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The common idea behind complexity reduction in physical systems is separation of information into “physically
meaningful” and “safely ignorable.” Here we consider a generic notion of such separation—implemented by
coarse-graining the state space—and address the question of what information is indeed safely ignorable if we
want to reduce the complexity of dynamics. The general condition for reducibility of dynamics under coarse
graining will be presented for stochastic and quantum systems. In the process we develop the quantum notion of
state-space coarse graining that allows us to marginalize selected degrees of freedom. One of our main findings is
that there is a broader class of symmetries, beyond those that are considered by Noether’s theorem, that can play
a role in the reduction of dynamics. Some examples of quantum coarse grainings and the reduction of dynamics
with symmetries will be discussed.
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I. INTRODUCTION

The complexity presented by real physical systems is a fun-
damental challenge that often resists “brute force” calculations
but is occasionally manageable with some analytical insight.
The idea of coarse graining (CG) is a prime example of such
insight, and its use in physics traces back to the Ehrenfests’
work on statistical mechanics [1]. Today, there are many forms
in which CG appears in physics: renormalization methods in
condensed matter [2,3], coarse-grained modeling of biomolec-
ular dynamics [4], and separation of scales in cosmology [5] are
some of the common examples. Nonetheless, there is a com-
mon, system-independent notion of CG that underlines all such
approaches, and that is the abstract notion of state-space coarse
graining (from here on by “CG” we will refer to this abstract
notion). Studying the implications of such generic notion of
CG is therefore essential for our understanding of complexity
reduction in physical systems on a fundamental level.

The notion of CG is an elementary proposition in statistical
mechanics which asserts that if one is unable to distinguish
some states of the system, then the system is described by a
smaller (coarser) state space of distinguishable states. In the
context of thermodynamics, CG is manifested by our inability
to measure microstates of the system, leading to the definition
of macrostates described by variables such as temperature and
pressure. Another common manifestation of CG is the situation
where a composite system has an inaccessible subsystem.
Our inability to distinguish between states that differ only by
the inaccessible part leads to a coarser description which we
account for by marginalizing the inaccessible subsystem.

Despite its origin as a manifestation of practical limitations,
the notion of CG is generic, specified only by the choice of
indistinguishable states. Therefore, we can consider CG as a
generic way to introduce ignorance without relying on any
physical structure of the system.
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The simple classical notion of CG does not translate
naturally into quantum theory and recently there have been
multiple proposals for its extension. In Ref. [6], quantum
CG was implemented by coarse-graining the quasiprobability
(Wigner function) representation of an N -qubit system. The
authors of [7] argue that any dimension-reducing quantum
channel can be interpreted as a quantum CG. In Ref. [8],
CG of the Hilbert space was specified by a set of preferred
states and implemented with the statistical method of principal
component analysis. Finally, in Ref. [9], the quantum notion
of CG was presented as the effective state space perceived by
a constrained observer.

The goal of current work is twofold: (a) establish the
quantum notion of CG by direct analogy with the classical
concept and provide it with operational meaning; (b) develop
the framework for complexity reduction of dynamics with CG
and integrate it with the framework of symmetries. We will
initially work out the main concepts in the more intuitive set-
ting of classical stochastic systems, and then proceed to the
finite-dimensional quantum setting. The stochastic case will
be accompanied by analysis of out-of-equilibrium dynamics
of a 1D Ising chain. In the quantum setting we will discuss
some special cases of the CG map and analyze the dynamics
of a continuous-time quantum walk on a binary tree.

In order to formulate the quantum notion of CG as closely
as possible to the classical case, we will first establish it in
the context of stochastic systems. The key observation here is
that CG can be interpreted as a marginalization of a kind of
subsystem (we will call it a partial subsystem and it generalizes
the idea of a virtual subsystem [10]). This will allow us to
formulate the quantum notion of CG by a direct analogy.
The result is a dimension-reducing map that implements a
quantum CG scheme according to specifications that resemble
the classical choice of indistinguishability. Furthermore, the
specification of quantum CG will be directly related to a
restricted set of observables that give it operational meaning.

The main application we will focus on is reduction of
dynamics. The key problem is identifying such CGs that allow
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FIG. 1. Dynamics of coarse-grained states cannot be generated
unless the coarse-graining scheme is compatible with the original
generator of dynamics.

time evolutions in the reduced state space to be governed by
a reduced generator of dynamics. This can be summarized
with the diagram in Fig. 1. In general, time evolutions in the
reduced state space are not even uniquely determined by initial
conditions, and when they are they may still lose the semigroup
structure necessary for the existence of the generator of
dynamics [11]. Therefore, it is important to understand the
compatibility condition between CG and dynamics that allows
the preservation of semigroup structure in the reduced state
space. We will provide the general version of such condition
in Theorem 1, which applies to both stochastic and quantum
systems, and specialize it to unitary dynamics in Theorem 3.

