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In this article we extend results from our previous work [Bendersky et al., Phys. Rev. Lett. 116, 230402 (2016)]
by providing a protocol to distinguish in finite time and with arbitrarily high success probability any algorithmic
mixture of pure states from the maximally mixed state. Moreover, we include an experimental realization, using
a modified quantum key distribution setup, where two different random sequences of pure states are prepared;
these sequences are indistinguishable according to quantum mechanics, but they become distinguishable when
randomness is replaced with pseudorandomness within the experimental preparation process.

DOI: 10.1103/PhysRevA.97.052306

I. INTRODUCTION

With the advance of the experimental realization of quantum
protocols, the most widely used class of setups consists of clas-
sical systems controlling quantum ones [1–4]. Being classical,
the control systems are limited in the type of operations they
can perform, and this has implications on what can be achieved
by the setups they control. In particular, as it was shown in [5],
if one intends to prepare a maximally mixed state by means
of a computer pseudorandomly choosing pure states from a
given basis, there is an algorithm that can distinguish such
a preparation from an adequately prepared maximally mixed
state, without any knowledge of the mixing procedure.

In this work we extend the ideas from [5] in two ways.
First, we generalize the theoretical result by showing that any
preparation performed by a computer intended to generate
the maximally mixed state, and not just those in which the
states are chosen from a predefined basis, can be distinguished
from the maximally mixed state. Second, we present an
experimental implementation in which we distinguish two
computable preparations that if carried out with randomness
would be indistinguishable.

This article is organized as follows. First, we introduce the
tools from the theory of algorithmic randomness which we will
need later on. Second, we review the distinguishing protocol
from [5]. Third, we present its generalization to arbitrary
computable preparations. Finally, we present results for an
experiment implementing a widely used scenario in which a
pseudorandom function is used to pick pure states from a given
basis.

II. PRELIMINARIES

Central to the distinguishing protocols we will describe in
the following sections is the idea of an algorithmically random
sequence of symbols. Roughly, an infinite sequence of symbols

from some finite alphabet � is random in an algorithmic
sense, if it lacks any regularity detectable by effective means.
Randomness tests, also called Martin-Löf tests (ML tests) [6],
are defined to detect some specific regularity. This “detection”
of nonrandom sequences must be computably approximable,
with incrementing levels of accuracy or significance. A test
is a collection of sets Vm of possible prefixes of sequences
that do not look random. As we increase m, the identification
of nonrandomness gets more and more fine-grained, leaving
in the limit a null measure set of nonrandom sequences. The
Martin-Löf random (ML-random) sequences are those not
detectable by any possible ML test.

Formally, let �∗ be the set of all finite strings with symbols
from �. A Martin-Löf test is a sequence (Vm)m∈N of sets Vm ⊆
�∗ with the two following properties:

(1) Effectiveness. There is a Turing machine that, given m

and i, produces the ith string of Vm (notice that in general
there are infinitely many strings in Vm). It is not possible to
computably determine if a string is not in Vm, but we can
computably enumerate all strings that are in.

(2) Null class. Let λ be the uniform measure on the space �ω

of infinite sequences with symbols from � and, for A ⊆ �∗, let
[A] ⊆ �ω denote the set of sequences with prefixes in A. Then,
we require each ML test (Vm)m∈N to satisfy λ[Vm] � |�|−m.

We say that a sequence Y ∈ �ω is ML random if no ML test
(Vm)m∈N can capture Y in all its levels of accuracy, that is if
for no ML test (Vm)m∈N we have Y ∈ ⋂

m[Vm]. Informally, if
Y ∈ [Vm] then we reject the hypothesis that Y is random with
significance level |�|−m. Observe that, if Y ∈ [Vm], then there
exist n such that the first n symbols of Y , denoted Y � n, belong
to Vm.

