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Physical realizability of continuous-time quantum stochastic walks
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Quantum walks are a promising methodology that can be used to both understand and implement quantum
information processing tasks. The quantum stochastic walk is a recently developed framework that combines the
concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum
system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial
intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized
in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and
the physical assumptions underpinning them. We show that general direct implementations would require the
complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening
the benefits of experimental implementation.
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I. INTRODUCTION

With the ever increasing experimental control over single
and complex quantum systems [1–4], harvesting the power
of quantum physics for new technologies is no longer a
far-fetched idea. For a clear example of the quantum world
entering day-to-day life, one needs to look no further than
quantum cryptography [5]. Quantum walks [6] are one of the
most prominent frameworks in which to design and think about
quantum algorithms. Both the continuous- [7] and discrete-
time [8,9] versions have been shown to provide speedup over
classical information processing tasks [10], and are universal
for quantum computing [11,12]. Classical (probabilistic) and
quantum unitary random walks yield different distributions
due to interference effects between different paths the walker
can take on the associated graph network. Combining the
two, a stochastic, continuous-time quantum walk (QSW) can
be defined in an axiomatic manner to include unitary and
nonunitary effects, and include both classical and quantum
walks as limiting cases [13].

While a general purpose quantum computer is still far over
the horizon, intermediary technologies have been emerging
with the promise to breach classical limitations. Within these,
implementations of quantum neural networks, efficient quan-
tum transport, and boson sampling [14] have appeared as
some of the platforms displaying the power of quantum walks.
In many cases, such as excitation transfer in photosynthetic
complexes, or in neural networks, one of the key questions
is the role of coherence in the process efficiency. Therefore,
their description in a QSW formalism is natural [15,16].
More recently, exciting intermediary applications of quantum
technologies have been proposed in artificial intelligence
[17–19], which, at its core, involves an autonomous agent that
can learn from environmental input and react to it, changing
its behavior as more input is received. One such proposal
uses quantum stochastic walks to speed up the learning of the
agent [18].

As a standard quantum walk arises from unitary evo-
lution, which is a special case of reversible evolution, the
associated graphs are undirected. However, the stochastic
processes present in QSWs can give some directionality to
the graph network, at the price of introducing decoherence.
Directionality, in turn, can enhance transport [20], or speed
up memory access in artificial intelligence [18]. In order to
preserve quantum speedup, the nature of the decoherence, i.e.,
its selectivity and rate, needs to be carefully designed.

In this work we investigate the implementation of QSWs
with no active control of the environment or ancillary systems.
We describe the limitations to physical implementations of
such a QSW, and show that only a very restricted set of graphs
can be implemented with quantum systems under the canon-
ical nondegenerate weak-coupling assumptions. Our results
suggest that a large class of master equations often found in
literature cannot be directly engineered in real systems without
either active environmental control, or solving the full system
dynamics prior to its implementation. To our knowledge, this is
the first rigorous demonstration of this claim. It should be noted
that continuous-time, unitary quantum walks have recently
been implemented in different systems, such as photonics
(where efficient quantum circuits were used to implement a
class of graphs [21] and determine vertex centrality [22]) and
NMR (where time-reversal asymmetry lead to near-perfect
transport [23]).

It is important to stress one key difference in our approach.
We focus on the implementation of purpose-built quantum
stochastic walks. It is well known and accepted that nature
provides us with countless processes which can be described
by QSWs. Understanding these can aid not only the under-
standing of nature, such as in transport problems, but also
to find protocols to counter the effects of noise in quantum
technologies. Our focus is on the opposite direction, i.e., one
has the mathematical description of a QSW which performs
a given task and wants to design the coherent and incoherent

2469-9926/2018/97(5)/052132(6) 052132-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.052132&domain=pdf&date_stamp=2018-05-31
https://doi.org/10.1103/PhysRevA.97.052132


TAKETANI, GOVIA, AND WILHELM PHYSICAL REVIEW A 97, 052132 (2018)

processes that implement it. That is to say, our results do not
affect models of physical processes based on QSWs, but only
to algorithm and device designs, such as the implementations
mentioned above [15,16,18].