Symmetries turn out to play an important role in the analysis
of reducibility of dynamics. We will see that symmetrization
of the state space with respect to some group representation
is a special case of CG. Inserting this case into the general
compatibility conditions between CG and dynamics leads to
a broader class of symmetries relevant in the analysis of
dynamical evolutions. The new symmetries are defined in
Theorems 2 (stochastic) and 4 (quantum) by a compatibility
condition with the generator of dynamics. In both stochastic
and quantum cases, the compatibility condition extends the
relevant symmetries beyond those that commute with time
evolutions, as considered by Noether’s theorem.

II. CLASSICAL COARSE GRAINING

Before we formally define CG for discrete stochas-
tic systems, it is worth having a concrete, albeit generic,
example.

Consider a random walk on the graph of Fig. 2(a). The
weights on the edges represent the rate (probability per unit
time) of transitions between connected vertices in both di-
rections. Parameters a, b, c, d, e are all positive and the
rest obey |δ|,|ε| � c

2 , such that all rates are non-negative. If
we coarse-grain this system by choosing not to distinguish
between vertices that appear in the same column, then we
partition it into 3 blocks associated with the macrostates:

u1 = {v1}, u2 = {v2,v3}, u3 = {v4,v5,v6}.

The question now is what values can we assign, if any, to the
transition rates between the macrostates.

FIG. 2. (a) Random walk graph with transition rates specified
on the edges. (b) Coarse-grained graph where the vertices in the
same column are blocked together. Effective transition rates between
columns are specified on directed edges.

If we consider a single vertex, say v2, and sum all the
transition rates from v2 to the column on the right, we get∑

v∈u3

r(v2 → v) = 3c.

We will get the same value if instead of v2 we take v3.
Therefore, the rate of transitions from any vertex in the middle
column to the right column is 3c. This unambiguously defines
the rate of transition from the middle column to the right
column, without reference to any particular vertex. Similarly,
the rate of transitions from any vertex in the right column
to the middle column is 2c. We can repeat this argument for
transitions between the left and the middle columns, yielding
the rates of 2a and a in the opposing directions. We should also
note that there are no direct transitions between the leftmost
and the rightmost columns. Therefore, transition rates between
all three columns are well defined and shown in Fig. 2(b).

The fact that we can get a well-defined random walk in the
reduced state space is not trivial. Such reduction of dynamics is
only possible when the rate of transitions between the chosen
macrostates is unambiguous. Choosing a slightly different CG,
where the macrostates are

u1 = {v1,v2,v3}, u2 = {v4,v5,v6},
results in undefined transition rates. That is because the rate of
transitions from v1 to any vertex in u2 is 0, but from v2 or v3 it
is 3c. Given that the initial macrostate is u1, it is impossible to
tell what the initial rate of transitions to u2 will be, because
it depends on where inside u1 it actually starts. Similarly,
the original choice of CG by the columns would not work if
we slightly change the dynamics by altering the transition rate
between v1 and v2 to ã �= a. Now, it is not possible to tell the
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rate of transitions from the middle column to the left because
it depends on the internal state of the column.

This example demonstrates the fact that it may be possible
to generate time evolutions in the coarse-grained state space
but the original dynamics and the CG have to be compatible.
Such compatibility does not imply that the rates of transition
must be uniform; in general all 6 rates between vertices in
the middle and the right columns in Fig. 2(a) can be different.
We will prove that the necessary and sufficient condition for
such compatibility in Markovian stochastic systems is what we
already noted: the total rate of transitions from any state in one
block to another should be constant.

A. Formal definition

Classical indistinguishability of states can be specified by
an equivalence relation that partitions the state space into
equivalence classes of macrostates. If we consider the system
with a discrete and finite state space A := {αi}|A|

i=1, we can

specify its CG by the set B := {βk}|B|
k=1 of disjoint subsets

of A that partition A. If we order the set A consistently
with the partition we can identify blocks of indices bk :=
{ik,ik + 1, . . .} such that βk := {αi}i∈bk

. The system is said to
be in a macrostate βk if it is in any of the microstates αi ∈ βk .

Probabilistic microstates (macrostates) of the system live
in the vector space RA (RB) of real-valued functions p from
A (B) to R which, if positive and normalized, are interpreted
as probability distributions over the states A (B). By definition
of the macrostates, the probability of finding the system in a
macrostate β is the probability of finding it in any microstate
α ∈ β, that is,

pB(β) =
∑
α∈β

pA(α). (1)

Since RA (RB) is just an |A| (|B|) dimensional vector space,
we can express relation (1) as a vector equation pB = MpA
and M is a |B| × |A| block diagonal matrix of the form

M :=

⎛
⎜⎝1 · · · 1

. . .
1 · · · 1

⎞
⎟⎠, (2)

where the kth block is a 1 × |βk| row-vector filled with 1’s.
M acts by summing the fine-grained probability distribution
in each block of microstates into a single value, which is the
total probability of finding the system in any microstate of that
block. We will call such M a coarse-graining matrix.

