emphasize why a distinction needs to be made between
type-1 and type-2 errors, we contrast type-1 (environmental
decoherence) errors with type-2 (hardware) errors and show
that they are indeed qualitatively different. In particular, we
show that hardware errors cannot be treated in the same
framework as we treat flip errors. Thus, the machinery available
to treat environmental decoherence errors is only of limited
applicability when it comes to type-2 errors. We also show

that depending on circumstances, hardware errors, as it turned
out to be the case in connection with some of the most modern
quantum computer implementations [33], may well be larger
and more important than environmental decoherence errors. In
Appendix C we prove the fidelity product formula, frequently
used in the literature (see, e.g., [37]). In particular, we show
in Appendix C that the fidelity product formula is only a
first-order result and state explicitly its range of applicability.
In Appendix D we prove a formula we used in Sec. III.

II. METHODS

As a test-bed algorithm we chose Shor’s algorithm, im-
plemented according to Beauregard’s architecture [38]. We
selected this particular architecture based on the facts that
(i) Shor’s algorithm is arguably the most interesting and
most important quantum algorithm to date, (ii) the algorithm
is complex enough to realistically capture the effects of
flawed gates, and, most importantly and exploited in this
paper, (iii) Beauregard’s architecture allows us to take ad-
vantage of symmetry. Whether some other Shor-algorithm
architectures, such as those presented in [39] (and references
therein), may be exploited in a similar fashion is yet to be
determined.

Studies addressing the effects of errors and defects on a
quantum computer running Shor’s algorithm continue to be
of central interest to many scientists. A list of early notable
contributions includes the investigations by Cirac and Zoller
[31] studying the effect of errors in interaction time and laser
detuning, Miquel et al. studying the effects of interactions
with a dissipative environment [40] and phase drift errors [37],
Wei et al. exploring the effects of coherence errors occurring
while the quantum computer is idling [41], and García-Mata
et al. [42] simulating static imperfections in Shor’s algorithm.
Recent developments in quantum simulation software [43–45]
reflect the fact that quantum computers remain at the forefront
of research. Our work extends this line of research in that we
simulate the entire Shor algorithm, gate by gate. Based on this
complete implementation of Shor’s algorithm, we investigate
the effects of errors in its phase-rotation gates.

We emphasize that our error model, to be defined and
discussed below, reflects the effects of hardware errors that
are unavoidable and guaranteed to occur in any hardware that
exists in nature. This is so because not even in principle does
there exist physical equipment that meets mathematically exact
circuit specifications. As a consequence, even if the quantum
computer is protected with hardware implementing quantum
error-correction circuitry according to any quantum error-
correction protocol imaginable, each and every single physical
quantum gate of the protection circuit will inevitably contain
hardware errors itself. Thus, because hardware errors affect all
qubits, including the qubits of the correction circuitry, there is
no type of hardware error that can be perfectly corrected. In
fact, it can be shown (see Appendix B) that hardware errors,
omnipresent in a realistic quantum computer, may be more
significant than the commonly addressed locally stochastic
errors, often thought to be the most significant sources of
instability of quantum computers. Our error model therefore
includes the effects of physical errors, i.e., hardware errors,
that are of prime importance for stable quantum computation
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and, as shown in Appendix B, may indeed be more important
than local stochastic errors.

Since the most frequently used quantum gate in Beaure-
gard’s architecture of Shor’s algorithm is a phase rotation gate

θ
(±)
j =
(

1 0
0 e±i(π/2j )

)
, (1)

which appears ∼18L4 times throughout the algorithm [27]
when using the minimally required number of qubits to factor a
semiprime N whose bit length is L, we tested the sensitivity of
this quantum computer running Shor’s algorithm with respect
to errors in θ

(±)
j . Specifically, we used a statistical error model

of the rotation gate of the form [28]

Rθ
(±)
j =
(

1 0
0 e±i(π/2j )[1+α(±)]

)
(2)

in the case where the errors scale according to the size of the
gate operation and

Aθ
(±)
j =
(

1 0
0 e±i[(π/2j )+α(±)]

)
(3)

in the case where the errors do not scale according to the size
of the gate operation. In both cases α(±) is the defect parameter
that may or may not be (strongly) correlated with the gate type
indexed with j . In the case in which a one-to-one correlation
exists, we call the error typed and replace α(±) with α

(±)
j . The

± sign corresponds to forward and backward operation.
The reason why we explicitly distinguish these two er-

ror models is as follows. First, any physically implemented
gate has a finite accuracy, which may be characterized in
terms of percentage error with respect to the desired gate
operation. Since a rotation gate θj is built according to a
gate-decomposition sequence (see references in [29]), the
approximated rotation gate will contain errors that scale in
the size of the operation, for example, if θj is constructed by
applying θj+1 twice. This iteration method, i.e., constructing
gates from more basic standardized building blocks, is realistic
and even desirable from both the technological and economic
perspectives. Thus, characterizing a device in terms of relative
errors is captured by the Rθ

(±)
j model. However, suppose we

characterize our physically implemented gate in terms of its
technological limit, say, δ. In this case, most likely, all gates
will be constructed on the basis of different gate sequences,
resulting in an error level �δ. This is captured by our
model Aθ

(±)
j .

We now subdivide both models into three categories: (i)
typed errors (α± = α±

j ), asymmetric (α+ = −α−); (ii) typed
errors (α± = α±

j ), symmetric (α+ = α−); and (iii) nontyped
errors, i.e., completely random α±. The three categories arise
as follows. Typing results from using the same sequence, or
the same physical device, for the same θj that occur multiple
times throughout the entire Shor algorithm. Then, depending
on the way that the physical device is implemented, since
the backward gate is nothing but a unitary inverse of the
forward gate, we may assume that the errors of the forward
and backward gates are symmetric.
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FIG. 1. Fidelity F of a quantum computer factoring N = 15 with
seed 2 as a function of standard deviation σ of the logical-gate errors.
The quantum computer is equipped with adders that are suitable
for use in Shor-algorithm factoring of at most four-bit semiprimes.
Shown are the cases of typed asymmetric errors (triangles), typed
symmetric errors (squares), and nontyped random errors (circles).
Closed plot symbols (red, blue, and black) denote relative errors [see
Eq. (2)] and the open plot symbols (orange, cyan, and gray) denote
absolute errors [see Eq. (3)]. Dashed lines connecting plot symbols
are drawn to guide the eye. The solid horizontal line corresponds to
F = 0.

III. GENERAL ANALYTICAL
AND NUMERICAL RESULTS

To start with, we simulate the case of factoring N = 15.
This is the case used in [37], which allows us to compare
our results with the results in [37]. Defining the fidelity
F = |〈�actual|�ideal〉|2 as in [37], we plot, in Fig. 1, F as a
function of σ , where the errors α(±) are Gaussian-distributed
random variables with mean 0 and standard deviation σ .
Consistent with the results presented in [37], the fidelity F

of Shor’s algorithm follows the form F = exp(−γ σ 2) for
small σ . Figure 1 shows that the performance of the quantum
computer improves in the order of asymmetric, random, and
symmetric errors. To quantify, we observe that, corresponding
to F = exp(−γ σ 2), the smaller the γ , the larger the fidelity.
Numerically, in the case of relative errors, we obtain Rγ (asym) =
46 512, Rγ (rand) = 1937, and Rγ (sym) = 416, for asymmetric,
random, and symmetric errors, respectively. In the case of
absolute errors, we obtain Aγ (asym) = 20 909, Aγ (rand) = 664,
and Aγ (sym) = 184, respectively. Clearly, for both relative and
absolute errors the numerical results follow the progression
of asymmetric, random, and symmetric in terms of fidelity
improvement as already noticed graphically in Fig. 1. In order
to quantitatively characterize the symmetry boost in fidelity,
we choose the random-error case as our standard and define
the boost factor

β = γ (rand)/γ (sym). (4)

For the case of relative errors shown in Fig. 1 (N =
15), we obtain the boost factor Rβ = Rγ (rand)/Rγ (sym) =
1937/416 = 4.6. In the case of absolute errors we ob-
tain Aβ = Aγ (rand)/Aγ (sym) = 664/184 = 3.6. These numbers
show that choosing the correct error symmetry class
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results in an improvement of quantum-computer fidelity.
Had we chosen the asymmetric symmetry class for imple-
menting errors, instead of a fidelity boost we would have
obtained a fidelity bust of a factor Rβ̃ = Rγ (rand)/Rγ (asym) =
1937/46 512 = 0.042 in the relative-error case and Aβ̃ =
Aγ (rand)/Aγ (asym) = 664/20 909 = 0.032 in the absolute-error
case. This shows clearly that (i) the fidelity of the quantum
computer reacts sensitively to the correct choice of symmetry
class and (ii) for the correct choice of symmetry class an
improvement of the performance of the quantum computer is
obtained. In particular, in the relative-error case, the factor 4.6
improvement in γ would allow for about a factor 2 larger σ .