II. PROBLEM DESCRIPTION

The classical random walk is an important and well studied
model in statistical physics [24] describing the probabilistic
movement of a walker along a graph. System evolution in a
classical random walk is described by the transition probabil-
ities from one node of the graph to all other nodes connected
to it. In a quantum walk the evolution is instead described by
transition probability amplitudes, that is, by unitary evolution
of the quantum state describing the walker. Therefore, the main
difference between classical and quantum walks is coherence.

The generalization encompassing both concepts is the so-
called quantum stochastic walk [13]. Each quantum stochastic
walk is defined by its Lindblad master equation, which can be
generally written as

ρ̇ = −i[Ĥ ,ρ] +
∑

k

γk

(
L̂kρL̂

†
k − 1

2
{L̂†

kL̂k,ρ}
)

, (1)

where ρ denotes the density operator of the walker, L̂k are
the Lindblad operators and γk the associated rates (transition
probabilities) responsible for the incoherent part of the time
evolution, and Ĥ is the Hamiltonian describing the coherent
part of the time evolution. The structure of the graph is encoded
by the associated matrices—nonzero elements of Ĥ encode
coherent edges and those of the Lindblad operators encode
incoherent edges. Equation (1) incorporates both the classical
random walk and the quantum walk as special cases, and also
allows for the study of more general walks that exhibit both
coherent quantum and random classical behavior.

The quantum stochastic walk has been used to develop
quantum algorithms, such as the machine learning algorithms
of Refs. [18,19], and to model transport phenomena in photo-
synthetic complexes [20] and quantum neural networks [15]. In
these, the incoherent evolution conserves the excitation number
of the graph, so that evolution remains in the fixed excitation
subspace when a given number of walkers is present, and the
walkers cannot be lost. If we consider the situation where each
node of the graph is represented by a qubit, then the Lindblad
operator describing incoherent excitation exchange from node
n to node m of the graph is given by L̂k = σ̂−

n σ̂+
m . The full

Lindblad equation is therefore given by

ρ̇ = − i[Ĥ ,ρ]

+
∑
nm

γnm

(
σ̂+

m σ̂−
n ρσ̂+

n σ̂−
m − 1

2
{σ̂+

n σ̂−
m σ̂+

m σ̂−
n ,ρ}

)
, (2)

and it is the physical implementation of this walk that will
be the focus of this work. Note that for a general, potentially
directed walk, we must allow γnm �= γmn.

It is important to notice that Eq. (2) and the following
analysis apply to walks with any number of walkers, as long
as this is a conserved quantity. Let us consider a single-
excitation QSW. In this case only N basis states are required to
describe a walk on N nodes. Therefore, a quantum computer

would require only log2 N qubits, and this can in principle
be efficiently (in memory) simulated on a classical computer
(but not in terms of run time). However, QSWs with more
than one excitation have faster scaling (in number of qubits),
albeit subexponential, and need not have an efficient classical
implementation. Moreover, Eq. (2) is not a specific example
of one QSW, but is a generic description, and in general the
evolution of any particle number conserving fixed-excitation
system can be written in the form of Eq. (2). Therefore, the
results presented here apply to a large class of open quantum
systems, including most QSW-based algorithms found in the
literature. Later in the paper we will also briefly comment
on relaxing the assumption of particle number conservation,
further broadening the applicability of our results.

While approaches to achieve open-system dynamics exist
for few qubits, the physical implementation of the quantum
stochastic walk of Eq. (2) is challenging, as incoherent ex-
citation exchange between many nodes is required, while at
the same time the excitation must be protected from decaying
into the environment. In the following we will show explicitly
that the incoherent evolution of Eq. (2) cannot be built without
active control of the system and environment, or the solution
of the complete unitary dynamics. While it is well known
that master equations built from phenomenological models
can lead to unphysical results [25,26], our work, on the other
hand, focuses on whether a microscopic implementation can
be created to mimic the desired dynamics.

It is important to note that in this work we consider the
quantum stochastic walk as defined in Ref. [13], and not
the open quantum walk of Refs. [27,28], which, despite the
similar nomenclature, is an entirely different framework of
open system evolution involving both internal and positional
degrees of freedom of the walker. The QSW investigated here
follows the paradigm of Ref. [7], where the continuous-time
evolution takes place exclusively on the position space of the
walker, with no internal (coin) space needed.

