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Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: 174Yb+ and 171Yb+
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Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage
out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider
trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are
sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to
magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here
we compare a Zeeman qubit (174Yb+) to a hyperfine qubit (171Yb+) in the context of the surface code. We find
that the number of physical qubits required to reach a specific logical qubit error can be reduced by using 174Yb+

if the magnetic field can be stabilized with fluctuations smaller than 10 μG.
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I. INTRODUCTION

The ideal qubit consists of a pair of orthogonal quantum
states. However, most systems used for quantum computing
(QC) are multilevel systems, and these additional levels allow
for leakage out of the qubit subspace. Leakage errors result
in the quantum system leaving the computational space and
are suffered by trapped ions [1–4], quantum dots [5–7],
superconducting qubits [8–12], and anyons [13,14].

Because leakage faults occur outside the computational
space, traditional methods for correcting Pauli-type errors are
ineffective on them. Instead, the issue of leakage requires
a separate set of techniques for reducing the faults. At the
physical level, leakage errors can be mitigated through the use
of different pulse techniques [9,10,15,16]. Leakage errors can
also be detected and converted to Pauli or erasure errors by
constructing suitable leakage reducing units (LRUs) [5,12,17–
22]. It is also possible to construct a system that does not suffer
from leakage [23]. Thus when designing the architecture of a
quantum computer is it worthwhile to examine the resources
needed to deal with leakage.

Ion-trapped computers are a leading candidate for QC
[2]. Quantum information is encoded in the internal states
of the ion, often a pair of levels in the S1/2 ground state.
The two states are connected by a magnetic dipole transition
with a small frequency difference, typically a radio frequency
for Zeeman qubits and a microwave frequency for hyperfine
qubits, resulting in a practically infinite lifetime of the excited
level due to spontaneous decay [24–26]. In ions with I = 0,
the only S1/2 levels available are those of the two Zeeman
states. Zeeman qubits do not suffer from leakage in the ground
manifold states but have a first-order dependence on magnetic
fields [23,27–29]. In ions with I �= 0, the qubit can be encoded
into any pair of hyperfine states. However, the existence of
other hyperfine states means there is a potential for leakage.
Hyperfine qubits based on clock states have a second-order de-
pendance on magnetic fields, but spontaneous scattering during
stimulated Raman processes can lead to leakage errors [30–33].

Two-photon Raman transitions are often used to manipulate
qubits in ion traps [2,23–26,28–30]. Quantum gates rely on
coupling to excited states through electric dipole transitions.
Since laser light is used to drive these transitions, sponta-
neous scattering of photons is inevitable. While detuning
the laser frequency away from allowed optical transitions
can suppress this scattering, it is impossible to completely
eliminate. Both Raman and Rayleigh scattering can lead to
decoherence, but each manifest differently depending on qubit
choice [26,34,35]. We note that scattering errors can be avoided
by using only microwave gates [36–39], but leakage due to
background gas collisions or imperfections in operations could
still occur.

This work seeks to quantify these errors in the context of
quantum error correction (QEC). First we describe the char-
acteristics associated with each type of qubit as well as their
magnetic field dependence. Next we discuss the calculation
of the different errors associated with spontaneous scattering
from driven Raman transitions. Finally we compare the ions
in the context of the surface code. Our results show leakage
is more prominent than expected, and given a stable enough
magnetic field, Zeeman qubits require a smaller distance
surface code to produce the same logical error rate as a logical
qubit composed from a physical hyperfine qubit.