The important question to ask now is whether the symmetry-
driven fidelity boost will persist as we scale up the quantum
circuitry, i.e., in the limit of a large number of qubits. To
start with, we compare the expected fidelities from naively
multiplying the fidelities of the basic building blocks of Shor’s
algorithm, i.e., the quantum adders. This product formula of
fidelities has been shown in [37] to work well in the nontyped
cases (see also Appendix C).

For an (L + 1)-bit-sized quantum adder, capable of execut-
ing s + a, where s and a are integers of bit lengths �L, the
phase � associated with s + a in the symmetric case is given
by

�s,a(l) = 1

2L+1

[
1 + exp

(
i

{[
L−1∑
ν=0

kνrL−ν

]})
e2πi(s+a−l)/2L+1

]
Ws,a(l), (5)

where kν = s[ν] + a[ν] − l[ν] (s[ν], e.g., denotes the νth binary digit of s),

Ws,a(l) =
2L−1∑
l′=0

exp

[
i

(
L−1∑
m=0

l′[L−1−m]

{
a[m]r0 +

[
m−1∑
ν=0

kνrm−ν

]})]
e2πi(s+a−l)l′/2L

, (6)

rj may be αj or (π/2j )αj if the errors are of the absolute
kind or of the relative kind, respectively, and l is the output
integer. Equations (5) and (6) are derived in Appendix A. The
nontyped error cases are obtained by removing correlations via
letting each term in kν be associated with individual random
terms, followed by removing typing of errors associated with
the subscript j of rj .

Calculating now the fidelity of the quantum adder Fadder =
|�s,a(l = s + a)|2, using (5) and (6), and assuming that the
central limit theorem holds, we find, in the limit that L is large
and σ is small,

Rβadder =
〈
ln RF

(rand)
adder

〉
s,a〈

ln RF
(sym)
adder

〉
s,a

= 1.35,

Aβadder =
〈
ln AF

(rand)
adder

〉
s,a〈

ln AF
(sym)
adder

〉
s,a

= 1.20, (7)

where, assuming F ∼ exp(−γ σ 2), the logarithm extracts the
γ value and, in analogy to the boost-factor definitions above,
we defined Rβadder and Aβadder as the adder boost factors for
relative errors and absolute errors, respectively. In addition,
F

(rand)
adder is the adder fidelity in the random nontyped case and

F
(sym)
adder is the adder fidelity in the case of symmetric errors.

We see from (7) that exploiting symmetry in our circuitry
improves the fidelity of the quantum computer. In particular,
the symmetry-driven boost always exists, outperforming the
average fidelity of the nontyped random cases in all cases,
even for large numbers of qubits. The complete Shor algorithm
contains many adders. However, since the fidelity of successive
applications of adders is approximately given by the product
of the individual adders (see Appendix C), the Shor fidelity
inherits the symmetry boost of the individual adders and
we expect that the symmetry-driven fidelity boost persists in

large-scale quantum circuits that are of practical interest. This
is indeed confirmed explicitly in Sec. IV, where we obtain large
symmetry boosts in the case of RSA-1024 factoring.

Now the observed boost factors of 4.6 in the relative error
case and 3.6 in the absolute error case in Fig. 1 are larger than
what is expected from (7). This motivates us to find additional
boost mechanisms that are not captured by the naive adder-
fidelity product approximation of the Shor processor fidelity.
While we were not able to pin down all boost mechanisms, we
present in the following the one that is based on the next-level-
up building blocks, namely, the modulo-addition gates.

To start, we point out that a modulo-addition gate consists
of five adders and an auxiliary qubit (see, e.g., Fig. 5 of [38]).
For an input integer value of s, a quantum modular addition
of s + a modN may be performed by first adding a and then
subtracting N , followed by a conditional operation of adding
back N if s + a < N , which may be done with the help of
an auxiliary qubit. This completes the computational part of
the modular addition. In order to now unitarily restore and
decouple the auxiliary qubit that is at this point in its conditional
state (depending on the relation between s + a and N ), two
additional adders that subtract and add a, respectively, are
used. We refer to this step as the recovery part of the modular
addition.

According to whether the conditional addition of N is
triggered or not, we consider two cases, i.e., (i) s + a < N and
(ii) s + a � N . In the former case, because of the triggering,
the modulo-addition circuit attains a symmetric substructure,
denoted by the dashed lines in Fig. 2. Thus, motivated by the
existence of the highly organized structure and in the limit of
small errors, we write the fidelity of a modulo-addition gate
in case (i) as F (i) ≈ FSSF

(a)
adder, where FSS denotes the fidelity

associated with the symmetric substructure and F
(a)
adder denotes

the fidelity of the last adder with addenda in Fig. 2, all equipped
with symmetric noise. In the latter case, the auxiliary qubit is
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s

0

+a −N QFT-1 QFT +N QFT-1 QFT

Computational part Recovery part

−a +a

FIG. 2. Modulo-addition gate circuit diagram, inspired by Fig. 5 of [38]. Circles denote controlling qubits and crosses denote NOT gates.
Thick black bars identify adders and subtractors, i.e., bars on the right for adders and bars on the left for subtractors. Black solid rectangles in the
qubit registers (denoted by thin rectangles) denote the most significant digit qubit of the register. All additions and subtractions are performed
in the Fourier space. Dashed red boxes enclose the symmetric parts used in the derivation of FSS discussed in the text. The vertical dash-dotted
green line denotes the border between computational and recovery parts of the modulo-addition circuit.

not turned on, resulting in the modulo-addition gate fidelity
of case (ii) F (ii) ≈ F

(−N)
adder F

(a)
adder, assuming that, in the limit of

small errors, the errors associated with the first adder of the
computational part of the modulo-addition gate approximately
cancel those associated with the first adder (subtractor) of the
recovery part of the modulo-addition gate.

At this point we notice that the only unknown term is
FSS, since the fidelity of the quantum adder has already
been discussed earlier in this paper. Therefore, we now focus
on FSS.

Defining Premain as the probability of obtaining the ideal bit
value of the most significant qubit right after the first box in
Fig. 2, one may show (see Appendix D)

FSS = P 2
remain. (8)

Now Premain =∑l>2L |�s,a−N (l)|2, where �s,a−N is nothing
but (5) with a[ν] → a[ν] − N[ν] and a → a − N . In fact, we
may, up to a phase, write �s,a−N (l) as cos[π (s + a − N −
l)/2L+1 + σ (ν)/2]|Ws,a−N |/2L, where σ (ν) is the sum in the
exponent in (5). The remaining term is |Ws,a−N |, which we
analyze next.

In order to gain analytical insight, we consider s = 0, a = 0,
and l = −N . In this case, W has a structure where aligned
phasors add up with small phase-angle perturbations of the
form
∑

m −l′[L−2−m]N[m]πr0. In all other cases (l 	= −N ), the
phasors interfere destructively with the additional perturbation
of the ν sum in (6). Now, because the interference without
noise is perfect, the existence of the perturbation gives rise
to an imperfect interference with nonzero result. Thus, the
nature of the imperfection determines |W |. We find that [see
Figs. 3(a)–3(c) for sample cases with N = 2L − 1 and rel-
ative errors] whenever the Hamming distance between −N

and l is 1 (or small), i.e., |l − (−N )| = 2μ, where μ is
an integer, the magnitude |Wl,N | is relatively large [com-
pared to |l − (−N )| 	= 2μ]. This is consistent with our an-
alytical understanding that the more kν’s become nonzero,
the more randomness is introduced to the perturbation an-
gle, resulting once again in destructive interference, but
this time of a statistical nature. In fact, we confirm its

manifestation in the modulo-addition 0 + 0modN fidelity
F for all odd semiprimes N < 213, as shown in Figs. 4(a)
and 4(b). Semiprimes N between 2j and 2j+1 are sectioned
into different F bands, arising from the bit spectra of dif-
ferent N values, i.e., the binary digit 1 in the digit spec-
trum of N triggers the corresponding noisy rotation gate
operation.