III. BUILDING A QSW FROM STANDARD
DECOHERENCE MODELS

We consider the standard microscopic derivation of a
Lindblad form master equation in the weak-coupling limit
[29] using the secular approximation. While in principle the
Lindblad equation can also be derived in the singular coupling
limit [29], this situation only plays a minor role in quantum
computing platforms as it requires either strong damping or
high bath temperature for the Markov approximation to be
valid. Even though in the case of a QSW this would only apply
to some degrees of freedom, it is more than challenging to
engineer a quantum system where some degrees of freedom
are coherent and others are strongly damped in a controlled
way.

We assume from here on a system with nondegenerate
transition frequencies. We begin with a Hamiltonian of the
form

Ĥ = ĤS + ĤB + ĤSB, (3)

where ĤS is the self-Hamiltonian of the system, which in our
case describes the graph, and ĤB is the self-Hamiltonian of
the environmental bath, possibly consisting of many distinct
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baths. The term ĤSB describes the system-bath interaction, and
without loss of generality has the form

ĤSB =
∑
k,j

η̃
(j )
k Ŝ

(j )
k ⊗ B̂k, (4)

where Ŝ
(j )
k and B̂k are system and bath operators, respectively,

and each bath k can interact with many local nodes j with a
coupling strength given by η̃

(j )
k . Starting from these, our goal is

to obtain a Lindblad master equation of the form of Eq. (2). In
the following, Latin letters are used for the system local basis
states, {|m〉}, and Greek letters for the system eigenbasis, {|α〉}.
In the local basis, the master equation takes the form [30]

d

dt
ρmn = − i

h̄

∑
m′

Hs,mm′ρm′n + i

h̄

∑
n′

ρmn′Hs,n′n

+
∑
m′n′

Rmn,m′n′ρm′n′ , (5)

where Hs,mm′ ≡ 〈m|Ĥs |m′〉 describes coherent dynamics and
Rmn,m′n′ the incoherent transition rates in the local basis.

Within the secular approximation, fast oscillating terms are
neglected and the transition rates between diagonal elements,
i.e., Rmm,nn ≡ �mn, can be written as

�mn =
∑
α �=α′

Tmn;αα′�αα′ −
∑
αβ

T̃mn;αβ�̃αβ. (6)

Here �αα′ represents the transition rate between eigenstates,
�̃αβ their total dephasing rate, and we have defined T̃mn;αβ ≡
〈m|α〉〈β|m〉〈α|n〉〈n|β〉 and Tmn;αα′ ≡ |〈m|α〉|2|〈α′|n〉|2. All
other contributions are suppressed under the secular approx-
imation, as we have assumed all transition frequencies are
nondegenerate. The interested reader is encouraged to see
Sec. II G of Ref. [30] for a detailed presentation of the
calculations leading to Eq. (6). Let us define

	1 =
∑
α �=α′

Tmn;αα′�αα′ , (7)

	2 =
∑
αβ

T̃mn;αβ�̃αβ, (8)

so that �mn = 	1 − 	2.
As discussed before, Eq. (2) does not allow for incoherent

annihilation of local excitations and so we require that �mn = 0
whenever |m〉 and |n〉 contain a different number of excitations,
while allowing other �mn to be fashioned in accordance with
the desired dynamics. However, as �αα′ , �̃αβ, Tmn;αα′ � 0 the
first sum in Eq. (6), 	1, will be non-negative. Vanishing
transition rates then mean that either both 	1 and 	2 vanish or
that 	1 = 	2. We will now consider these scenarios.

IV. EIGENSTATE TRANSITION RATES

To determine the conditions required to set �mn = 0 we start
by looking at 	1 = 	2 �= 0. Nonzero terms in the sum in 	2

would require the existence of pairs of eigenstates {|α〉,|β〉}
with nonzero overlap with both |m〉 and |n〉; otherwise
T̃mn;αβ = 0. Thus, avoiding transitions between local states
with different excitation numbers, by canceling the two sums of
Eq. (6), would demand eigenstates of the system Hamiltonian

spanning states with different numbers of walkers. However,
as discussed previously, applications of quantum walks usually
rely on number-conserving graphs. As such, T̃mn;αβ = 0 for all
|m〉 and |n〉 with a different number of excitations, and 	2 = 0.
Therefore, 	1 must also vanish so that �mn = 0. We will now
examine the requirements to set 	1 = 0.