II. Yb+ MODEL AND ASSOCIATED ERRORS

Yb+ has many naturally occurring isotopes, but we examine
174Yb+ (I = 0) and 171Yb+ (I = 1/2), whose nuclear spin
yields a Zeeman and hyperfine qubit, respectively. This makes
Yb+ the perfect candidate to study the associated error rates
between these two types of qubits. The atomic structures
and associated possible errors resulting from spontaneous
scattering for both isotopes are illustrated in Fig. 1. While
there are other sources of noise that could be considered,
we choose to focus on two types of noise that are the most
relevant to the comparison of the two types of qubits: magnetic
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FIG. 1. Atomic structure of Yb+ isotopes and errors associated
with different scattering events from the 2P states assuming the ion
starts in the lower qubit state. Spontaneous Raman scattering can
cause bit-flip noise or leakage errors. Spontaneous Rayleigh scattering
can lead to dephasing errors.

field fluctuations that lead to dephasing in Zeeman qubits and
spontaneous scattering that leads to leakage errors in hyperfine
qubits.

A. Unstable magnetic field

For the Zeeman qubit, 174Yb+, the qubit is encoded
into the electron spin states |S = 1/2,ms = −1/2〉 and
|S = 1/2,ms = 1/2〉. While there is no possibility for leakage
(in this discussion we assume higher-level leakage states in the
D and F manifolds are quickly repumped to the ground state),
because the qubit itself is encoded in Zeeman energy splitting,
it will be highly susceptible to magnetic field fluctuations.
The applied magnetic field required for the ion trap causes
the well-known Zeeman energy splitting and the first-order
effects grow linearly with the magnetic field. Any devia-
tions in the magnetic field yield a first-order frequency shift
given by

�ν = gsμB

h̄
�B, (1)

where gs is the Landé g factor, μB is the Bohr magneton, h̄ is
Planck’s constant, and �B is the difference between the actual
magnetic field and the ideal magnetic field [40]. Such magnetic
field noise can cause dephasing and is the main disadvantage
of using a Zeeman qubit.

For 171Yb+, the qubit is encoded into the clock states
|F = 1,mF = 0〉 and |F = 0,mF = 0〉. These states are
magnetic-field-insensitive transitions that do not suffer from
first-order effects. The second-order magnetic field depen-
dence can be derived from the Breit-Rabi formula with the
frequency shift due to uncertainties in the magnetic field given
by

�ν = (gJ − gI )2μ2
B

2h̄2ω
[2B0�B + (�B)2], (2)

where gJ and gI are the Landé g factors for the electron
and the nucleus, ω is the angular frequency of the hyperfine
splitting, B0 is the ideal magnetic field strength, and �B is
the deviation from the ideal magnetic field [40,41]. Because

TABLE I. A list of error probabilities caused by the first-order
Zeeman effect (174Yb+) and the second-order Zeeman effect (171Yb+).
The gate times for one- and two-qubit gates were 1 and 200 μs,
respectively. σ is the standard deviation of the magnetic field strength
in G. The table shows 171Yb+ error for zero average magnetic field.
For typical magnetic fields yielding 1 MHz Zeeman splittings, the
error for 171Yb+ for a given σ is comparable to the error for 174Yb+

with σ ′ = 10−4σ .

Single-qubit gate Two-qubit gate
τgate = 1 μs τgate = 200 μs

Probability 171Yb+ 174Yb+ 171Yb+ 174Yb+

Pσ=10−2 1.90 × 10−14 1.93 × 10−3 7.62 × 10−10 0.50
Pσ=10−3 1.90 × 10−18 1.93 × 10−5 7.62 × 10−14 0.39
Pσ=10−4 1.90 × 10−22 1.93 × 10−7 7.62 × 10−18 7.69 × 10−3

Pσ=10−5 1.90 × 10−26 1.93 × 10−9 7.62 × 10−22 7.75 × 10−5

Pσ=10−6 1.90 × 10−30 1.93 × 10−11 7.62 × 10−26 7.75 × 10−7

the second-order effect is so small, clock states are negligibly
affected by magnetic field noise, a clear advantage when using
hyperfine qubits. At typical values of applied magnetic fields
for hyperfine qubits, the effective frequency fluctuation is
10−3−10−4 smaller than for the Zeeman qubit. However, the
existence of the other hyperfine states |1, + 1〉 and |1, − 1〉 in
171Yb+ can lead to leakage events.