We also notice that, based on Fig. 3(c), |W | is localized
in l. This is expected, since the form of W in (6) remains
the same as a function of L, while the associated cumulative
errors are bounded due to the exponential scaling of the error
terms in L. In fact, the sum of |W |2 for |l − N | < 2L equals
1 [see Fig. 3(b)], where W (l) = W (l + 2L). We explicitly
confirm numerically that the convergence toward the limiting
localized distribution is exponentially better for increasing L

[see Fig. 3(d)].
Together with the observed localization, we find Premain to

be constant as a function of increasing L (σ (ν) is bounded). This
is consistent with the plateau behavior observed in Fig. 4(c), in
which, to highlight the result shown in Fig. 4(a), we averaged
F over N in logarithmic scale, i.e., 2j < N < 2j+1 for j =
3,4, . . . ,12, and plot the results [see Fig. 4(d) for the average
results for Fig. 4(b)]. In contrast to the relative kind of errors,
the case of absolute errors is known to have a fidelity scaling
that is one power less favorable in L in the exponent of fidelity
(see, e.g., [46]), and this is manifestly visible in Fig. 4(d). In
addition, Fig. 4 shows that the fidelity does not monotonically
increase with the number of extra qubits. This is surprising and
may be relevant to circuit design.

Following the localization result demonstrated in Figs. 3(c)
and 3(d), assuming the fidelity Fadder of a quantum adder
predicts the limiting distribution to a very good approximation,
we may write

|D(x; x0)|2 ≈ η

2 ln(2)|x − x0|e
η+η log2(|x−x0|). (9)

Here x = l/2L and x0 = l0/2L, where l0 is the ideal output.
We used Fadder = e−ηL from [46], where η is a constant.
Approximating now the sum over l > 2L in Premain as an
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FIG. 3. Various quantities related to |W̄ |2 = 〈|Ws,a|2〉s,a , i.e., the average over the amplitudes squared of Ws,a , defined in (6), over all
possible four-bit computations s + a (0 � s � 15 and 0 � a � 15). (a) Plot of |W̄ |2 as a function of x − x0 = (l − l0)/16 for σ = 0.2.
(b) Corresponding cumulatives of |W̄ |2, i.e., C|W̄ |2 (x = l/2L) =∑l′<l[|W̄ (l′)|2 + |W̄ (l′ + 1)|2]/2, for various different L, ranging from L = 4
to L = 10. The steeper the slope of the lines at the transition point x − x0 = 0, the larger the L. (c) Plot of C|W̄ |2 for σ = 0.01 as a function
of |log2[|x − x0|]| for the same range of L values as in (b), i.e., L = 4, . . . ,10. The better the agreement with the steps, the larger the L.
(d) Exponential convergence of C|W̄ |2 in L for all x illustrated here for the special case |log2[|x − x0|]| = 1. Purple pluses denote numerical
simulations and the solid green line shows an exponential fit to the numerical results.

integral, together with |D(x; x0)| in (9), we obtain

Premain ≈
∫ 1

0
cos2

[
π (x − x0)

2

]
|D(x; x0)|2dx, (10)

where we assumed σ (ν) is small. This completes our analytical
calculation for the only unknown term FSS.

Equipped with our analytical fidelity scaling formulas, we
once more check for the symmetry-driven fidelity boost. For
a sufficiently large quantum circuit, such as Shor’s algorithm
factoring large semiprimes that are of practical interest, the
input s of a modulo-addition gate performing s + a modN

may range anywhere between 0 and N − 1. This results in an
approximately 50:50 chance of (i) s + a < N and (ii) s + a �
N , assuming a random s and a uniformly distributed between
0 and N − 1. Thus, we expect the average fidelity Fadd-mod of a
modulo-addition gate to be 0.5[F (i) + F (ii)]. Now, the addition
of the addend a of the modulo addition s + a modN occurs
with probability 1/4, assuming random bit values of the two
controlling qubits of the addition (see Fig. 5 of [38] for detail).
Therefore, assuming once again that the product formula of
fidelity holds, this time applied to the modulo-addition gate, of
which there are 4L2 in one complete run of Shor’s algorithm,
we obtain the symmetric-noise Shor fidelity

F
(sym)
Shor = F 4L2

add-mod =
(

3

4
FSS + 1

4

[
FSSFadder + F 2

adder

2

])4L2

.

(11)

This may be compared to

F
(rand)
Shor = [ 34 (Fadder)

2 + 1
4 (Fadder)

5]4L2

(12)

for the nontyped error counterpart. The two estimates (11) and
(12) do not include the period finding part, since, in the regime
where the modulo exponentiation part works with acceptable
performance, the fidelity decrease caused by the period finding
part of Shor’s algorithm is negligible [27,28,46,47]. Importing
Fadder from Eq. (19) of [46], we obtain, for instance, RF

(rand)
Shor =

79% for σ = 0.01 and L = 4 to leading order in L in the
exponent of Fadder, in excellent agreement with Fig. 1. An
equivalent computation for the symmetric case based on (11),
together with a proper normalization of (9), i.e.,

∫ |D|2dx = 1,
results in 89%, which is in satisfactory agreement with the
simulation results shown in Fig. 1.

We also note that we observe an extra boost of fidelity when
we introduce more qubits to the quantum circuit than necessary
(see Fig. 5). We find the smallest subcircuit that exhibits such an
extra boost to be the modulo-addition gate, whose fidelity as a
function of the number of extra qubits �L appears in Figs. 5(c)
and 5(d). In fact, in Fig. 3, different color symbols represent
different numbers of extra qubits used in the modulo-addition
gate, clearly indicating the presence of this extra boost.

A simple analytical analysis may be performed on the
modulo-addition gate based on our previous results, in order
to show this extra boost exhibited in Figs. 5(c) and 5(d). To
a good approximation, the limiting distribution |D(x; x0)|2
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FIG. 4. Fidelity F of a modulo-addition gate performing 0 + 0mod N , where N is a semiprime. Fidelity F is plotted as a function of all
odd semiprimes N < 213 for (a) relative and (b) absolute symmetric errors. The error strength used is σ = 0.2. In the order of red pluses, green
crosses, blue asterisks, and purple squares, the adders are equipped with zero, one, two, and three additional qubits than minimally required.
(c) and (d) Logarithmically averaged F , i.e., each point plotted at 2j+1/2 is the result of averaging over N from 2j to 2j+1, where 3 � j � 12.
Notice that for j = 3 and j = 4, there is only one semiprime each, namely, 15 and 21, respectively, resulting in larger fluctuations due to
insufficient statistics. Solid lines in (c), with corresponding color symbols, are the tail-region fit lines F = 0.807 [red pluses and bottom solid
(red) line], F = 0.9 [green crosses and top solid (green) line], F = 0.89 [blue asterisks and second solid (blue) line from the top], and F = 0.87
[purple squares and third solid (purple) line from the top]. Solid lines in (d), with corresponding color symbols, are the tail-region fit lines (to
first order) F = −0.01 log2(N ) + k, where k = 0.827 [red pluses and bottom solid (red) line], k = 0.918 [green crosses and top solid (green)
line], k = 0.885 [blue asterisks and second solid (blue) line from the top], and k = 0.841 [purple squares and third solid (purple) line from the
top] for the four cases shown.

in (9), in the limit of small σ , may be approximated as a δ

peak centered at the ideal output x0 with a uniform distribution
throughout the rest of the domain of the integral in (10), such
that
∫ |D(x; x0)|2dx = 1. Now W in (6) shows that increasing

L, while keeping addends the same, does not change W for
an ideal output. Thus, together with |D(x,x0)|2 ≈ Fadderδ(x −
x0) + (1 − Fadder) for x ∈ [0,1), we obtain Premain ≈ Fadder +
(1 − Fadder)[0.5 + sin(πx0)/π ], where x0 = N/2Lmin+�L. Us-
ing this formula for Premain in FSS = P 2

remain, the fidelity shows a
clear extra-boost behavior as a function of �L, demonstrating
the power of our analytical model.