The transition rates between eigenstates are given by [30]

�αα′ = 2π

h̄Zb

∑
ωω′

e−Eω′ /(kBT )δ(εα−εα′+Eω−Eω′ )|Vαω,α′ω′ |2,

(9)

where Zb is the bath partition function, kB the Boltzmann
constant, and T the bath temperature. Here εα and |α〉 [Eω and
|φB(ω)〉] are the system (bath) eigenenergies and eigenvectors,
and

Vαω,α′ω′ ≡ 〈α,φB(ω)|ĤSB |α′,φB(ω′)〉. (10)

For the interaction Hamiltonian of Eq. (4) we have

Vαω,α′ω′ = 〈α,φB(ω)|
∑
k,j

η̃
(j )
k Ŝ

(j )
k ⊗ B̂k|α′,φB(ω′)〉

=
∑
k,j

η
(j )
k 〈α|Ŝ(j )

k |α′〉 ≡ 〈α|V (ω,ω′)|α′〉, (11)

where η
(j )
k = η̃

(j )
k 〈φB(ω)|B̂k|φB(ω′)〉.

Let us focus on transitions between local basis states |m〉
and |n〉 with

|m〉 =
∑

α

cα|α〉, |n〉 =
∑
α′

c′
α′ |α′〉. (12)

As �αα′ , Tmn;αα′ � 0, 	1 will vanish only if �αα′ = 0 for all
{α,α′} with cα, c′

α′ �= 0. From Eq. (9) we see that �αα′ = 0
only if Vαω,α′ω′ vanishes for all bath states for which the Dirac
Delta is nonzero. Let us assume that the bath spectrum is
dense, as is already implied by the Markov approximation
being applicable, such that the energy-conservation condition
εα − εα′ + Eω − Eω′ = 0 can always be fulfilled. This means
that, to prevent transitions |m〉 ↔ |n〉, we require that for
all {α,α′} with cα, c′

α′ �= 0, the following statements can be
inferred from one another

〈α|V (ω,ω′)|α′〉 = 0 (13)

=⇒ cαc′
α′ 〈α|V (ω,ω′)|α′〉 = 0 (14)

=⇒
∑
α,α′

cαc′
α′ 〈α|V (ω,ω′)|α′〉 = 0 (15)

=⇒ 〈m|V (ω,ω′)|n〉 = 0. (16)

Of course, the validity of this last equality does not imply
�αα′ = 0, but if it does not hold, then �αα′ �= 0 for at least one
pair {α,α′}.

The naturally occurring coupling of qubit nodes to their
environments can be described by the usual decoherence
maps: qubit decay, dephasing, and depolarization. Below we
investigate these maps as a means to fulfill Eqs. (13)–(16).
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V. SEMILOCAL DECAY INTO THE RESERVOIR

Let us start with qubit decay into their environments, where
Ŝ

(j )
k = σ̂

(j )
x , and work out the above condition, Eq. (16), for

|n〉 = |1〉n (one walker at node n) and |m〉 = |0〉 (vacuum
state). For this,

〈m|V (ω,ω′)|n〉 =
∑
k,j

η
(j )
k 〈0|σ̂ (j )

x |1〉n =
∑

k

η
(n)
k = 0. (17)

As all transitions |1〉n ↔ |0〉 have to be avoided, this must hold
for all n, and so

V (ω,ω′) =
∑
k,j

η
(j )
k σ̂ (j )

x =
∑

j

σ̂ (j )
x

∑
k

η
(j )
k = 0. (18)

This is an effective system-bath decoupling, as
〈α|V (ω,ω′)|α′〉 = 0, which implies �αα′ = 0 for all
eigenstates |α〉, |α′〉. Therefore, if we require that 	1

vanish for all transitions |1〉n ↔ |0〉, it must vanish for all
transitions, regardless of the nodes and number of excitations
involved.