Using Eqs. (1) and (2), we assumed a Gaussian distribution
and calculated the probability of error based on gate time and
magnetic field stability. For low errors, the error from the first-
order Zeeman effect grows quadratically with increasing field
fluctuations. For fields with high fluctuations, this probability is
well above the threshold error value of the surface code of 1%
[42,43]. The probability of error resulting from the second-
order effects grows quartically with field fluctuations in the
limit of zero average magnetic field. Even at fields with low
stability, this error remains below threshold. Table I lists these
probabilities with varying magnetic field stabilities for both
single- and two-qubit Î gates. The more stable the field, the
less error. The errors vary drastically for Zeeman qubits and
are almost negligible for hyperfine qubits.

B. Spontaneous scattering

Additional errors arise from the scattering of photons during
gates. Two-photon Raman coupling is among the most popular
choices for gate implementation [2,23,24,26,28,30–34]. Lasers
detuned off-resonance drive qubit transitions through interac-
tions with excited states. This use of a stimulated transition to
perform a qubit rotation lends itself to spontaneous emission
errors. Raman scattering is usually thought of as the biggest
contributor to these errors as all qubit types suffer from it [26].
Spontaneous Raman scattering can lead to leakage errors or
change the qubit in the computational basis (X̂ or Ŷ error).
Unlike leakage errors, Pauli-type errors can be corrected using
standard quantum error correction codes (QECC). Rayleigh
scattering is typically less of a contributor to errors as it
does not necessarily cause decoherence in all qubit types
and in certain cases can be ignored [26,34,35]. Rayleigh
scattering leads to dephasing errors (Ẑ), similar to the magnetic
field fluctuations. This decoherence rate is dependent on the
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scattering amplitudes of the qubit levels and thus varies from
isotope to isotope.

To calculate the different error rates for the two ions, we
followed the procedure outlined in [34]. The rate at which the
ion in state |i〉 scatters a photon and ends in state |j 〉 is given
by the Kramers-Heisenberg formula

�ij =
(

μE0

2h̄

)2

γ
∑

λ

(∑
J

A
i→j

J,λ

)2

, (3)

where μ is the largest element of the dipole matrix, E0 is
the magnitude of a nonresonant light field of the lasers, γ

is the spontaneous decay rate of the excited states, and A
i→j

J,λ

are the scattering amplitudes [26,34].
The Raman and effective Rayleigh scattering rates are given

by

�Ram = �ij + �ji, (4)

�el =
(

μE0

2h̄

)2

γ
∑

λ

(∑
J

A
j→j

J,λ −
∑
J ′

Ai→i
J ′,λ

)2

, (5)

respectively. When Rayleigh scattering rates from the two ion
qubit states are different, the scattered photons will measure
the qubit state causing decoherence [34]. Thus the effective
Rayleigh scattering that will cause dephasing is given by this
difference. We calculated fidelity for both single- (τ = 1 μs)
and two-qubit (τ = 200 μs) gates of a π rotation about the
x axis on the Bloch sphere. These gates were assumed to be
driven by copropagating linearly polarized Raman beams, blue
detuned from the P1/2 level with laser frequency of 355 nm and
a beam waist of w0 = 20 μm. The choice of these parameters
was motivated by desired gate times, the minimization of
spontaneous scattering, and by recent experiments performed
using a 355-nm laser [44–47].

Table II shows the different scattering errors for both
the 174Yb+ Zeeman and 171Yb+ hyperfine qubit. When the
Rayleigh scattering amplitudes of the two-qubit levels are ap-
proximately equal, their contributions can add up destructively.
The decoherence rate due to Rayleigh scattering will be small
and decoherence will be dominated by Raman scattering [34].

TABLE II. A list of error probabilities caused by spontaneous
scattering from stimulated Raman transitions. The gate times for one-
and two-qubit gates were 1 and 200 μs. The gates were assumed
to by driven by copropagating linearly polarized Raman beams with
f = 355 nm and a beam waist of w0 = 20 μm. For 174Yb+, Rayleigh
scattering was just as dominant as Raman scattering. For 171Yb+,
Raman scattering which resulted in leakage was equal to that of bit-flip
noise.