IV. SPECIFIC EXAMPLE: FACTORING RSA-1024

In this section we present a specific example, illustrating the
symmetry boost for a large-scale quantum processor consisting
of about 1000 qubits. In particular, we use Shor factorization
of the semiprime RSA-1024 [36], applying our analytical
formulas derived in the preceding section to predict processor
fidelities and boost factors in the regime of a large number
of qubits. RSA-1024 has not been factored yet, and the
following estimates concerning necessary hardware accuracy
and obtainable symmetry boost factors may provide guidance
as to the feasibility of factoring this semiprime with a quantum
computer.

For relative errors, the symmetry boost factor Rβ is given
by [see (7)]

Rβ =
ln
〈
RF

(rand)
Shor

〉
s,a

ln
〈
RF

(sym)
Shor

〉
s,a

, (13)

where, according to (11) and (12),

RF
(sym)
Shor = RF

4L2

add-mod

= [ 34 RFSS + 1
8

(R
FSS

RF
(sym)
adder + RF

(sym)
adder

2)]4L2

(14)

and

RF
(rand)
Shor = [ 34 (RF (rand)

adder

)2 + 1
4

(
RF

(rand)
adder

)5]4L2

. (15)

The fidelity RF
(rand)
adder in (15) is given by [see [46], Eq. (19)]

RF
(rand)
adder = exp

{
−
[

6π2(3n − 4)

144
+ λrnπ2

4

]
σ 2

}
, (16)

where n = L + 1 and L is the bit length of the semiprime to be
factored. In our case, factoring RSA-1024, we have L = 1024.
Using n = 1025 and λr = 0.6 [46] in (16), we arrive at

RF
(rand)
adder = exp

[−(Rγ (rand)
adder

)
σ 2
]
, (17)
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FIG. 5. Fidelity F of quantum computers running (a) and (b) Shor’s algorithm and (c) and (d) a modulo-addition gate. In the order of (a) and
(b), the quantum computer is equipped with adders that are capable of being used in Shor-algorithm factoring of five- and six-bit semiprimes.
Compared to Fig. 1, the boost from symmetrized errors is more significant when factoring 15, as shown. (c) and (d) Fidelity F as a function of
the bit length L of the maximal semiprime that may be factored using a modulo-addition gate, equipped with relative and absolute symmetric
errors, respectively. All cases were performed with N = 15. In decreasing order of F , different plot symbols refer to σ = 0.1,0.2, . . . ,0.9.

where

Rγ
(rand)
adder ≈ 2778. (18)

At this point a crucial question arises: What is the minimum
hardware accuracy required to factor RSA-1024 with reason-
able fidelity? If it turns out that the required accuracy is orders
of magnitude smaller than can possibly be realized with the
most sophisticated equipment, we would have proved right
here that Shor factoring of semiprimes of practical significance
is impossible in practice. This statement would be independent
of considering decoherence as an additional effect, since
decoherence would only make matters worse. Fortunately,
this is not so, and we can prove instead that hardware errors
are a significant, but not an insurmountable obstacle to Shor
factoring of RSA-1024.

In order to obtain a reasonably large fidelity for RF
(rand)
Shor ,

we need a reasonably large fidelity of RF
(rand)
adder and therefore,

according to (17), we necessarily need that Rγ
(rand)
adder σ

2 is small.
In this case we may linearize RF

(rand)
adder to obtain

RF
(rand)
adder = 1 − Rγ

(rand)
adder σ

2. (19)

Using this in (15) and once more expanding to linear order, we
obtain

RF
(rand)
Shor ≈ 1 − 11Rγ

(rand)
adder L

2σ 2 = 1 − 3.2 × 1010σ 2. (20)

Apparently, in order to obtain RF
(rand)
Shor close to 1, we need

σ < 6 × 10−6. (21)

This is a demanding accuracy to achieve in practice, but it
is not impossible (much better accuracies are achieved, e.g.,
in atomic and ionic clock applications [48]). Therefore, we
conclude that Shor factorization, as far as our specific hardware
errors are concerned, is certainly possible.

At this point we have computed RF
(rand)
adder and RF

(rand)
Shor together

with the required hardware accuracy σ . To complete the
computation of the symmetry boost factor Rβ, we now need to
compute RF

(sym)
Shor in (14). This computation requires knowledge

of RFSS and RF
(sym)
adder .

The fidelity RFSS in (14), according to (8), is given by

RFSS = RP
2
remain, (22)

where, according to (10),

RP remain ≈
∫ 1

0
cos2

[
π (x − x0)

2

]
|RD(sym)

(x; x0)|2dx, (23)

and RD
(sym)

(x; x0), according to (9), is given by

RD
(sym)

(x; x0) ≈ ηe−η

2 ln(2)|x − x0|e
η ln(|x−x0|)/ ln(2), (24)

where η is defined according to

RF
(sym)
adder ≈ e−ηL. (25)

We expect that RF
(sym)
adder will be very close to 1, in which case

ηL � 1, which means that η � 1/L ≈ 10−3. In this case, we
can use the fact that

lim
η→0

RD
(sym)

(x; x0) = δ(x − x0), (26)
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perform the integral in (23), and obtain RP remain = 1, which
implies RFSS = 1. The only remaining term in (14) is RF

(sym)
adder ,

explicitly given by

RF
(sym)
adder = exp

{
−
[

5π2(3n − 4)

144
+ λsnπ2

4

]
σ 2

}
. (27)

Linearizing with n = L + 1 = 1025 and λs = 0.4, we obtain

RF
(sym)
adder = exp

[−(Rγ (sym)
adder

)
σ 2
]
, (28)

where

Rγ
(sym)
adder = 2064. (29)

With this result, and using RFSS = 1 in (14), we now obtain, in
linear order,

RF
(sym)
Shor = 1 − 3

2
Rγ

(sym)
adder L

2σ 2. (30)

With this result, together with (29), we now obtain the boost
factor in the case of relative errors in linear order according to

Rβ = ln
[
1 − 11Rγ

(rand)
adder L

2σ 2
]

ln
[
1 − 3

2
Rγ

(sym)
adder L

2σ 2
] ≈
(

22

3

)
Rγ

(rand)
adder

Rγ
(sym)
adder

≈ 10, (31)

where we used the numerical values of Rγ
(rand)
adder and Rγ

(sym)
adder from

(18) and (29), respectively. This result is important. It shows
that even in the large-qubit limit we obtain a boost factor of
about one order of magnitude.

We now turn to the case of absolute errors. In this case we
have

AF
(sym)
Shor = [ 34 AFSS + 1

8

(A
FSS

AF
(sym)
adder + AF

(sym)
adder

2)]4L2

(32)

and

AF
(rand)
Shor = [ 34 (AF (rand)

adder

)2 + 1
4

(
AF

(rand)
adder

)5]4L2

. (33)

According to [46] [Eq. (20)], we have

AF
(rand)
adder = exp

{
−
[

6n(n − 1)

32
+ μn

4

]
σ 2

}
, (34)

where μ is given by μ = 1.75 [46]. With n = L + 1 = 1025,
we obtain

AF
(rand)
adder = exp

[−(Aγ (rand)
adder

)
σ 2
]
, (35)

where

Aγ
(rand)
adder = 1.97 × 105. (36)

Linearizing AF
(rand)
adder , using the result in (33), and linearizing

again, we obtain

AF
(rand)
Shor = [ 34 (1 − Aγ

(rand)
adder σ 2

)2 + 1
4

(
1 − Aγ

(rand)
adder σ 2

)5]4L2

= 1 − 11L2 Aγ
(rand)
adder σ 2. (37)

For acceptable quantum computer performance, similar to the
case of relative errors, we need to require

11L2 Aγ
(rand)
adder σ 2 < 1, (38)

which implies

σ < 6.6 × 10−7. (39)

This is one order of magnitude more demanding than in the
case of relative errors, but not unrealistic.