An important feature of the theory of Martin-Löf random-
ness is the existence of a universal ML test, i.e., a ML test
(Um)m∈N such that any sequence Y ∈ �ω is ML random iff
Y �∈ ⋂

m[Um]. Since λ
⋂

m[Um] = 0, this implies that the set
of ML-random sequences has measure 1. In other words, the
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sequence of independent throws of a |�|-faced dice is ML
random with probability 1. It is important to note, however,
that the existence of a universal ML test does not give rise
to a general computable procedure to decide, in finite time
and given a sequence Y , whether Y is ML random or not.
Intuitively, this follows from the fact that, in finite time, only
finitely many symbols b1 . . . bn can be read and, so, there are
always both infinitely many ML-random and infinitely many
non-ML-random sequences extending b1 . . . bn. On the other
hand, the existence of a universal ML test does give rise to
a procedure P such that, given sequence Y , if Y is not ML
random, P halts and detects this fact after seeing a sufficiently
long prefix of Y . One such procedure P simply consists on
enumerating the strings in the sets Um and claiming that Y is
not ML random if Y � n ∈ Um for some n and m (notice that,
when Y is ML random, P will either not halt or halt and give
a wrong answer).

Intuitively, we expect a random sequence
Y (0)Y (1)Y (2) · · · ∈ �ω to satisfy the law of large numbers,
i.e.,

lim
n

|{i < n|Y (i) = b}|
n

= 1

|�| for all b ∈ �. (1)

Furthermore, it is natural to expect that for random sequences
there should be no algorithmic way of selecting some sub-
sequence of them not satisfying (1) (say, for instance, a
subsequence of all zeros in the binary case). This property,
known as Church stochasticity [7], is satisfied by ML-random
sequences (see, e.g., Ref. [8, Section 2.5.]) and we will use this
fact in what follows.

III. DISTINGUISHING PSEUDOMIXTURES
OF QUANTUM STATES

In [5] we considered a scenario with two players, Alice
and Bob, in which, first, Alice fixes a qubit basis, either the σz

basis or the σx basis, and then, upon Bob’s successive requests,
pseudorandomly picks an eigenstate from the chosen basis and
sends it to him. We gave a protocol for Bob to distinguish the
(initially unknown to him) preparation basis in finite time and
with arbitrarily high success probability. This implies that it
is incorrect to characterize Bob’s lack of knowledge about the
preparation basis with the maximally mixed state as one would
do if Alice were using randomness.

The protocol followed by Bob has two steps. First, he
alternatively measures the qubits being sent by Alice in the
σx and σz basis. This generates two binary sequences: X

and Z (see Fig. 1 for a schematic description). When he
measures in the preparation basis, the corresponding sequence
will be a subsequence (either the odd or the even positions)
of the pseudorandom sequence being used by Alice; when he
measures in the other basis, the resulting bits are, according
to quantum mechanics, independent flips of a fair coin and,
therefore, they give rise to a ML-random sequence with
probability 1. In the second step of the protocol, Bob uses
a universal ML test (Um)m∈N to distinguish between these two
kinds of sequences and hence find out the preparation basis.
Namely, given a desired probability of error ε, he computes
m := mink[2−k � ε] and starts enumerating all the strings in
Um = {s1,s2, . . . } until he finds some k such that for Y = Z or

FIG. 1. Schematic description of the protocol given in [5] allow-
ing a player Bob to tell if he is being given pseudorandom eigenstates
of the σx basis or of the σz basis.

Y = X it happens that

Y � n ∈ {s1, . . . ,sk} for some n ∈ N,

after which he claims that the box producing Y is the one
with the computer. Since either X or Z is computable, and
hence not ML random, the last condition has to be satisfied for
sufficiently large n. His claim is wrong when the ML-random
sequence was captured by [Um] before the computable one was
(of course, for some m′ > m the ML-random sequence would
be out of [Um′]). Hence the probability of making this error
is at most the probability for the coin flipping sequence to be
inside [Um] and this is at most 2−m � ε.

IV. GENERALIZED DISTINGUISHING PROTOCOL

In this section we extend the results from [5]. We will
consider a scenario in which there are two boxes providing
qudits to an observer named Bob. One of the boxes pre-
pares single qudit maximally mixed states (for instance, by
preparing the maximally entangled bipartite state 1√

d

∑
i |ii〉

and keeping one half while providing the observer with the
other). The other box contains an algorithm computing, on
each round j , d complex algebraic numbers (i.e., roots of
nonzero univariate polynomials with rational coefficients) [9]

{c(j )
k }k�d with

∑
k |c(j )

k |2 = 1 and preparing a qudit in the
state |ψj 〉 := ∑

k c
(j )
k |i〉. Bob, without any knowledge about

which box is which, will face the problem of determining
the one preparing the maximally mixed state. Our main result
is a protocol for Bob to win this game with arbitrarily high
probability and independent of the program being run by the
computer.