Single-qubit gate Two-qubit gate
τgate = 1 μs τgate = 200 μs

Probability 171Yb+ 174Yb+ 171Yb+ 174Yb+

PRaman 2.42 × 10−6 4.8 × 10−6 6.37 × 10−5 12.6 × 10−5

PLeakage 2.42 × 10−6 N/A 6.37 × 10−5 N/A
PRayleigh 1.60 × 10−13 4.88 × 10−6 4.21 × 10−12 12.6 × 10−5

This is precisely what we see for 171Yb+. However, even when
amplitudes are approximately equal, they can have opposite
sign and their different contributions can add up constructively,
leading to large Rayleigh scattering decoherence [34], as in the
case for 174Yb+. For 174Yb+, Rayleigh scattering was approx-
imately equal to the Raman scattering. In this sense, 174Yb+

can be modeled anisotropically, with double the amount of
Ẑ errors for every single X̂ or Ŷ error. For 171Yb+, Raman
scattering that resulted in leakage was equal to the scattering
which caused Pauli-type errors.

When looking at overall error rates, it is clear that a single
171Yb+ is prone to less physical error. However, this hides the
fact that leakage errors can be damaging to QECC. A majority
of the errors that occur via spontaneous scattering in 171Yb+

(leakage errors) requires extra overhead to correct relative to
pure Pauli errors. To gain a better understanding of this, we
must look at how each type of qubit performs with a QECC.

III. SURFACE CODE MODEL AND LRC

The toric code was the first example of a topological
code and is well studied [48–50]. The toric code is a two-
dimensional surface code with periodic boundary conditions
and thus has a natural mapping onto the surface of a torus.
Qubits are positioned in an array and either function as
data qubits or ancilla qubits. Data qubits are used to encode
the information, while ancilla qubits are used to measure
stabilizers, which in turn help infer where errors occurred. A
six-step cycle is implemented in order to perform one round of
error correction. First, all ancilla qubits are initialized in their
respective eigenbasis (either |0〉 for Ẑ or |+〉 for X̂). Next,
four controlled-NOT (CNOT) gates are performed between each
ancilla and data qubit. Finally, each ancilla is measured in its
respective basis. This is precisely the circuit outlined in Fig. 2.
The problem of inferring the most probable error given the
observed syndrome is mapped to a minimum weight perfect
matching problem that can be solved with Edmonds’ algorithm
[19]. Such error-correcting schemes have been studied both
with and without leakage [12,14,19–22,50,51].

This six-step error correction cycle is all that is needed to
correct Pauli-type errors. Handling leakage errors requires the
use of LRUs. The idea of incorporating LRUs was first used

FIG. 2. Standard circuits to measure surface code check opera-
tors. The open white circles represent data qubits while the closed
dark circles represent ancilla qubits. The blue and green diamonds
represent Ẑ and X̂ stabilizers, respectively.
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FIG. 3. The QUICK LRC required to perform error detection in
the presence of leakage. After each cycle, the physical qubits get
swapped. Data qubits become ancilla, and ancilla qubits become data
qubits. The information is transferred, and leaked qubits get measured
and reset every other cycle [19].

to show an accuracy threshold exists even in the presence
of leakage errors [52]. The most common type of LRU
implements gate teleportation in some fashion [5,17,18,52].
The additional circuitry required to perform the teleportation
is referred to as a leakage reducing circuit or LRC. Different
strategies for implementing LRCs into surface codes have been
studied [12,19,20,22,52] in order to grasp the tradeoff between
circuit complexity and effectiveness of leakage reduction.