In order to capture the symmetry boost, we need to compute
AF

(sym)
Shor [see (32)]. Similar to the case of relative errors, we set

AFSS = 1. We also need AF
(sym)
adder , for which we obtain

AF
(sym)
adder = exp

{
−
[

5n(n − 1)

32
+ μsn

4

]
σ 2

}

= exp
[−Aγ

(sym)
adder σ 2

]
, (40)

where, with n = L + 1 = 1025 and μs = −0.1, we obtain

Aγ
(sym)
adder = 1.64 × 105. (41)

Using (40) in (32) and linearizing, we obtain

AF
(sym)
Shor = [ 34 + 1

8

(
1 − Aγ

(sym)
adder σ

2 + 1 − 2Aγ
(sym)
adder σ

2
)]4L2

= 1 − 3L2

2
Aγ

(sym)
adder σ 2. (42)

We are now ready to compute the boost factor Aβ for absolute
errors. With (36) and (41) we obtain

Aβ =
ln
〈A
F

(rand)
Shor

〉
s,a

ln
〈A
F

(sym)
Shor

〉
s,a

=
(

22

3

)(
Aγ

(rand)
adder

Aγ
(sym)
adder

)

=
(

22

3

)(
1.97 × 105

1.64 × 105

)
= 8.8. (43)

Thus, we have shown that the exploitation of symmetry in the
cases of both absolute and relative errors yields a boost factor of
approximately one order of magnitude. However, even without
making explicit use of the symmetry boost, we have shown in
this section that RSA-1024 factoring using Shor’s algorithm
is realistic. We had shown a similar result (without using a
symmetry boost) for RSA-2048 factoring in [47].

Even without performing the detailed calculations pre-
sented in this section, we may convince ourselves immediately
that a symmetry boost should exist. Qualitatively, according to
(13), the boost factor is

β =
ln
〈
F

(rand)
Shor

〉
s,a

ln
〈
F

(sym)
Shor

〉
s,a

= ln
[

3
4

(
F

(rand)
adder

)2 + 1
4

(
F

(rand)
adder

)5]
ln
[

3
4 + 1

8

(
F

(sym)
adder + F

(sym)
adder

2)2]
= ln
[

3
4

(
1 − γ

(rand)
adder σ 2

)2 + 1
4

(
1 − γ

(rand)
adder σ 2

)5]
ln
[

3
4 + 1

8

(
1 − γ

(sym)
adder σ 2 + (1 − γ

(sym)
adder σ 2

)2)]
≈ 7

(
γ

(rand)
adder

γ
(sym)
adder

)
. (44)

As can be seen in (18) and (29) [or (36) and (41), respectively],
we expect γ

(sym)
adder � γ

(rand)
adder , which means that, according to the

qualitative estimate (44), we should expect a boost factor of
about one order of magnitude.

V. ROBUSTNESS OF THE SYMMETRY BOOST

So far, we have assumed that hardware errors occur only
in the rotation gates in the form of diagonal over- and under-
rotation of the desired phase angles. Assuming this type of
error, we were able to show both analytically and numerically
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FIG. 6. Boost factor Aβ as a function of the scaled off-diagonal
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shown.

that symmetric implementation of errors results in a fidelity
boost of Shor’s quantum factoring algorithm. It is clear that
in actual hardware implementations of quantum computers
off-diagonal errors also occur and that all types of gates, not
just rotation gates, are affected by this more general class of
errors. While, in general, off-diagonal errors are very difficult
to treat analytically, we can certainly investigate their effects
in numerical simulations. In particular, we focus in this section
on the question of how more general, nondiagonal errors affect
the symmetry boost documented in previous sections.

Introducing general, nonbiased, off-diagonal errors into our
rotation gates, we computed the boost factor Aβ by multiplying
the 2 × 2, 4 × 4, and 8 × 8 matrix representations of each of
our rotation-, controlled-rotation-, and controlled-controlled-
rotation gates by the SU(N ) error matrices

EN×N (v1, . . . ,vM ; δ) = exp

⎛
⎝i

M∑
j=1

vjλj

⎞
⎠, (45)

where N = 2,4,8, respectively; vj , Gaussian random variables
with standard deviation δ, are the SU(N ) error strengths; and
λj are the M = N2 − 1 generators of SU(N ) [49]. The result
is shown in Fig. 6 as a function of δ/σ for absolute over-
and underrotation errors of standard deviation σ , for σ = 0.01
(closed red circles), σ = 0.001 (closed blue squares), and σ =
0.0001 (closed green triangles). We see that the boost factor
scales in δ/σ and decreases like a Lorentzian for increasing
δ/σ . Thus, Fig. 6 shows that the boost factor is robust with
respect to off-diagonal unitary errors and decays relatively
slowly (essentially like a power law) for increasing δ/σ .

The simplest model of diagonal nonunitary errors and their
effect on the boost factor β is obtained by multiplying each gate
by the complex phase factor exp(iω), where ω is a complex
number with a positive imaginary part. This results in an
exponential reduction of the fidelity by a factor exp(−�),
where � is real and positive. Then, according to the definition

of the boost factor, we have

β(�) = ln[e−�F (rand)]

ln[e−�F (sym)]
= β(� = 0)

{
1 + �/γ (rand)σ 2

1 + �/γ (sym)σ 2

}
.

(46)

This shows that even in the presence of nonunitary errors, the
symmetry boost factor is never completely erased. However,
in order to obtain a significant boost factor, and since γ (sym) <

γ (rand), we have to require

� < γ (sym)σ 2. (47)

VI. CONCLUSION

Clearly, our analytical results scale in the number of qubits,
demonstrating that the symmetry-driven fidelity boost will
persist as we scale up the quantum circuit, i.e., as we go
to the limit of large numbers of qubits. We also notice that
the analytically predicted fidelity boost underestimates the
numerically observed fidelity boost. This is so because our
analytical analyses are based on local estimates of fidelity
boosts that are focused on individual building blocks, such
as adders and modulo adders. The observed additional boosts
may be explained due to long-range coherences that are not
currently included in our local analytical estimates.

An important result is the structural stability, i.e., the
robustness of the symmetry boost, a result we established in
Sec. V. Here we found that adding general SU(2), SU(4), and
SU(8) errors of strength δ to the diagonal over- and underro-
tation errors of strength σ reduces the symmetry boost with a
Lorentzian line shape that scales in δ/σ . This shows that the
symmetry boost, even in the presence of uniform nondiagonal
errors, is never entirely erased and decays only like a power
law in the off-diagonal error strength δ. We note that the
isotropic SU(N ) simulations conducted in Sec. V correspond
to the worst-case scenario of a very badly designed gate that
allows the gate to induce phase rotations with statistically equal
amplitudes between multiple qubits. If the quantum computer
is realized, e.g., as a system of spatially separated trapped
ions [32,33], it is unlikely that a control impulse targeting
two specific ions or qubits would induce phase errors in other,
not targeted, spatially separated ions with the same strength
as induced in the pair of targeted ions. Thus, a special design
effort would need to be made to realize the worst-case scenario
simulated in Sec. V, whereas in a well-designed gate the largest
phase error is expected to manifest in the target state of the
target ion or qubit whose phase is intended to be rotated. Thus,
we expect that our model of switching on isotropic errors
of strength δ in addition to the dominant diagonal errors of
strength σ reflects the actual physical situation of realistic gate
operation and shows that the symmetry boost is robust with
respect to off-diagonal errors.

Investigating the effect of nonunitary errors in a simple
model of exponential norm reduction, we found that nonunitary
errors do reduce the symmetry boost factor without ever
completely erasing it. We also found a condition on the
strength of the nonunitary errors that, if fulfilled, guarantees
that the boost factor is not substantially reduced from its unitary
value.
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We are certain that our results are useful for quantum
experimentalists and engineers as benchmark estimates of
necessary hardware accuracy for realizing large-scale quantum
computers. Quantum computers not only are already resilient
with respect to irremovable hardware errors [25,27–29], but,
as we showed in this paper, exhibit significant performance
enhancement just by controlling the symmetry of the errors.
We also showed that using symmetry as a method to boost
performance is well within engineering capabilities. This is
supported by the fact that spin echoes [50], e.g., already
proved useful for practical applications in suppressing the
naturally occurring errors in a given physical system. While
it is still true that the symmetry needs to be implemented to a
high precision, from the engineering perspective, the task of
keeping the symmetry should be easier than keeping the error
level itself small. Our results are also of interest to theorists.
Given that exploiting symmetry is the key for the dramatic
fidelity boost at the architectural surface level, as opposed to
the individual, microscopic, inner workings of a single-qubit
state, we gain the insight that a topologically and structurally
robust quantum algorithm may be developed. Given the fact
that quantum algorithms, in general, tend to contain a large
number of symmetric structures, we expect that designing
hardware that results in symmetric errors, as exploited in
this paper, may be beneficial for boosting performance in
other quantum algorithms as well. Alternative schemes for
error reduction exist (see, e.g., [51]). To obtain an additional
fidelity boost, our scheme may be used in addition to these
schemes.