Any CG matrix M admits the right inverse M+ such that
MM+ = I is an identity on RB. It is easy to check that it is
the |A| × |B| block diagonal matrix of the form

M+ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|β1|−1

...
|β1|−1

. . .
|β|B||−1

...
|β|B||−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where the kth block is a |βk| × 1 column-vector filled with
|βk|−1. This is the Moore-Penrose pseudoinverse [12] of M ,
which means that P := M+M is an orthogonal projection
on the subspace (kerM)⊥ ⊆ RA. Moreover, restriction of M

to (kerM)⊥ is an isomorphism M : (kerM)⊥ −→ im M and
since (kerM)⊥ = im P and im M = RB it follows that im P ∼=
RB. The isomorphism between the image of P and the image
of M implies that P erases the same fine-grained information
as M . We will call P a coarse-graining projection which has
the block diagonal form

P :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|β1|−1 . . . |β1|−1

...
. . .

...
|β1|−1 . . . |β1|−1

. . .
|β|B||−1 . . . |β|B||−1

...
. . .

...
|β|B||−1 . . . |β|B||−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4)

where the kth block is a |βk| × |βk| matrix filled with |βk|−1.
P acts by averaging over the probabilities in each block. The
advantage of P over M is that P leaves the result of CG in the
subspace of RA, which allows a direct comparison of states
before and after CG.

B. Compatibility with dynamics

In this section we show how this notion of CG allows us
to study the dynamics of some select properties of the system
without the need to understand the dynamics of all its degrees of
freedom. We will focus on continuous-time Markov processes
(CTMPs) because they are common in classical models and
are closely related to quantum dynamics.

The idea is that given a dynamical system we can coarse-
grain it and derive dynamical rules that generate consistent
time evolutions in the coarse-grained state space (see Fig. 1).
We will say that CG is compatible with dynamics if there
is a generator that governs time evolutions in the reduced
state space. The main question that we address here is how
to recognize compatible CGs and how to derive the reduced
generator.

The dynamical rules of CTMPs can be specified with a
transition rate matrix Q such that [13]

d

dt
pA = QpA (5)

for pA ∈ RA. The off-diagonal elements Qij specify the rate
of transitions between states αj �−→ αi while the diagonal
elements Qjj := −∑

i �=j Qij specify the total rate of transi-
tions out of states αj . For an initial probabilistic state pA(0),
the subsequent states are given by the solutions of Eq. (5)
as pA(t) = etQpA(0), where Q generates time evolutions
similarly to the Hamiltonian in quantum mechanics (strictly
speaking Q is closer in nature to the Lindblad operator rather
than the Hamiltonian).

Now, consider a CG B of A represented by the matrix M :
RA −→ RB. The coarse-grained probabilistic state evolves
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according to pB(t) := MpA(t) and a priori there is no reason to
assume that it also evolves as a CTMP. However, this is exactly
what we require from the compatibility of CG with dynamics
in order to be able to generate time evolutions in the reduced
state space. The following theorem provides the necessary and
sufficient conditions for it to be true.

Theorem 1. Let Q be a transition rate matrix as in Eq. (5),
let M be a coarse-graining matrix as in Eq. (2), and let P be
a coarse-graining projection as in Eq. (4). Then, the coarse-
grained state pB := MpA evolves as a CTMP for all pA if and
only if

PQ = PQP. (6)

The reduced transition rate matrix Q̃ such that d
dt

pB = Q̃ pB

is then given by Q̃ := MQM+.
Proof. If PQ = PQP then multiplying it by M on the left

we get MQ = MQM+M and therefore

d

dt
pB = M

d

dt
pA = MQpA = Q̃pB,

where Q̃ = MQM+. This proves the “if” direction.

On the other hand if pB evolves as a CTMP then there is a Q̃

such that d
dt

pB = Q̃ pB. Therefore

MQpA = M
d

dt
pA = d

dt
pB = Q̃ pB = Q̃MpA.

Since it has to hold for all pA we are left with MQ = Q̃M .
Multiplying it by M+ from the right we get Q̃ = MQM+. If
we substitute Q̃ back into MQ = Q̃M and multiply by M+
from the left we get PQ = PQP . Hence the “only if.” �

Thus, for example, in the case of random walk of Fig. 2(a)
with CG by the columns, we have the CG matrix

M :=
⎛
⎝1

1 1
1 1 1

⎞
⎠,

M+ :=

⎛
⎜⎜⎜⎜⎜⎝

1
1/2
1/2

1/3
1/3
1/3

⎞
⎟⎟⎟⎟⎟⎠,

and the transition rate matrix (diagonal elements are just the
negatives of the column’s sum)

Q :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q11 a a 0 0 0

a Q22 b c − δ c − ε c + δ + ε

a b Q33 c + δ c + ε c − δ − ε

0 c − δ c + δ Q44 d 0

0 c − ε c + ε d Q55 e

0 c + δ + ε c − δ − ε 0 e Q66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is straightforward to check that the compatibility condition
(6) holds and the reduced transition rate matrix is

Q̃ = MQM+ =
⎛
⎝−2a a 0

2a −3c − a 2c

0 3c −2c

⎞
⎠.