In our work, we chose to implement the Quick LRC [19],
as depicted in Fig. 3. The Quick LRC adds a SWAP gate after
the last CNOT of the standard circuit. At the end of each
cycle, the physical qubits trade roles. Data qubits become
ancilla qubits and ancilla qubits become data qubits. The cycle
starts again reinitializing ancilla qubits. Leaked data qubits
now get measured and reinitialized as ancilla qubits, and thus
leaked qubits do not live for more than two cycles with this
LRC implemented. Through the use of gate identities and
gate cancellation, the implementation of this LRC requires
only one additional CNOT. The Quick LRC is the simplest
of all current LRCs and was shown to produced comparable
results to that of more complicated LRCs [19]. Other LRCs
require more SWAP gates per cycle but did not show significant
improvement compared to the QUICK LRC. In short, the
Quick LRC effectively reduces leakage using the smallest
overhead.

IV. RESULTS AND DISCUSSION

Using the error probabilities calculated from the magnetic
field fluctuations and the spontaneous scattering rates, we
analyzed the performance of the Zeeman and hyperfine qubits
on the toric code. The Zeeman qubit was demonstrated on
the standard circuit (Fig. 2), while the hyperfine qubit was
demonstrated on the Quick LRC (Fig. 3).

In our model, after every gate magnetic field noise was
introduced with probabilities corresponding to the magnetic
field susceptibility of the qubits (Table I). Additionally, spon-
taneous scattering errors occurred after every gate, with the
ratios of the probability for a particular error corresponding
to the calculated spontaneous scattering rate of the qubits
(Table II), e.g., leakage was twice as probable as a Pauli X̂

or Ŷ , with the total probability of an scattering event equal to

FIG. 4. Comparison of various magnetic field stabilities for a
distance of five codes per two-qubit gate. The hyperfine qubits (black)
have the LRC implemented (Fig. 3), while the Zeeman qubits have
only the standard circuit implemented (Fig. 2). The LRC swaps data
and ancilla qubits, effectively reinitiating leaked qubits back into the
computational subspace. If the magnetic field is stabilized to below
∼ 30 μG, the logical error of the Zeeman qubit is better than that of
the hyperfine for the scattering rates considered.

p. Spontaneous scattering also allows leaked qubits to return to
the qubit subspace. The two qubits involved in a CNOT gate have
independent probabilities to leak after the gate. Once the qubit
leaked, it would remain leaked until a spontaneous scattering
event returns it to the qubit subspace or the qubit is reset by the
Quick LRC. While this means a leaked qubit was corrected at
the maximum of every other error correction cycle, long-lived
leaked qubits had the potential of corrupting other qubits.

When a CNOT is performed between a leaked qubit and a
qubit in the computational basis, the latter suffers a random
single-qubit Pauli error (including the trivial error Î ), with
equal probability. When a CNOT is performed between two
qubits in the computational basis, the standard error propaga-
tion rules are applied. Magnetic field noise and spontaneous
scattering errors are only applied after the gates to model envi-
ronmental noise. Finally, when a leakage qubit is measured, it
yields a |+1〉 eigenvalue. This is physically motivated by the
atomic structure of 171Yb+, because any leaked state will be in
the F = 1 manifold and will be detected as such (see Fig. 1).

As expected, we found that the success of the Zeeman qubit
depended heavily on the stability of the magnetic field. A
comparison of the Zeeman and hyperfine qubits at varying
magnetic field stabilities is shown in Fig. 4. It is clear from
this graph that if the magnetic field is not stable enough,
the error rate is above threshold and QECC will not help.
There is also a stability where the performance of the Zeeman
qubit and hyperfine qubit are about equal (σ = 31.62 μG),
but when the probability of a spontaneous scattering event
is low enough (∼10−4), then the main source of error for
the Zeeman qubit is from the magnetic field fluctuation. This
base error results in a plateau on the graph were the logical
error rate cannot be improved by reducing the scattering.
Finally, if the magnetic field can be stabilized to 10 μG or
less, corresponding to a qubit dephasing error probability per
gate of 7.75 × 10−5, then the Zeeman qubit produced a lower
logical error rate than the hyperfine qubit. There did not appear
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FIG. 5. Comparison of various distances for hyperfine qubits with
the LRC (black) and Zeeman qubits with a magnetic field fluctuations
(red) with a standard deviation of 10 μG per two-qubit gate. The
Zeeman qubit yields lower logical error for codes of the same distance.

to be a significant improvement of the logical error rate past
10 μG for the scattering rates studied. When the field reaches
a certain magnitude of stability, the main source of error comes
from the spontaneous scattering, which is independent of the
magnetic field. Thus the behavior at higher stabilities is more
or less the same.