In summary, we have shown in this paper that by exploiting
quantum subroutine structures of the form FUF−1 in Shor’s
algorithm results in a significant fidelity boost that may be as
large as one order of magnitude for large quantum computers.
Since it is impossible to simulate large-scale quantum com-
puters even with the most advanced classical supercomputers,
we present analytical scaling formulas that are capable of
predicting the expected symmetry boost for large quantum
processors. We illustrated the process with the help of an
explicit example, Shor factoring of RSA-1024, in which case
we obtain boost factors of about one order of magnitude for
both relative an absolute errors. We also showed that the
boost factor is robust with respect to off-diagonal unitary and
diagonal nonunitary errors.

It would have been lamentable if the irremovable hardware
errors proliferated too quickly for a quantum computer to be
of any practical use. Fortunately, as we showed in this paper,

this is not so. Together with recent advances in quantum error
correction and its fault-tolerant implementation, the surprising
robustness of quantum computers with respect to errors and
noise suggests that large-scale quantum computers may indeed
be built. Exploiting symmetry in the subunits of quantum
algorithms, as suggested, proved, and illustrated in this paper
for the case of Shor’s algorithm, provides an additional,
powerful tool on the way to the construction of quantum
computers of practical importance.
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APPENDIX A: DERIVATION OF (5) AND (6)

In this Appendix we derive (5) and (6) of the main text.
Our starting point is the definition of the (L + 1)-bit Fourier-

based adder. Stating explicitly the definitions of the quantum
Fourier transform (QFT), the quantum Fourier adder (QFA),
and the inverse quantum Fourier transform (QFT−1), i.e.,

Û (QFT)|s〉 = 1√
2L+1

2L+1−1∑
s ′=0

exp

[
2πiss ′

2L+1

]
|s ′〉,

Û (QFA)
a |s ′〉 = exp

[
2πis ′a
2L+1

]
|s ′〉,

Û (QFT−1)|s ′〉 = 1√
2L+1

2L+1−1∑
l=0

exp

[
−2πis ′l

2L+1

]
|l〉,

(A1)

we have

|s + a〉 = Û (QFT−1)Û (QFA)
a Û (QFT)|s〉. (A2)

Equation (A2) shows that the operation of addition has
the structure FUF−1, which allows the implementation of
symmetric errors to obtain a symmetry boost, if we identify
F = Û (QFT−1),U = Û (QFA)

a , andF−1 = Û (QFT). Expressing the
integers s, s ′, a, and l in their binary representations and
explicitly writing out the bitwise arithmetic, we may now
write

Û (QFT)|s〉 = 1√
2L+1

2L+1−1∑
s ′=0

exp

[
i

L∑
m=0

s ′
[m]

L−m∑
ν=0

s[ν]
π

2L−m−ν

]
|s ′〉,

Û (QFA)
a |s ′〉 = exp

[
i

L∑
m=0

s ′
[m]

L−m∑
ν=0

a[ν]
π

2L−m−ν

]
|s ′〉,

Û (QFT−1)|s ′〉 = 1√
2L+1

2L+1−1∑
l=0

exp

[
−i

L∑
m=0

s ′
[m]

L−m∑
ν=0

l[ν]
π

2L−m−ν

]
|l〉.

(A3)
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We now perturb the rotation angles as specified by our protocols detailed in Sec. II. Defining ϕL−m−ν = π/2L−m−ν , this
amounts to replacing all occurrences of ϕL−m−ν in the QFT and QFT−1 with ϕ̃L−m−ν , except for the cases with L − m − ν = 0,
which correspond to the Hadamard gates. The resulting perturbed operations are

ˆ̃U (QFT)|s〉 = 1√
2L+1

2L+1−1∑
s ′=0

exp

[
i

L∑
m=0

s ′
[m]

(
s[L−m]ϕ0 +

L−m−1∑
ν=0

s[ν]ϕ̃L−m−ν

)]
|s ′〉,

ˆ̃U (QFA)
a |s ′〉 = exp

[
i

L∑
m=0

s ′
[m]

L−m∑
ν=0

a[ν]ϕ̃L−m−ν

]
|s ′〉,

ˆ̃U (QFT−1)|s ′〉 = 1√
2L+1

2L+1−1∑
l=0

exp

[
−i

L∑
m=0

s ′
[m]

(
l[L−m]ϕ0 +

L−m−1∑
ν=0

l[ν]ϕ̃L−m−ν

)]
|l〉.

(A4)

Using ϕ̃L−m−ν = ϕL−m−ν + rL−m−ν , we obtain

ˆ̃U (QFT−1) ˆ̃U (QFA)
a

ˆ̃U (QFT)|s〉 = 1

2L+1

2L+1−1∑
l=0

2L+1−1∑
s ′=0

e2πi(s+a−l)s ′/2L+1
exp

[
i

L∑
m=0

s ′
[m]

L−m−1∑
ν=0

s[ν]rL−m−ν

]

× exp

[
i

L∑
m=0

s ′
[m]

L−m∑
ν=0

a[ν]rL−m−ν

]
exp

[
i

L∑
m=0

s ′
[m]

L−m−1∑
ν=0

l[ν]rL−m−ν

]
|l〉. (A5)

Inserting

L∑
m=0

s ′
[m]

L−m∑
ν=0

a[ν]rL−m−ν =
L∑

m=0

s ′
[m]

L−m−1∑
ν=0

a[ν]rL−m−ν +
L∑

m=0

s ′
[m]a[L−m]r0 (A6)

in (A5) and reversing the ordering of the m sum, i.e., L − m → m, we obtain

ˆ̃U (QFT−1) ˆ̃U (QFA)
a

ˆ̃U (QFT)|s〉 = 1

2L+1

2L+1−1∑
l=0

2L+1−1∑
s ′=0

e2πi(s+a−l)s ′/2L+1
exp

[
i

L∑
m=0

s ′
[L−m]

(
a[m]r0 +

m−1∑
ν=0

kνrm−ν

)]
|l〉. (A7)

At this point we consider two separate cases: s ′ even and s ′ odd. In the even case, we have s ′
[0] = 0. In the odd case, we have

s ′
[0] = 1. Writing the two cases out separately and letting s ′ = 2l′ + s ′

[0], we obtain

ˆ̃U (QFT−1) ˆ̃U (QFA)
a

ˆ̃U (QFT)|s〉 = 1

2L+1

2L+1−1∑
l=0

(
1 + exp

[
i

L−1∑
ν=0

kνrL−ν

]
e2πi(s+a−l)/2L+1

)

×
2L−1∑
l′=0

exp

[
i

L−1∑
m=0

l′[L−1−m]

(
a[m]r0 +

m−1∑
ν=0

kνrm−ν

)]
e2πi(s+a−l)l′/2L |l〉. (A8)

To this end, defining �s,a(l) according to

ˆ̃U (QFT−1) ˆ̃U (QFA)
a

ˆ̃U (QFT)|s〉 =
2L+1−1∑

l=0

�s,a(l)|l〉, (A9)

the derivation of (5) and (6) is complete.

APPENDIX B: HARDWARE ERRORS VERSUS
FLIP ERRORS

There is a fundamental difference between hardware errors
and local Pauli errors (spin-flip errors) [25].

(a) Hardware errors. Any unitary 2 × 2 gate acting on a
single qubit may be parametrized, up to a global phase, with

three real angles α, β, and φ, according to

U2×2 =
(

eiβ cos(φ) e−iα sin(φ)
−eiα sin(φ) e−iβ cos(φ)

)
. (B1)

No physical gate is error-free. Therefore, we characterize the
strength of the error in the gate by the inexactness of its three
parameters α, β, and φ. We call these errors hardware errors.
Contrary to local Pauli errors (spin-flip errors), to be defined
in point (b), hardware errors occur with certainty whenever the
gate U2×2 is executed. This amounts to inexact rotations on the
Bloch sphere.