This matrix generates the random walk of Fig. 2(b).
The compatibility condition (6) has an intuitive interpreta-

tion. If we understand the image of P to be the subspace of
coarse-grained states, then the image of P ⊥ := I − P must be
the subspace containing fine-grained information. The com-
patibility condition PQ = PQP is equivalent to PQP ⊥ = 0
which means that Q does not map fine-grained information
into the coarse-grained subspace. Then, time evolution of the
coarse-grained state cannot be affected by the fine-grained
details. This is a sensible requirement because if fine-grained
details could affect coarse-grained evolution, it would not
be possible to throw them away and expect to tell how the
coarse-grained state will evolve.

In more concrete terms, what the compatibility condition
ensures is that the rate of transitions between macrostates
is a well-defined property. To see that, let us try to derive
the rate of transition between macrostates from the original
rates between microstates. The total rate of transitions from a

microstate αi ∈ βk to any microstate in βk′ (k �= k′) is given
by r(αi �−→ βk′) := ∑

j∈bk′ Qji . If the value of r(αi �−→ βk′)
varies with different αi ∈ βk then knowledge of the initial
macrostate βk is not enough to tell the rate of transitions to
βk′ . But if r(αi �−→ βk′) is the same for all αi ∈ βk then it
does not matter in which microstate of βk we start; the rate
of transitions from βk to βk′ is given by r(αi �−→ βk′) for any
αi ∈ βk . Therefore, the notion of rate of transitions between
macrostates is meaningless unless the rates r(αi �−→ βk′) are
uniform over αi ∈ βk for all βk and βk′ . The following corollary
to Theorem 1 formalizes this argument.

Corollary 1. Let Q be a transition rate matrix and

r(αi �−→ βk′) :=
∑
j∈bk′

Qji

the total rate of transitions from αi ∈ βk to βk′ . Then the com-
patibility conditionPQ = PQP is equivalent to r(αi �−→ βk′)
being constant over the subset βk , for all βk and βk′ .

Proof. By definition of P [Eq. (4)] we calculate the matrix
elements of PQ to be

(PQ)i ′i =
|A|∑
j=1

Pi ′jQji = 1

|βk′ |
∑
j∈bk′

Qji = r(αi �−→ βk′)

|βk′ | ,
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where k′ is the index of the block such that i ′ ∈ bk′ . Similarly
the matrix elements of PQP are

(PQP )i ′i =
|A|∑
j=1

(PQ)i ′jPji = 1

|βk|
∑
j∈bk

(PQ)i ′j

= 1

|βk||βk′ |
∑
j∈bk

r(αj �−→ βk′),

where k is the index of the block such that i ∈ bk . Element-
wise, the condition PQ = PQP then reads

r(αi �−→ βk′) = 1

|βk|
∑
j∈bk

r(αj �−→ βk′).

The right-hand side depends on i only through the block index
k; therefore this condition states that r(αi �−→ βk′) is constant
for all αi ∈ βk .

On the other hand if r(αi �−→ βk′) is constant for all αi ∈ βk ,
then

(PQP )i ′i = 1

|βk||βk′ |
∑
j∈bk

r(αj �−→ βk′)

= 1

|βk′ | r(αi �−→ βk′) = (PQ)i ′i .

�
It is worth pointing out the compatibility condition of

Corollary 1 is the defining property of an equitable partition of
a weighted graph specified by Q [14]. The problem of finding
a CG compatible with dynamics is therefore equivalent to the
problem of finding an equitable partition of the weighted graph
specified by Q.

C. Coarse graining and symmetries

So far we have specified CG with the choice of equivalence
classes that determine indistinguishable states. In the following
we show how CG can also be specified with group representa-
tions.

Proposition 1. Let G be a group that permutes elements
of the state space A, and let the permutation matrices D(G)
be its representation on RA. Then, the symmetrizer P :=
|G|−1 ∑

g∈G D(g) is a coarse-graining projection associated
with partition of A into orbits of G.