Using a stability of 10 μG, we looked at the behavior of
different distance toric codes. Figure 5 compares the perfor-
mance of the two qubits using d = 3,5,7 codes. It is clear from
this that, given the 10 μG stability, the Zeeman qubit produces
the smaller logical error. With the addition of the LRC, the
hyperfine qubit performance was suppressed to that of a lower
distance code. The LRC data for d = 5 is nearly identical to
the standard circuit data for d = 3. Similarly, the LRC data
for d = 7 is comparable to that of the standard circuit data
for d = 5. A similar behavior was also found by Fowler [20].
This behavior suggested a single leakage error may act like
two Pauli errors. This is evidence that not all errors are equally
damaging. Some errors (such as leakage) can be more harmful
to QECC compared to others. Not only do these error require
more resources to correct, they suppress the effectiveness of
QECC.

In this sense it is clear that the Zeeman qubit outperforms the
hyperfine qubit as it does not require additional circuitry that
suppresses its performance. However, this, of course, comes
with the caveat that the applied magnetic field be stabilized
to �10 μG. The existence of a Zeeman qubit in a field of
stabilized to 10 nG has already been physically realized [53].

V. CONCLUSIONS

Zeeman qubits are prone to more overall physical errors
resulting from both magnetic field fluctuations and sponta-
neous scattering. When the stability of the applied magnetic
field is above 30 μG, the Zeeman qubit’s logical error rate is

higher than that of the hyperfine qubit. However, when the
magnetic field is stabilized to �10 μG, the logical error rate
is suppressed and is less than that of the hyperfine qubit.

For hyperfine qubits, leakage due to spontaneous scattering
is a prominent source of error. These errors are problematic for
two reasons: (1) when entangled with other qubits via the CNOT

gates they corrupt the other qubit state, and (2) these errors
cannot be corrected using standard QEC schemes and require
the use of LRCs to correct. For standard QEC schemes, a single
physical leakage error has the ability to produce a logical error.
This limits the effectiveness of a QECC.

We have not considered additional physical differences
between the hyperfine and Zeeman qubits involving state
preparation and measurement. We have also not considered
physical methods of leakage reduction. For example, perfect
polarized π light tuned resonant with the S1/2, F = 1 to
P1/2, F = 1 transition will remove population from the leaked
states for the hyperfine qubit. The qubit |1〉 states will have
a small probability (∼10−4) to leak or suffer a bit-flip error
due to off-resonant �F = −1 transitions. In practice, leakage
errors during this procedure will be larger due to imperfect
polarization.

In our study, we also examined the toric code, which may
be less practical than the planar surface code depending on
the layout. Modular architectures could implement the toric
code directly [54], while architectures based on local geometry
are better suited to the surface code [55]. For small devices
implementing the code in a single ion chain [56], either the
torus or plane would work. To implement the leakage reduction
circuit in the plane, additional circuits on the boundary are
necessary to enable the swap.

We have shown that the ideal qubit for near-term experi-
ments may not be the ideal qubit for large-scale fault-tolerant
quantum computation. Our simulation has centered on trapped
ions, but we expect that the design of small quantum systems
and error-corrected quantum systems will yield different re-
quirements on the qubits. In particular, for solid-state qubits
where the qubits are constructed from multiple components,
we expect there will be many interesting tradeoffs between the
fidelities of small systems and the overhead required to reach
a target logical error.
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