(b) Flip errors. We refer to flip errors as the local Pauli errors
that occur with probabilities px , py , and pz, corresponding to
the three Pauli gates X, Y , and Z.
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We now compare the effects of these two types of errors. For
hardware errors, we begin with the general unitary gate defined
in (B1). For an input state |ψ〉 = a|0〉 + b|1〉, where |a|2 +
|b|2 = 1, we obtain the fidelity Fhardware of the gate according
to Fhardware = |ζ |2, where

ζ = (a∗ b∗)

(
e−iβ cos(φ) −e−iα sin(φ)
eiα sin(φ) eiβ cos(φ)

)

×
(

ei(β+�β) cos(φ + �φ) e−i(α+�α) sin(φ + �φ)
−ei(α+�α) sin(φ + �φ) e−i(β+�β) cos(φ + �φ)

)

×
(

a

b

)
, (B2)

with the asterisk denoting the complex conjugate. Since ζ is a
complex number, we may write

Fhardware � [Re(ζ )]2, (B3)

where

Re(ζ ) = cos(�β) cos(φ) cos(φ + �φ)

+ cos(�α) sin(φ) sin(φ + �φ) (B4)

is the real part of ζ . The equality in (B3) may be obtained in
the case of |a| = |b| = 1/

√
2 and 2a∗b = ei�α . Assuming a

Gaussian distribution with mean 0 and standard deviation σ

for the random errors �α, �β, and �γ , we obtain to second
order

Fhardware � 1 − 2(�φ)2 + (�β)2 + (�α)2

2
, (B5)

which, upon averaging, leads to

〈Fhardware〉 � 1 − 2σ 2, (B6)

where 〈· · · 〉 denotes the average over the Gaussian ensemble.
For flip errors, the corresponding error model is the de-

polarizing channel model. Denoting by p the probability of
occurrence of the three Pauli errors induced by X, Y , and Z,
the fidelity of the single-qubit quantum circuit becomes

Fflip = 1 − 3p. (B7)

Comparing (B6) with (B7), we find that, for given p, the choice

σ 2 < 3p/2, (B8)

on average, guarantees better fidelity for hardware errors than
for flip errors. Conversely, if

σ 2 > 3p/2, (B9)

hardware errors are more important than flip errors, which
supports our point that hardware errors may be more detrimen-
tal than decoherence errors. The following concrete example
illustrates this for an important specific case.

In Fig. 7 we show the fidelity of a [7,1,3] quantum error-
correction code in the presence of hardware errors (red pluses)
or flip errors (green crosses) as a function of σ and p,
respectively. We scaled the abscissa in

√
p, but linearly in σ .

In this case the inequality (B8) is automatically fulfilled for
the same abscissa point σ = √

p in which case flip errors are
expected to result in worse fidelity than hardware errors, i.e.,
we expect the fidelity curve for flip errors (green crosses) to
be below the fidelity curve for hardware errors (red pluses).

 0.95

 0.96
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 0.99

1

0  0.002  0.004  0.006  0.008  0.01

F

p1/2, σ

FIG. 7. Fidelity of the [7,1,3] quantum error-correction code.
Green crosses show the effect of flip errors on the fidelity and
correspond to the p1/2 scale on the abscissa; red pluses show the
effect of hardware errors and correspond to the linear σ scale on the
abscissa. For the same abscissa point, i.e., σ = p1/2, the inequality
(B8) is fulfilled, which means that in the absence of quantum error
protection the hardware fidelity of the bare gate is better than the
fidelity with flip errors. Apparently, in the presence of the [7,1,3]
quantum error correction code, hardware errors are a more significant
problem than flip errors. Thus, instead of improving the fidelity, the
[7,1,3] code worsened the fidelity.

For the computations resulting in Fig. 1, and according to the
standard convention in the quantum error-correction literature,
we assumed that errors act in the error-protected region only
and the encoding and decoding circuits are assumed to be
error-free. This is entirely in the spirit of quantum error
correcting codes whose error-protection capability is restricted
to the encoded region. As shown in Fig. 1, and contrary to
expectations, the results displayed in Fig. 1 show that hardware
errors result in worse fidelity than flip errors. This is despite
the fact that, as mentioned above, the fidelity with hardware
errors, but without quantum error correction, is, for the same
abscissa point, by construction, better than that expected from
flip errors. Therefore, our results show that in the presence of
quantum error correction, the effect of hardware errors may
in fact be more severe, i.e., it reduces the fidelity by a more
significant amount, than flip errors. This demonstrates that
there are cases in which hardware errors are a more signifi-
cant problem than flip errors. In these cases error-correction
circuitry does more harm than good, and instead of improving
the fidelity, the presence of the error-correction circuit worsens
the fidelity. This counterintuitive result is a consequence of
the fact that, while flip errors occur only potentially with
some finite probability p per qubit and may be corrected
with high probability with ideal error-correction circuitry,
hardware errors occur with certainty, i.e., with probability 1,
and since error-correction circuitry is designed to consist of
replicated gates and these gates are all imperfect, the errors
induced by these gates are imparted on all qubits. Thus,
multiple errors occur simultaneously, which, overwhelming
the error-protection circuit, cannot be corrected and thus result
in Fhardware < Fflip with quantum error correction, although,
by design, Fhardware > Fflip for the stand-alone (imperfect)
U2×2 gate without quantum error correction. This is a perfect
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example of how quantum error correction may actually be
detrimental instead of being beneficial.

APPENDIX C: FIDELITY PRODUCT FORMULA

We consider the quantum mapping [52]

|ψN 〉 = UN |ψ0〉, N = 1,2, . . . , (C1)

where U is a unitary operator and |ψ0〉 is a starting state.
Introducing a perturbed operator Ũ (ε), where ε is a stochastic
perturbation parameter, i.e., a random variable with 〈ε〉ε = 0,
〈ε2〉ε = σ 2 (〈· · · 〉ε denotes averaging over ε), and

Ũ (ε) → U for ε → 0, (C2)

we define the stochastic quantum mapping

|ψ̃N 〉 = Ũ (εN )Ũ (εN−1) · · · Ũ (ε1)|ψ0〉 (C3)

and the fidelity

FN = 〈|〈ψ̃N |ψN 〉|2〉ε . (C4)

Defining

F ≡ F1, (C5)

our goal is to motivate and discuss the fidelity product formula

FN ≈ FN, (C6)

used in this paper and also extensively used in the literature
(see, e.g., [37]). In particular, since this formula holds only
approximately, we need to establish its range of validity.
Discussion of the fidelity formula (C6) also serves to illustrate
how the deterministic hardware errors discussed in this paper
may originate from inaccurate physical implementations of
quantum gates.

Suppose we realize a physical qubit as a two-level spin
system with states |↓〉 and |↑〉 and implement a certain quantum
gate G, akin to the phase-rotation gate, with the help of a time-
dependent magnetic field B, oriented in the negative z direction
and acting on the magnetic dipole moment of the qubit during
a time interval �t . In this case the Hamiltonian of G is given
by

H = Bμσz/2, 0 < t < �t, (C7)

where μ is the magnetic moment of the spin, σz|↓〉 = −|↓〉,
and σz|↑〉 = |↑〉. Then the unitary operator U executing the
gate G is given by

U = exp(iH�t/h̄) = exp(iθσz), (C8)

where θ = Bμ�t/2h̄ is the rotation angle. We have U |↓〉 =
exp(−iθ )|↓〉 and U |↑〉 = exp(iθ )|↑〉. Apparently, the action
of G is to rotate both |↓〉 and |↑〉 by an angle θ , but in opposite
directions.

Now suppose we operate the gate G, N times on the starting
state |ψ0〉 = A|↓〉 + C|↑〉, where |A|2 + |C|2 = 1. Then, as
we repeatedly realize the gate G with physical magnetic fields
B, we notice immediately that it is impossible to precisely
apply identical fields B from pulse to pulse. We take this
into account by replacing the mathematical idealization U =
exp(iθσz) with the unitary operator Ũ (εn) = exp[i(θ + εn)σz]
that corresponds to the magnetic field actually applied at the
nth application of G, where the random variable εn represents

the error in the magnetic field at gate application number n.
Therefore, a physical implementation of G will not produce
the ideal state |ψN 〉 after N applications of G, but the state
|ψ̃N 〉, which is different from |ψN 〉 and depends on the actual
realizations of the magnetic fields from gate application to gate
application. The fidelity defined in (C4) measures how well
|ψ̃N 〉 approximates the ideal state |ψN 〉.