Proof. To show that P is a CG projection for any G it is
sufficient to show that it acts as a CG projection on any basis
element α̂ ∈ RA (for clarity we omit the element’s index). For
a given α̂ we define the subgroup that stabilizes it as Gα :=
{g ∈ G | g(α) = α}. Since cosets of Gα form a partition of G

we can write

P = |G|−1
∑

C∈G/Ga

∑
g∈C

D(g),

where C runs over all distinct cosets. If g1,g2 ∈ C belong to the
same coset of Gα then clearly g1(α) = g2(α). On the other hand
if g1, g2 belong to different cosets then g1(α) = g2(α) implies
g−1

1 g2 ∈ Gα so g2 = g1h for some h ∈ Gα but that contradicts
their residence in different cosets; therefore g1(α) �= g2(α).
Applying these rules and denoting with G(α) the orbit of α,

we get

P α̂ = |G|−1
∑

C∈G/Ga

∑
g∈C

D(g)α̂

= |Ga|/|G|
∑

C∈G/Ga

D(g ∈ C)α̂

= |Ga|/|G|
∑

α′∈G(α)

α̂′.

It is a well-known consequence of the orbit-stabilizer theorem
[15] that |G|/|Ga| = |G(α)|, so in fact

P α̂ = |G(α)|−1
∑

α′∈G(α)

α̂′.

Recalling the general form of a CG projection (4), we see that
P acts on α̂ as the CG projection constructed from partition of
A into orbits of G. �

Thus, any group G acting on A specifies a CG associated
with the orbits of G. Then, if we treat symmetrizations as a
special case of CG, we can specialize the general compatibility
condition of Theorem 1 to this case and express it in terms of
group representations.

Theorem 2. Let

P = |G|−1
∑
g∈G

D(g) (7)

be a symmetrizer with respect to a group G, and let Q be a
transition rate matrix. Then, the compatibility condition PQ =
PQP is equivalent to

P
∑
g∈G

[D(g),Q] = 0. (8)

If in addition Q = QT , then it simplifies to∑
g∈G

[D(g),Q] = 0. (9)

Proof. By definition (7) of P and the fact that P = P 2 we
get

PQP = |G|−2
∑

g,g′∈G

D(g)QD(g′)

= |G|−2
∑

g,g′∈G

D(g)(D(g′)Q − [D(g′),Q])

=
⎛
⎝|G|−1

∑
g∈G

D(g)

⎞
⎠
⎛
⎝|G|−1

∑
g′∈G

D(g′)

⎞
⎠Q

−|G|−1

⎛
⎝|G|−1

∑
g∈G

D(g)

⎞
⎠
⎛
⎝∑

g′∈G

[D(g′),Q]

⎞
⎠

= PQ − |G|−1P

⎛
⎝∑

g′∈G

[D(g′),Q]

⎞
⎠,

hence the equivalence to (8). If in addition Q = QT , then
PQ = PQP implies

QP = (PQ)T = (PQP )T = PQP = PQ,
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that is [P,Q] = 0. And also [P,Q] = 0 implies PQ = PQP

hence the equivalence to (9). �
As was pointed out after Corollary 1, CGs that are com-

patible with dynamics form an equitable partition of the graph
specified by the weighted adjacency matrix Q. In Ref. [14],
graph automorphism symmetries (permutations of vertices that
commute with the weighted adjacency matrix Q) were used
to single out equitable partitions with their orbits. Theorem 2
confirms this, as Eq. (8) trivially holds for all groups that satisfy
[D(g),Q] = 0 for all g. However, Theorem 2 (together with
Corollary 1) implies that there is a broader set of symmetries,
beyond automorphisms, that specify equitable partitions with
their orbits. These are the groups that comply with Eq. (8)
or (9).

D. Example: Glauber-Ising model

The system that we study here is a 1D classical spin lattice
with periodic boundary conditions, i.e., an Ising spin chain. We
will see that compatible CGs of this system are not so obvious
(and the obvious ones are not compatible). We will overcome
this difficulty by putting to use the considerations of symmetry
developed in the previous section.

Each of the sites in the Ising chain can be in one of two
states {±1}. A microstate of the lattice of length N is an
N -component binary vector σ ∈ {±1}N , and the state space
consists of 2N microstates {σi}2N

i=1. The internal energy of a
microstate σ is

E(σ ) = −J

N∑
x=1

σ (x)σ (x+1),

where J > 0 is the local interaction energy, and σ (x) is the sign
of site x.

The Glauber-Ising model, proposed by Glauber in Ref. [16],
is a model of dynamics for an Ising spin chain that interacts
thermally with its environment. According to the model, the
microstate of the system evolves by transitions caused by single
spin flips. The transition rate depends on whether the energy
increases, decreases, or stays the same:

r(σ �−→ σ ′) :=
⎧⎨
⎩

1 − γ (T ) : E(σ ′) > E(σ ),
1 : E(σ ′) = E(σ ),
1 + γ (T ) : E(σ ′) < E(σ ),

where γ (T ) is a positive, temperature-dependent parameter.
This model simply states that transitions that increase E

happen at a slower rate than the ones that decrease E, and
this rate difference is additively modified by the temperature
through γ (T ). All three rates are in units that normalize the
middle rate to 1. The parameter γ (T ) can then be derived by
demanding detailed balance condition in equilibrium, which
leads to γ (T ) = tanh [ 2J

T
] (see [16] for details). With the

rate function r(σ �−→ σ ′) we can in principle construct the
2N × 2N transition rate matrix Q.