Before going to Bob’s protocol, let us first note that if we
fix a basis B and only allow the computer to pick eigenstates
from such basis, a slight modification of the protocol from
[5] allows Bob to distinguish between the boxes. Namely, if
instead of alternating between measuring σx and measuring σz

as in [5], Bob measures the outputs of both boxes in the B
basis, the d-ary sequence associated with the box which has
the computer will be computable and the other, according to
quantum mechanics, independent tosses of a fair coin and so
Martin-Löf random. Hence our previous result applies. The
situation we want to consider in this work is when there is no
fixed preparation basis.

Bob’s protocol works as follows. In each round, he will
perform an informationally complete positive operator valued
measure (POVM) {Ei}i�Nd

to the qudits coming out of each of
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the boxes satisfying

Tr

(
Ei

I

d

)
= 1

Nd

for all Ei. (2)

It is easy to see that such POVMs with algebraic coefficients
exist in every dimension d (for completeness, we provide a
proof of this fact in Appendix A). This will give rise to two
Nd -ary sequences B1 and B2 formed by the results of the
measurements over the qudits coming from boxes 1 and 2.
Note at this point that although Bob measures finitely many
times, the sequences are infinite in the sense that he can
keep requesting qudits from both boxes and making as many
measurements as he needs. As we will see now, sequences
B1 and B2 have a distinctive feature that will allow Bob to
distinguish which is the maximally mixed state and which is
the one being produced by a computer.

Let r ∈ {1,2} be the box preparing the maximally mixed
state and c = 3 − r be the box with the computer inside. It
follows from (2) that when measuring the POVM over the
maximally mixed state I

d
, as all the effects are equiprobable,

the resulting sequence Br will consist of independent samples
from the uniform distribution over {1, . . . ,Nd} and hence will
be Martin-Löf random with probability 1. On the other hand,
with probability 1, sequence Bc will not be Martin-Löf random.
This is not straightforward, and we prove it next.

First, from the fact that the POVM {Ei}i�Nd
satisfies (2) and

it is informationally complete, notice the following.
Observation 1. Let |ψj 〉 be the pure state produced by box c

at round j . There is, at least, one Ei such that Tr(Ei |ψj 〉〈ψj |) >

1/Nd .
This, together with the following lemma, will allow us to

show that any computable preparation made by Alice is distin-
guishable from the correctly prepared maximally mixed state.

Lemma 1. With probability 1, sequence Bc is not ML
random.

Proof. Following Observation 1, without loss of generality,
we assume that Ek is such that

Tr(Ek|ψn〉〈ψn|) > 1/Nd for infinitely many n. (3)

This means that there is an algorithmic way to identify a
subsequence of Bc not satisfying the law of large numbers
(with probability 1). Namely, let h : N → N be defined as

h(0) := 0,

h(n + 1) :=min
m

[(
Tr(Ek|ψm〉〈ψm|) >

1

Nd

)
∧ [m > h(n)]

]
.

By assumption (3), h(n) is defined for all n. Next, by definition
of h, with probability 1 the sequence

Y = Bc(h(0))Bc(h(1))Bc(h(2)) · · · ∈ {1, . . . ,Nd}ω,

which is a subsequence of Bc, does not satisfy the law of large
numbers (1). Hence, noting that |ψm〉 is computable from m

(e.g., with Alice’s program) and so h is a computable function,
we have that, with probability 1, Bc is not Church stochastic
and so it is also not ML random.

We have proven that Bc is not ML random but Br is. Now the
argument carries on as in [5]. Namely, given a desired proba-
bility of error ε, Bob computes m := mink[2−k � ε] and starts
enumerating all the strings in Um = {s1,s2, . . . } until he finds
some n such that [Bi � n] ⊆ ⋃

i�n[si] for some i ∈ {1,2} and

claims that box i is the one with the computer. Since, with prob-
ability 1, either B1 or B2 is not Martin-Löf random, the last con-
dition has to be satisfied for sufficiently large n with probability
1. His claim is incorrect when the sequence ML random was
captured by [Um] which happens with probability 2−m � ε.