For our model gate G we can readily evaluate the fidelity
FN analytically. According to (C4) with (C3), we obtain

FN = 1 − 4|A|2|C|2〈sin2(β)〉ε, (C9)

where

β = ε1 + ε2 + · · · + εN (C10)

and we have to average over all realizations of εn, n =
1,2, . . . ,N .

The most important assumption for the approximate validity
of the fidelity product formula (C6) is that the error parameters
εn are independent random variables. In this case, and for large
N , β is a Gaussian-distributed random variable with variance
Nσ 2. This allows us to evaluate 〈sin2(β)〉ε analytically. The
result is

〈sin2(β)〉ε = 1
2 [1 − exp(−2Nσ 2)]. (C11)

Using this result in (C9), we obtain

FN = 1 − 2|A|2|C|2[1 − exp(−2Nσ 2)]. (C12)

This result shows that not even in the statistical sense is (C6)
exact. However, expanding (C12) to linear order in σ 2, we
obtain

FN ≈ 1 − 4Nσ 2|A|2|C|2 ≈ FN. (C13)

Thus, we arrive at the important conclusion that the fidelity
product formula holds only to linear order in the error variance
σ 2, but is accurate as long as

Nσ 2 � 1. (C14)

Together with statistical independence of the errors from gate
application to gate application, (C14) serves as the criterion
for the applicability of the fidelity product formula.

We now turn to the more general case of gate sequences
involving different gates, labeled G1, . . . ,GN . Each of these
gates, which are now no longer single-qubit gates, are realized
by a unitary transformation Uj , j = 1, . . . ,N . A given gate Gj

may have a general error in the s-dimensional computational
space that may connect all possible computational qubits.
Thus, the most general type of error is represented by a
Hermitian matrix Hj , which we normalize according to

Vj = Hj∑s
k=1

∣∣λ(j )
k

∣∣ , (C15)

where λ
(j )
k is the kth eigenvalue of Hj and s is the dimension

of our computational space. With the help of the error-type
matrix Hj we define the perturbed matrix Ũj , representing the
flawed gate G̃j , according to

Ũj = e−iεj Vj Uj e
iεj Vj , (C16)

where, because of the normalization of the error matrix Vj ,
the error parameter εj now has the physical meaning of an
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error strength, i.e., it represents the size of the hardware errors.
Expanding (C16) to second order in εj , we obtain

Ũj ≈ Uj − iεjCj − 1
2ε2

j Dj , (C17)

where

Cj = [Vj ,Uj ] (C18)

and

Dj = [Vj ,[Vj ,Uj ]]. (C19)

The fidelity is now defined as

FN = |〈ψ0|Ũ †
1 (ε1)Ũ †

2 (ε2) · · · Ũ †
N (εN )UN (εN )

×UN−1(εN−1) · · · U1(ε1)|ψ0〉|2
ε, (C20)

where the subscript ε indicates a statistical average over all
error strengths εj . Using the second-order expansion (C17) in
(C20), we obtain

FN = |〈ψ0|1 + iε1(C†
1U1) + iε2U

†
1 (C†

2U2)U1 + iε3U
†
1U

†
2 (C†

3U3)U2U1 + · · ·

− 1
2ε2

1 (D†
1U1) − 1

2ε2
2U

†
1 (D†

2U2)U1 − 1
2ε2

3U
†
1U

†
2 (D†

3U3)U2U1 − · · ·

− ε1ε2C
†
1(C†

2U2)U1 − ε1ε3C
†
1U

†
2 (C†

3U3)U2U1 − ε2ε3U
†
1C

†
2(C†

3U3)U2U1 − · · · |ψ0〉|2
ε . (C21)

This expression has the structure

FN = |〈ψ0|1 + WN |ψ0〉|2
ε = 1 + 2 Re〈ψ0|WN |ψ0〉ε + |〈ψ0|WN |ψ0〉|2

ε , (C22)

where Re denotes the real part. Upon averaging over εj , the real-part term in (C22) reduces to

Re〈ψ0|WN |ψ0〉ε = − 1
2 Re〈ψ0|

{
ε2

1 (D†
1U1) + ε2

2U
†
1 (D†

2U2)U1 + ε2
3U

†
1U

†
2 (D†

3U3)U2U1 + · · · }|ψ0〉ε . (C23)

Assuming that all εj have the same variance σ , the remaining ε average turns (C23) into

2 Re〈ψ0|WN |ψ0〉ε = −σ 2Re〈ψ0|[(D†
1U1) + U

†
1 (D†

2U2)U1 + U
†
1U

†
2 (D†

3U3)U2U1 + · · · ]|ψ0〉. (C24)

Similarly, for the absolute-square term in (C22), and keeping only terms up to quadratic order, we obtain

|〈ψ0|WN |ψ0〉|2
ε = σ 2[|〈ψ0|(C†

1U1)|ψ0〉|2 + |〈ψ0|U †
1 (C†

2U2)U1|ψ0〉|2 + |〈ψ0|U †
1U

†
2 (C†

3U3)U2U1|ψ0〉|2 + · · · ]. (C25)

At this point we pair corresponding terms in (C24) and (C25).
The first such pair is

P1 = −Re〈ψ0|(D†
1U1)|ψ0〉 + |〈ψ0|(C†

1U1)|ψ0〉|2. (C26)

Using the explicit versions of the commutators C1 and D1

defined in (C18) and (C19), respectively, and defining

�1 = C
†
1U1 = U

†
1V1U1 − V1, (C27)

we obtain

P1 = −〈ψ0|�2
1|ψ0〉 + |〈ψ0|�1|ψ0〉|2. (C28)

We see that −P1 is the fluctuation of a general Hermitian
operator �1, which is always �0 [53], so P1 itself is always
negative. The general pair is of the form

Pj = − Re〈ψ0|U †
1U

†
2 · · · U †

j−1(D†
jUj )Uj−1Uj−2 · · · U1|ψ0〉

+ |〈ψ0|U †
1U

†
2 · · · U †

j−1(C†
jUj )Uj−1Uj−2 · · ·U1|ψ0〉|2

= − 〈ψj−1|�2
j |ψj−1〉 + |〈ψj−1|�j |ψj−1〉|2, (C29)

where

|ψj−1〉 = Uj−1 · · · U2U1|ψ0〉 (C30)

and

�j = C
†
jUj . (C31)

According to (C22) we now have

FN ≈ 1 + σ 2
N∑

j=1

Pj =
N∏

j=1

fj , (C32)

where fj is the fidelity in step number j , explicitly given by

fj = |〈ψj−1|ŨjUj |ψj−1〉|2
ε ≈ 1 + σ 2Pj . (C33)

In the case in which all fj are equal and equal to f1 = F , we
obtain the fidelity product formula in its usual form as

FN ≈ FN. (C34)

Apparently, just like in our simple case of qubit rotation above,
the fidelity product formula (C32) holds to first order in σ 2.
Thus, the criterion of applicability of (C32), as before [see
(C14)], is

Nσ 2 � 1. (C35)

APPENDIX D: ANALYTICAL DERIVATION OF FSS

We start by defining U † as the unitary evolution operator
represented by the first dashed box in Fig. 2 of the main text.
Therefore, by symmetry, the second dashed box represents U .
Defining the quantum computer state after the first box as

|ψ ′〉 = U †|ψinit〉, (D1)
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where |ψinit〉 denotes the input state, we may write

|ψ ′〉 = |ψL〉 + |ψU 〉, (D2)

where |ψL〉 and |ψU 〉 are two orthogonal states with |ψL〉
denoting the state with the most significant qubit reading 0
and |ψU 〉 denoting the state with the most significant qubit
reading 1. Because of the CNOT gate between the two boxes,
and assuming that the ideal auxiliary qubit state after the
two box operations is 0, i.e., the ideal reading of the most
significant qubit is 0, we obtain the fidelity of the quantum

circuit according to

F = |〈ψinit|(U |ψL〉)|2 = |〈ψ ′|ψL〉|2

= |〈ψ ′|(|ψ ′〉 − |ψU 〉)|2 = |1 − 〈ψ ′|ψU 〉|2, (D3)

where we used (D1) and (D2). Defining the leakage probability
Pleak = 〈ψ ′|ψU 〉, we obtain

F = |1 − Pleak|2 = P 2
remain, (D4)

which completes the proof.
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