In order to understand how this dynamical system can be
coarse-grained, we look at the case of N = 3 first. Instead of
writing down the matrix Q explicitly, we describe the dynamics
as a random walk on the graph depicted in Fig. 3(a). The signs
± stand for ±1 and transition rates are explicitly specified
only where they differ from 1. The total transition rate from

FIG. 3. (a) Random walk graph for a 3-spin Ising chain. Glauber’s
transition rates are explicitly specified on the edges only where
they differ from 1. Transition rate 1 is implied for unlabeled edges.
(b) Coarse graining of the state space of 3-spin Ising chain with respect
to the total number of domains d . Effective transition rates between
states with d = 0 and d = 1 specified on the edges.

each of the ground states (+ + +), (− − −), to the bulk of
excited states (the ones in the middle) sum to 3(1 − γ ). In the
opposite direction, from excited to the ground, there is only one
transition for each of the excited states, and it is at the same rate
1 + γ . Corollary 1 then implies that coarse graining this system
with respect to the energy levels is compatible with dynamics.
Instead of energy we can count the number of domains d

(defined as half the number of intervals in the chain that differ
in sign from their surroundings) which is a proxy variable for
energy as seen from the relation E = −J (N − 4d). In Fig. 3(b)
we see the reduced state space, coarse-grained by blocking
together microstates that have the same energy or number of
domains.

The reduced transition rate matrix

Q̃ =
(−3(1 − γ ) 1 + γ

3(1 − γ ) −1 − γ

)
generates a random walk in the state space of the number-of-
domains variable d ∈ {0,1}. The eigenvalues of Q̃ are λ0 = 0
and λ1 = 2(γ − 2) which correspond to the eigenvectors

v0 = 1

2(2 − γ )

(
1 + γ

3(1 − γ )

)
, v1 =

(−1/2
1/2

)
.

Since etQ̃v0 = v0, the vector v0 is the steady or equilibrium
state of the system, and its components are the probabilities of
finding the system in one of the energy levels when the system
is in equilibrium. So, for example, the probability of finding
this system in the excited state in equilibrium is

Pr(E = J ) = 3
(
1 − tanh

[
2J
T

])
2
(
2 − tanh

[
2J
T

]) = 3

3 + e4J/T
.

This expression agrees with the standard calculation of Boltz-
mann’s factor and partition function.

In addition to recovering equilibrium properties from Q̃, we
can also learn something about out-of-equilibrium behavior.
Since v0 is a normalized probability vector, we can always add
to it a fraction of v1 to get any other normalized probability
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vector. So, any initial state pin can be written as v0 + rv1,
where r is a real parameter. Its time evolution is then given by

p(t) = etQ̃pin = v0 + retλ1v1.

Note that λ1 < −2 because γ = tanh [ 2J
T

] < 1; therefore every
initial state relaxes to equilibrium v0 by exponentially sup-
pressing v1. This means that the characteristic relaxation time
for this system is

− 1

λ1
= − 1

2(γ − 2)
= 1

2

(
1 + e4J/T

3 + e4J/T

)
.

Even though the intuitive CG with respect to the energy
levels is compatible with dynamics for N = 3, it is not true
in general (see the case of N = 4 below). In the general case
we will look for a group that complies with the compatibility
condition of Theorem 2, and take its orbits to be the compatible
CG blocks.

From the N = 3 case we see that the group Z3 of lattice
translations generates orbits that coincide with columns in
Fig. 3(a). If we complement this group with Z2 of global spin
flips then Z3 × Z2 generates 2 orbits that coincide with the
blocks of d = 0 and d = 1. Since these blocks are compatible
with dynamics, we conjecture that for general N the orbits of
G = ZN × Z2 (translations and global flips) are compatible
with dynamics.

To prove that, we note that the transition rate matrix can be
decomposed as a sum of N matrices Q = ∑N

x=1 Q(x), where
each Q(x) generates transitions restricted to flips of site x. If
D(x) represents the action of lattice translations by x sites, and
D(x)D(y) = D(x + y), then we get

D(y)Q(x) = D(y)Q(x)D(−y)D(y) = Q(y+x)D(y).

Therefore,

D(y)Q =
∑

x∈ZN

Q(y+x)D(y) = QD(y),

that is [D(y),Q] = 0. Each local spin flip generator Q(x) also
commutes with the global spin flip action D(f ); therefore
[D(g),Q] = 0 for all g ∈ G. Since G is a symmetry group
of Q, it satisfies the compatibility condition of Theorem 2,
and we can coarse-grain this dynamical system by blocking
together the states that belong to the same orbit of G.