V. EXPERIMENTAL TEST

In this section we present a proof-of-concept realization of
the distinguishing protocol presented in [5] and resumed above.
In the next lines we describe the additions or modifications
made to the theoretical scenario, arising from experimental
considerations.

First, to account for experimental imperfections, we will
work under the assumption of a noise model consisting of a
flip probability f in the observed symbols. That is, we consider
the situation in which those results obtained when measuring
the qubit states in the actual basis used by Alice are correct
with probability 1 − f (this simple noise has no effect on
the results of measurements performed in the wrong basis).
This is a natural noise model in which random bit flips are
applied to the measured sequences, resulting for instance from
imperfect preparations or measurements. Noisy channels like
the depolarizing channel and the bit-phase-flip channel can
produce such an effect on the set of states used for this protocol.

For the sake of concreteness, we describe next an explicit
algorithm for Bob to distinguish which of the sequences of
measurement outputs X and Z is the one corresponding to
measuring in the preparation basis (see Fig. 1). This algorithm,
although less resistant to noise than the general protocol using
ML tests given in [5], is robust enough for the noise model we
are considering.

Bob will dovetail between program number and the maxi-
mum time steps required for the simulation of this program on
a (fixed) universal Turing machine V (that is, he will simulate
program 1 for one time step, then programs 1 and 2 for two time
steps, and so on). This is a common technique in computability
theory to avoid nonhalting programs (see, e.g., Ref. [10]). For
each program p of length |p| he will compute the Hamming
distance (i.e., the number of different bits) between its output at
time t and the first k|p| bits of the sequences X and Z (notated
X � k|p| andZ � k|p|, respectively). The parameter k ∈ Nwill
depend on the probability of success we are looking for. When-
ever he finds a match for the first k|p| bits, he halts and claims
that the corresponding sequence is the computable one. Letting
q ∈ Q be the fraction of bit flips in the prefixes, the pseudocode
is Algorithm 1 below, where dH denotes Hamming distance.

Algorithm 1 The noise tolerant distinguishing protocol

Input: q ∈ Q, k ∈ N and X,Z ∈ {0,1}ω, one of them being
computable

Output: “X” or “Z” as the candidate for being computable;
wrong answer with probability bounded by O(2−k)
for t = 0,1,2, . . . do

for p = 0, . . . ,t do
If dH (Vt (p),X � k|p|) < qk|p| than

output “X” and halt
If dH (Vt (p),Z � k|p|) < qk|p| than

output “Z” and halt
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In Appendix B we show that the probability of error, i.e., the
probability of Bob making a wrong claim about which of the
two sequences X and Z is a subsequence (with its bits flipped
with probability q) of Alice’s sequence, is

Perr <
21+qk−k

(
e
q

)qk

1 − 21+qk−k
(

e
q

)qk
(4)

and it can be shown numerically that for q � 0.21 it goes
to zero exponentially with k. This distinguishing protocol
appeared in a first version [5] of the results published in [5].

Notice that Algorithm 1—as it was the case with the
protocol using a universal ML test—is independent of Alice’s
algorithm. This independence, however, comes at the expense
of unfeasibility, because it is achieved through a search over
the whole space of all Turing machines. Hence the second
implementation decision we make is to restrict the possible
algorithms used by Alice to the rand() function of Matlab
using the Mersenne Twister default generator algorithm [11]
with initial binary string seeds of a fixed maximum length �max

[technically, the seeds for the rand() function are nonnegative
integers, but we identify them with binary strings in the usual
encoding]. In spite of being a simplified scenario, this still rep-
resents a quite usual experimental situation. Finally, some mi-
nor changes to Algorithm 1 were required due to the nondeter-
ministic nature of the emission and detection of Poissonian sin-
gle photon states used as physical implementation for qubits.
The adapted protocol can be specifically stated as follows:

(i) Alice and Bob set the value of two parameters from
the protocol: �max which determines the maximum length of
the rand() function seed to be used and k which bounds to
N = k × �max, the number of qubits to be transmitted on any
run of the experiment.