As 	2 vanishes for excitation conserving QSWs, and as we
have just shown, so too must 	1, we argue that local decay
cannot be used to generate any relevant dynamics of the form
of Eq. (2). We note that it is clear that the calculations shown
above can be directly generalized to Ŝ

(j )
k = σ̂

(j )
y .

While transitions from a single-excitation subspace to the
vacuum were used to draw the above conclusion, Eq. (18)
shows that the entire Hilbert space of the qubits is decoupled
from the environment, and not only a specific subspace.
Moreover, the calculations can be readily generalized for any
pair of local states with different number of walkers. Thus
Ŝ

(j )
k = σ̂

(j )
x and Ŝ

(j )
k = σ̂

(j )
y cannot be used to generate QSWs

of the form of Eq. (2) with any number of walkers.

VI. SEMILOCAL RESERVOIR INDUCED DEPHASING

We now look at qubit dephasing, described by coupling
operators Ŝ

(j )
k = σ̂

(j )
z . From the arguments above, we immedi-

ately see that this can in principle be used to generate �αα′ = 0,
as ∑

k,j

η
(j )
k 〈m|σ̂ (j )

z |n〉 = 0 (19)

is trivially fulfilled if |m〉 and |n〉 have different local excitation
numbers. By the same token, in the one-walker subspace, this
is also fulfilled by any two states |1〉m and |1〉n, with m �= n,
which could suggest another effective system-bath decoupling.

However, this does not imply �mn = 0 for such states. As
mentioned before, the validity of Eq. (16) does not imply
Eq. (13), and we require that Eq. (13) be valid for the correct
set of eigenstates to guarantee that �mn = 0 when we want it
to be. If, for example, two eigenstates span both |1〉m and |1〉n,
then it is possible to have �mn �= 0, even though Eq. (16) holds.

Setting �mn to a given value would thus require one to know
all eigenstates with nonzero overlap with states |m〉 and |n〉,
and engineer a reservoir that fulfills Eq. (6) for the desired
�mn. We will further discuss the implication of this conclusion
below, but for now note that while we used single-excitation
states above, the preceding analysis can be straightforwardly
generalized to subspaces of any fixed number of excitations.

The next point is to see if we can cancel local pure
dephasing, which will unequivocally occur in this setting,
while maintaining �mn �= 0 between fixed excitation states of
the nodes. Local pure dephasing is described by the rate

�̃mn ≡ Rmn,mn =
∑
α �=α′

T̃mn;αα′�αα′ −
∑
αβ

Tmn;αβ�̃αβ, (20)

and we desire that this vanish. As we require that �mn �=0, there
must be eigenstates for which T̃mn;αα′ , �αα′ , Tmn;αβ, and �̃αβ �=
0. Therefore, in general, we need to cancel the two sums in
Eq. (20) to obtain �̃mn = 0, which requires an environment
tailored to the graph. While engineering an environment that
is locally compatible with the graph Hamiltonian is in principle
doable, adapting the environment to the global eigenstates of
the graph is equivalent to first solving the problem the quantum
computer is supposed to solve.

The conclusions drawn above show that if the Hamiltonian
of the graph preserves excitation number, then local dephasing
can be used to obtain �mn �= 0 only for transitions that conserve
excitation number, as desired. However, to do so we must first
calculate the eigensystem of HS , then solve a set of coupled
equations that give the appropriate system-bath couplings for
the desired incoherent transition rates and zero local pure
dephasing. This is effectively reservoir engineering, and can
be a considerable undertaking when the graph is of sufficient
size. However, it must be noted that as both dephasing and HS

preserve excitation number, only one block of the Hamiltonian
must be diagonalized, corresponding to the appropriate number
of walkers. This is not true for local decay, which does not
conserve excitation number. As discussed earlier, in the single-
walker case on an N -dimensional graph, this is equivalent to
diagonalizing an N -dimensional effective Hamiltonian, which
can be efficiently done on a classical computer, so the main
challenge would lie on the experimental implementation of
the engineered reservoir.