For N = 4 the orbits of G are

d = 0
{
orbit 1

{
(+ + ++) (− − −−),

d = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

orbit 2

⎧⎪⎨
⎪⎩

(+ − −−) (− + ++),
(− + −−) (+ − ++),
(− − +−) (+ + −+),
(− − −+) (+ + +−),

orbit 3

{
(+ + −−) (− − ++),
(− + +−) (+ − −+),

d = 2
{
orbit 4

{
(+ − +−) (− + −+),

so orbit 1 coincides with the lowest energy level, orbits 2 and 3
together form the first excited level, and orbit 4 coincides with
the second excited level. Transition rates between the orbits are
shown in Fig. 4. Note that the rate of transitions from orbit 2 to

FIG. 4. Random walk graph for a 4-spin state space coarse-
grained with respect to orbits of translations and global spin flips.

the neighboring energy levels is 1 ± γ but from orbit 3 it is 0,
because no single spin flip can change the energy. In general,
the total transition rates to the neighboring energy levels are not
constant over the states in each energy level. That is why CG
by energy levels is not compatible with dynamics. For N > 3
energy levels happen to be too coarse to be compatible, but the
orbits of G are fine enough.

It is curious to note that in the thermodynamic limit N −→
∞, each energy level consists almost entirely of states that
have the same total transition rate to the neighboring levels.
The nonuniformity of rates over the energy levels is then
suppressed, and transition rates between energy levels can be
approximately defined, but this analysis is beyond our scope
here.

E. Partial subsystems and bipartitions

The concept of a partial subsystem that we will define here
is a natural by-product of the CG discussion. It follows from the
observation that for a bipartite system, marginalization of one
of its subsystems is a special case of CG. If so, it is natural to
ask whether any CG can be viewed as marginalization of some
kind of subsystem. The answer is yes if one is willing to stretch
the meaning of subsystem. This leads us to the definition of a
partial subsystem. In the context of classical CG it is hardly
worth the effort but the goal here is to prepare the ground for
quantum CG. The raw notion of CG does not land naturally in
quantum theory, but it easily sneaks in as marginalization of a
partial subsystem.

Consider the state space of a composite system AB that is
the Cartesian product C := A × B, where A := {αi}|A|

i=1 and

B := {βk}|B|
k=1 are the state spaces of individual subsystems

(now both αi and βk refer to microstates). Probabilistic states
pC live in the vector space RC, and marginalization of subsys-
tem A is given by the map M : RA×B −→ RB which accounts
for our ignorance of system A. The map M is defined by the
relation

pB(β) =
∑
α∈A

pC(α × β).

The resemblance between this equation and Eq. (1) is obvious.
If we partition C into blocks {α × β}α∈A for each β ∈ B, and
slightly abuse the notation by also referring to each block with
β, then CG as defined by Eq. (1) marginalizes A, and the action
of CG matrix M is identical to that of map M.

Marginalization is a special case of CG where all blocks
are of the same size. In general this is not the case, but if we
happen to partition a system (not necessarily composite) into
blocks of equal size, we can think about it as a composite
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TABLE I. Bipartition table. Arrows point toward the associated
states of partial subsystems.

system of two virtual subsystems. Consider the state space
C := {γik} where the indices i = 1 . . . n and k = 1 . . . m define
a partition of C into m blocks of n elements each. We then can
imagine systems A := {αi}ni=1 and B := {βk}mk=1 and identify
the states γik ≡ αi × βk so C ∼= A × B. Such subsystems are
commonly known as virtual subsystems. Coarse graining with
respect to this partition is effectively a marginalization of the
virtual subsystem A.

In general we can specify any partition of C := {γik} by
assignment of indices i,k, where k refers to the block and
i to the relative position of elements inside the block. It is
convenient to order the blocks by descending block size and
arrange the elements {γik} into what we call a bipartition table
(Table I). The columns of this table correspond to CG blocks. If
all blocks are of the same size, then the table is rectangular and
the set of columns (rows) is associated with states of the virtual
subsystems B (A), as indicated by the arrows. When the blocks
are not all of the same size, the ranges of indices i,k are not
independent from each other. If k = 1 . . . m for a fixed m, then
i = 1 . . . hk where hk is the size of block k (height of column
k). We can always invert the dependence so if i = 1 . . . n,
then k = 1 . . . wi (width of row i). Even when the table is
not rectangular, we can still associate the columns (rows) with
states of fictitious system B (A), and identify γik ≡ αi × βk

as composite states. We call such fictitious subsystems partial
subsystems. What sets them apart from virtual subsystems is
the fact that certain combinations of states are not allowed. The
injective map V : C −→ A × B, which assigns elements of C
into the bipartition table, will be called a partial bipartition
map (the bipartition is not partial if V is bijective).