(ii) Alice pseudorandomly chooses an l-bit string s with l �
�max which is used as the initial value, or seed, for the rand()
function. Then, she runs the rand() function N times, giving
rise to N values ri ∈ [0,1] which she then rounds to the nearest
integer (zero if ri � 1/2 and 1 otherwise) and concatenates to
form a string of N pseudorandom bits. Henceforth, we will
denote an M-bit string constructed in this way using a string s

as initial seed to the rand() function by binrand(M,s).
(iii) Alice chooses randomly (with fair coin randomness as

explained below) the basis in which she will encode and send
the string.

(iv) Alice sends the N qubits to Bob. She encodes the binary
string information in the photon polarization degree of freedom
of a faint pulsed light beam.

(v) Bob measures the N
2 even and N

2 odd elements, each in
one of the mutual unbiased bases.

(vi) Bob, after measurement, computes the Hamming dis-
tance (for even and odd bits) between the experimental data and
binrand(M,s) for different seeds s and increasing length M .
When the minimum Hamming distance condition is fulfilled,
Bob ends the search.

(vii) Finally Bob compares the state preparation (σx or σz

mixtures) predicted by him with the mixture that was actually
prepared by Alice to estimate the error probability (Perr) of the
prediction.

A complete experiment consists in several repetitions of
the protocol sketched above. Every execution is divided in two

parts: the transmission of qubits from Alice to Bob, followed
by a search routine, where Bob compares both bit strings with
the pseudorandom strings generated with the rand() function
over all seeds of length bounded by �max as it is stated in the
theoretical protocol. When Bob finds a string that resembles the
experimental series up to a certain dH value, the search ends.
The result is compared with the actual basis used by Alice
and the wrong guesses are registered as errors. After this they
repeat the procedure with a new seed pseudorandomly picked
and a new random emission basis choice. The bound for dH

allows us to control the tolerance of the experiment against the
quantum bit error rate (QBER).

One thing to be noticed is that Bob may not find a series
that fulfills the desired Hamming distance condition. This is a
situation that is not present in the theoretical protocol. In this
way every time that Bob doesn’t find a match we compute the
experiment as inconclusive and it is discarded. To overcome
this issue, the parameters of the protocol (such as maximum dH

allowed) were set to guarantee that the probability of error oc-
currence was always greater than the probability of not finding
any bit string fulfilling the condition. Under such assumptions,
and using reasonable tolerances, we find that the ratio of incon-
clusive experiments to total number of errors was negligible.

A. Experimental setup

The above protocol was tested on a photonic setup, based on
a modified BB84 quantum key distribution (QKD) implemen-
tation [12] which consists of an emission stage that is able to
send binary states coded in two different unbiased bases of the
photon polarization, which are called computational basis and
diagonal basis, and a reception stage for the quantum channel.
Additionally, a classical communication channel is added for
synchronization, transmission, and data validation.

The four polarization qubits are obtained using attenuated
coherent pulses generated with four infrared LEDs, controlled
by a fast pulsed driver (optical pulse duration 25 ns FWHM).
Faint coherent pulses can be used as probabilistic single photon
sources: on each pulse the photon number distribution is
Poissonian. Unlike the theoretical protocol, where each qubit
is sent and received deterministically, here the transmission
of a qubit is probabilistic. As opposed to QKD, in this
demonstration the fact that most of the emitted pulses have
zero photons requires Alice to send each state several times
until Bob makes a successful detection.

Polarization states are obtained by combining all the outputs
from the LEDs in a single optical path using polarization beam
splitters (PBS), a half-wave plate retarder, and a beam splitter
(BS). A bandpass filter centered at 810 nm narrows the photon’s
bandwidth down to 10 nm FWHM. A TTL clock pulse is sent
to Bob every time a pulse is emitted in order to synchronize
the optical pulses with the gated detection scheme.