VII. DEPOLARIZING CHANNEL

A common decoherence model is the depolarizing channel,
described by a coupling of the reservoir to all qubit operators,
σ̂

(j )
x , σ̂

(j )
y , and σ̂

(j )
z . The calculations above can be easily

generalized to show that such coupling to the bath leads to
all the restrictions found for both decay and dephasing. As
expected, this model cannot lead to the desired master equation.

In both the decay and dephasing cases, it is in principle
possible to solve the full set of equations, Eq. (6), and find
parameters for which all the unwanted transitions vanish.
However, this would involve full diagonalization of both ĤS

and ĤB , and possibly (definitely in the case of local decay)
require very intricate bath engineering. In addition, such
techniques would intricately link the coherent and incoherent
transition rates.

One possibility would be to design reservoirs such that for
certain pairs of states, the energy-conservation condition of
Eq. (9) cannot be fulfilled, and thus Eq. (16) would not be
valid. In doing so, one would cancel unwanted transitions by
a carefully designed reservoir spectrum. While such strategies
for reservoir engineering can be useful [31–35], for the appli-
cations usually envisioned for quantum walks their use would
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again rely on the laborious solution of the complete unitary
problem.

We note that other types of Lindblad equations can be
conceived, where local excitation decay plays an important
role, e.g., in an energy transfer process [16]. However, as these
models do not usually include incoherent creation of excita-
tions, implementations of such dynamics would be plagued by
the same issues discussed here, even at zero temperature, as
transitions between system eigenstates that lower the energy
of the system are not guaranteed to conserve excitation number
in the node basis when the coupling between nodes is strong.
More concretely, as a consequence of the secular approxima-
tion the rates �mn and �nm cannot be independently set, so
preventing one such transition while allowing the other would
pose the same requirements as for Eq. (2). By the same token,
the secular approximation prevents the direct implementation
of any directed graph.

VIII. DISCUSSION AND CONCLUSIONS

Master equations in Lindblad form describe the most gen-
eral quantum state evolution that is guaranteed to be completely
positive and trace preserving. However, the set of Lindblad
operators allowed for a given physical system is limited by the
physical interactions naturally occurring. In other words, often
the mathematical formulation of a dynamical system cannot be
realizable in real world applications. We have studied such lim-
itations for an arbitrary, number-conserving, stochastic master
equation, under the usual secular and Markov approximations.
We have discussed the problems of creating such an evolution
using ubiquitous decoherence models, such as pure dephasing,
amplitude damping, and depolarizing channels.

Our results show that microscopic implementation of gen-
eral open system evolution can only be realized if the full
unitary dynamics have been solved and control of the reser-
voir is available. For interesting cases, actual experimental
implementations of quantum stochastic walks are intended to
tackle classically hard problems, which makes solving the full
unitary dynamics of the system infeasible. Moreover, as all

two-body system-bath interactions can be described by the
interaction Hamiltonians studied above, carefully designed
interactions can only circumvent the restrictions found by
properly engineered local reservoir spectra, or for systems
for which the secular approximation does not apply. In the
latter case, this could be done by suitable use of degenerate
transitions; however, engineering these would again require
complete knowledge of the unitary dynamics. Our results
affect any direct implementation of continuous-time, excitation
conserving QSWs. Algorithmic applications of QSWs must
either work within the constraints presented here or use indirect
implementations of the required dynamics. As investigated in
Ref. [36], an alternative approach to circumvent some of these
issues could be to simulate the quantum stochastic walk on
a quantum computer using an adapted quantum trajectories
technique; however, this can only be used for a restricted class
of QSWs.

Although the difficulties in implementing stochastic pro-
cesses and/or reservoir engineering are sometimes recognized,
we present here a careful analysis of the underlying reasons
for these difficulties. However, we note that our results are
only valid within the model described by Eq. (2), and it is not
obvious how they would impact ancilla-based implementations
of continuous-time QSWs [37] or QSWs with time-dependent,
active control [38]. As such, it is likely that in nature there
exist many processes accurately described by QSWs, but
any direct laboratory implementation will require overcoming
the obstacles described here, which can only be practically
achieved by violating one of the assumptions in Sec. III
(two-body interactions, the Born-Markov approximation, or
no ancillary systems).
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