At Bob’s side the detection basis is passively and randomly
selected with a BS. Each detection basis consists in a PBS
with both outputs coupled into multimode fibers. An additional
half-wave plate before one of the PBS allows for detection
in the diagonal basis. We implement a polarization to time-
bin transformation by adding different delays to each channel.
This allows us to utilize a fiber multiplexing scheme with only
one single photon detector (Fig. 2). Temporal masks generated
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FIG. 2. Complete setup for implementing the transmission and
search protocol: qubits encoded in polarized faint pulses are pro-
duced by infrared LEDs. Light is coupled into and decoupled from
multimode fibers to obtain uniform beams for the four sources. The
polarization state preparation is achieved by passing through a PBS
(for H and V states) and an extra half-wave plate for the D and A
paths. A nonpolarizing beam splitter cube couples the optical paths
into an only exit light path. At the receiver’s side a BS passively and
randomly selects the detection basis for each incoming pulse. The
outputs are coupled into multimode optical fibers, where different
delays are imposed to make a polarization to time-bin transformation
into a common output fiber. Finally a photon counter module and a
temporal mask demultiplexer are used for detection.

using the clock pulse emitted by Alice act as demultiplexer and
detection gating.

Programmable Arduino Mega 2560 boards are used to
carry out the synchronization, communication, and data pro-
cessing tasks, for which specific interfacing peripherals were
developed. A desktop personal computer generates the binary
strings of pseudorandom bits using the Matlab function rand()
and stores the bit strings. Finally a quantum random number
generator (QRNG) based on which-path detections of single
photons exiting a beam splitter is used for the realization of a
random selection of the emission basis on each repetition of
the experiment.

Alice sends each bit of the string repeatedly at a frequency
of 170 kHz until she receives an interruption signal, indicating
that the qubit was correctly detected by Bob. Due to the proba-
bilistic nature of the qubit transmission process each state may
be sent several times before Bob makes a successful detection.
In particular, given that the photon number distribution per
pulse is Poissonian (with a mean photon value at the detector of
0.1), on average one every ten pulses is detected. Furthermore,
the detection base is randomly selected so 50% of the detected
photons are discarded by base mismatch. This results in an
overall qubit transmission rate of 1

20 per emitted pulse.
For this reason, every sent bit is registered by Bob (in the

corresponding basis, either in the correct state or with an error),
and as a side effect, we do not need to take losses into account
in the noise model. This characteristic of the experimental
protocol allows a simpler postprocessing of the data while
not having any essential implication in the distinguishability
between the resulting bit strings.

0 2 4 6 8 10 12 14 16

102
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100

10-1

10-2

10-3

10-4

10-5

FIG. 3. Experimentally estimated error rate (the error that Bob
does make a wrong claim) obtained with the noise tolerant protocol
(circles over red lines), compared with the theoretical bounds for the
noiseless (lower line in blue) and noise tolerant (upper line in green)
algorithms. The cyan line with squares is the computational simulation
of the experimental data taking into account the average QBER.

B. Complete results and simulations

Herein we analyze the experimental results. We compare
the performance of Bob at guessing the emission basis, with
the error probability Perr obtained in [5], and we also present
additional data analysis aiming to explain the behavior of the
error rate obtained.

The experiment involved 3100 repetitions of the trans-
mission and search protocols. The total number of qubits
transmitted on each repetition was fixed, and set by k × �max (in
this implementation �max = 10). The parameter k determines
the theoretical error probability for a given tolerance (q) and
was set to take values between 1 and kmax := 16. This bounds
the maximum number of compared bits on each Hamming
distance calculation to N = 320 (�max × kmax bits for even and
odd bits); that is the number of qubits that Alice sends to Bob
on each run.

As a result of each run, Bob gets two 160-bit length strings
Me and Mo. Me are the outcomes of even qubits, measured
in the computational basis, and Mo are the outcomes of odd
qubits, measured in the diagonal basis. These two strings
correspond to Z and X introduced in Algorithm 1. Bob then
searches for the first string s (in the lexicographical order) with
1 � |s| � �max such that

dH (binrand(k|s|,s),Mi � k |s|) � �q × k × |s|
 (5)

for i = o or i = e. In this experiment, the tolerance parameter
is set to q = 0.15. If (5) is satisfied for i = o, he guesses that
the preparation basis is the computational basis; else, if (5) is
satisfied for i = e, he guesses that it is the diagonal basis. As
explained before, if he doesn’t find a seed s such that (5) is
satisfied, the run is reported as inconclusive. The result of the
search for each run is registered for a further estimation of the
error rate Rerr(k,q).

The probability of error in Bob’s guess of the emission
basis can be estimated for different values of the parameter k.
Figure 3 shows the error rate obtained from the experimental
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FIG. 4. Green curve (squares) shows the total wrong claim proba-
bility (error rate) and the contribution to this quantity coming from the
programs of length 1 (blue dots), together with the effective tolerance
qeff (red triangles) for each value of k over the 3100 experiment
repetitions. The tolerance value q was set to 0.15. Almost every error
comes from � = 1 programs and the probability of error occurrences
coming from programs with � > 1 vanishes as k increases. The sudden
increases of qeff in k = 7 and k = 14 appear due to the discrete
nature of the maximum number of errors allowed on an accepted
bit string (maximum Hamming distance). Also for each value of
k where the effective tolerance probability for � = 1 increases, the
error probability also increases. The vertical dashed lines delimit the
regions where the maximum number of bit flips Nerr allowed (for
� = 1) is constant.

data and from a computational simulation of the experiment,
together with the theoretical bounds for the distinguishing—
noiseless and noise tolerant—protocols.

The error rate as a function of k remains always below the
noise-tolerant limit and also above the noiseless theoretical
bound (excluding the scenarios with values k = 1 and k = 2).
The error shows some unexpected increments for k = 7 and
k = 14. This behavior arises due to the discrete nature of the
number of errors allowed on each string comparison, and it is
explained below.

Figure 4 shows the total error rate and the contribution to
this quantity arising from programs of length 1. It is evident
that errors occur mostly in the minimum length programs. In
particular for k > 10 all the guessing errors come from these
programs (which are the first to be evaluated in the search
procedure). This fact simplifies the description of the error
occurrence just in terms of the probability of error occurrence
while evaluating length 1 programs.

The tolerance q determines the maximum number of errors
allowed: Nerr = �q × k × �
. This quantity divided by the
program length gives the effective tolerance: qeff = �q×k×�


�
.

As almost all the errors arise from minimum length programs,
the Rerr increments can be explained looking at qeff from � = 1.
As can be seen in Fig. 4, for k below 6 the effective tolerance is
zero (Nerr = 0). That is why the error rate follows the ideal the-
oretical curve for these values (Fig. 3). The increments on the
error at k = 7 and k = 14 are correlated with increments in the

1 2 3 4 5 6 7 8 9 10 11
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FIG. 5. Plotted data correspond to the wrong claim probability
obtained by doing simulations of the experiment with an increasing
set of programs (from 21 to 211 programs). For each value of �max we
run a simulation of the experiment with 5 × 104 repetitions. The Perr

value stabilizes as the number of programs grows.

qeff (this will happen for every k where the number of maximum
bit flips allowed Nerr is increased by 1 for � = 1 programs).

Finally, as a validation of the results, we simulated the
same experiment with different sizes of the set of programs
used for fixed values of k = 14 and q = 0.15 (recall that for
this experiment the program list was restricted to 210 different
elements). Figure 5 shows the simulated error rate for values of
the maximum length program �max from 1 to 11 over 5 × 104

repetitions. The error rate stabilizes as �max grows. This shows
that our results are representative of the values that would be
obtained if an experiment with larger �max was performed. In
this regard, a similar experiment was implemented afterwards,
utilizing a larger set of seeds for the rand() function: the
complete protocol was implemented with �max = 16 (65536
different seeds) over 3200 repetitions of the experiment with
q = 0.15 and k taking values from 1 to 16 showing the same
behavior of the basis guess success rate.

VI. DISCUSSION

In this article we extended results from [5] in two ways.
First, we proved that any attempt to mix pure states into the
maximally mixed state, when performed by a computer (or
any system equivalent in terms of computability power), can
be distinguished from the maximally mixed state prepared
correctly (either the one obtained by looking at a part of a
maximally entangled state or by using a truly random source).
This broadens the scope of the previous results, in which only
some computable mixtures were analyzed. It should be noted
that, as was the case with the protocol in [5], the distinguishing
procedure presented here is, although computable, computa-
tionally expensive (a necessary price to pay for its generality).
This implies that, in a cryptographic setting in which the
attacker is usually restricted to polynomial time computations,
the presented distinguishing procedure possesses no threat.
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Second, we presented a proof-of-concept experiment show-
ing that mixing two different sets of pure states that are
supposed to yield the same mixed state can be distinguished
when mixed employing one of the most widely used general
purpose pseudorandom number generators.

These two results should be seen as a call for attention when
performing experiments and claiming to produce certain mixed
states via computable mixings. Furthermore, as the experimen-
tal proof-of-concept we provide shows, this persistence of the
“algorithmic signature” in states comprising the computable
mixings can be readily seen in standard QKD setups, which
should also be taken into account as a weakness when using
those setups for QKD.
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APPENDIX A: POVM FOR THE GENERALIZED
DISTINGUISHING PROTOCOL

For completeness, in this section we describe an informa-
tionally complete POVM {Ei}i�Nd

satisfying (2). We construct
it from the following Nd := d(2d − 1) projectors:

	(a)
m := |m〉〈m|,

	(b±)
n,m := 1

2 [|m〉〈m| ± |m〉〈n| ± |n〉〈m| + |m〉〈m|],
	(c±)

n,m := 1
2 [|m〉〈m| ∓ i|m〉〈n| ± i|n〉〈m| + |m〉〈m|],

for all m < n � d. It is easy to see that (1) Tr(	(a)
m

I
d

) =
Tr(	(b±)

n,m
I
d

) = Tr(	(c±)
n,m

I
d

) = 1
d

and (2) for every density matrix
ρ over Cd ,

ρm,m = Tr
(
	(a)

m,nρ
)
,

ρm,n = 1
2

[
Tr

(
	(b+)

m,n ρ
) − Tr

(
	(b−)

m,n ρ
)

+ i(Tr
(
	(c−)

m,n ρ
) − Tr

(
	(c+)

m,n ρ
)]

for m �= n.

Finally, since∑
n,m

[
	(a)

n,m + 	(b±)
n,m + 	(c±)

n,m

] = (2d − 1)I,

by normalizing these projectors with 1/(2d − 1) we get the the
effects Ei of a POVM with the desired characteristics.

APPENDIX B: PROBABILITY OF SUCCESS
OF ALGORITHM 1

We need to bound the number of sequences that have
a Hamming distance smaller than qk� from a computable
one. One possible bound is 2�

(
�k

�q�k

)
2�q�k
, where the first

exponential term counts the number of different programs of
length �, the combinatorial number corresponds to the number
of bits that can be flipped due to errors, and the last exponential
term gives which of these bits are actually being flipped. This
estimation may not be tight, as we may be counting the same
sequence several times. However, using this estimation we
derive a sensible upper bound for the final error probability,
as we get

Perr <
∑
�>0

2�2�q�k
( �k

�q�k

)

2�k
. (B1)

If we consider that q < 1/2, we can remove the integer part
function and use the generalization of combinatorial numbers
for real values. Then, by using that (ab) � ( ea

b
)b, we obtain

Perr <
∑
�>0

[
2(1+qk−k)

(
e

q

)qk
]�

. (B2)

This geometric sum can be easily computed yielding

Perr <
21+qk−k

(
e
q

)qk

1 − 21+qk−k
(

e
q

)qk
. (B3)

Now it can be numerically shown that for q � 0.21 the prob-
ability of misrecognition tends to zero exponentially with k.

Finally, for completeness, we show that (with probability 1)
Algorithm 1 halts for all inputs satisfying the assumptions. Let
f < q be the probability of a bit flip. With probability 1, we
have that for every δ there exists an m0 such that for every m >

m0 the portion of bit flips in both X � m and Z � m are less than
(f + δ)m. This means that if we go to long enough prefixes
(or programs), the portion of bit flips will be less than q. And
since any computable sequence is computable by arbitrarily
large programs, this ensures that our algorithm will, at some
point, come to an end.
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