Marginalization of a partial subsystem is essentially the
same procedure as marginalization of the nonpartial subsys-
tem. We sum the probabilities over the rows or the columns
of the bipartition table and assign them to reduced states.
The fact that some combinations of composite states are not
allowed simply means that they contribute nothing to the sums.
To make this more rigorous, consider the partial bipartition
map V : C −→ A × B. By applying V on the corresponding
basis of RC we get the isomorphic embedding V : RC −→
RA×B. The map V embeds probabilistic states of C into a
subspace of probabilistic states of AB, spanned by the allowed
combinations of states. Marginalizing with M : RA×B −→
RB after embedding with V defines the marginalization of the

partial subsystem A:

MV : RC −→ RB.

Intuitively, the map V completes the missing blocks of the
bipartition table to make it rectangular and assigns zero prob-
ability to the missing states. Then M sums the probabilities
over the columns and assigns them to the associated states of
B. Thus, MV sums the probabilities over the columns of the
bipartition table which means that MV implements a CG of
C according to the blocks defined by the columns of the table.

To recap, every system admits a partial bipartition into
partial subsystems. Partial bipartition is defined by the shape
of the bipartition table and the assignment of elements into
it. Columns (rows) of the bipartition table are associated with
states of partial subsystem B (A). We saw that marginalization
of a partial subsystem is equivalent to CG over the columns.
The fact that every CG is a marginalization of a partial subsys-
tem is easy to see: just arrange the CG blocks into columns of a
bipartition table with arbitrary ordering inside the blocks. Thus,
CG can be equivalently defined as marginalization of a partial
subsystem. This definition has a bit of extra structure that is
not strictly necessary for classical CG. The extra structure is
in the bipartition table which assigns order to elements inside
the blocks (columns) and it is irrelevant if we simply sum over
them.

It turns out that in the quantum version of marginalization—
the partial trace—this ordering makes a difference. This also
explains why we could not directly export CG into quantum
theory from the basic definitions of Sec. II A. While partition
into blocks provides enough structure to specify a CG for
the classical state space, we need the extra structure of the
bipartition table to specify a CG for the quantum state space.

III. QUANTUM COARSE GRAINING

The fundamental feature of quantum systems that sets them
apart from their classical analogs is the superposition principle
[17]. Therefore, for a notion of coarse graining to be truly
“quantum,” we must embrace the superposition principle and
allow the possibility of reducing superpositions of microstates
into superpositions of macrostates. Section III A is dedicated
to the formal definition of such notion.

Although the definition of quantum CG (QCG) is quite
simple, the interpretation requires some effort. We will show
that just like in the classical case, QCG is a manifestation
of restricted access to observables. The main technical result
behind it is the definition of bipartition operators. In Sec. III B
we will demonstrate this formalism in some special cases.

Section III C addresses the question of reducibility of dy-
namics. The problem is formulated in terms of a compatibility
condition between a QCG scheme and a generator of dynamics.
We will see that the general condition for compatibility can
be derived and presented in exactly the same form as in the
classical case. This result is then specialized to unitary quantum
dynamics by Theorem 3.

In Sec. III D we focus on symmetries and the associated
QCGs. Symmetry considerations have been fundamental in the
development of many important ideas in physics: from Emmy
Noether’s seminal work [18] relating conserved quantities to
the symmetries of dynamics, to the modern applications in
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subjects ranging from crystallography [19] to error avoidance
strategies in quantum computers [20]. Many of the applications
of symmetries, including Noether’s theorem, are concerned
with their implications for dynamical processes. Therefore,
the analysis of reducibility of dynamics would not be complete
without introducing symmetry considerations. The main result
that we derive in that regard is Theorem 4, where we specialize
the compatibility condition to QCGs by symmetrization. This
compatibility condition turns out to be a relaxed version of
symmetry of dynamics, where the commutator [U (g),H ] may
not vanish, but it has to belong to the operator algebra spanned
by the group.

We end this section with an example of continuous-time
quantum walk on a tree. It shows that symmetries can be used
to reduce the dynamics even when they do not commute with
the Hamiltonian.

A. Formal definitions

The difficulty with direct adoption of the classical notion of
CG, in the quantum setting, arises because the classical notion
is ignorant of the possibility of superpositions between the
states. Consider a finite-dimensional Hilbert space as a quan-
tized version of the classical state space, where microstates
αi were promoted to orthonormal basis |αi〉. If we partition
the microstates into blocks {|αi〉}i∈b, it may still make sense
to say that all states |ψb〉 that belong to the span of block
b are indistinguishable and should be reduced as |ψb〉 �−→
|b〉. However, if we look at superpositions such as |ψ〉 =
|ψb〉 + |ψb′ 〉, this CG reduction is not consistently defined.
If we naively suggest that |ψ〉 �−→ |b〉 + |b′〉, then we can
always write the same state differently, |ψ〉 = eiϕ |ψ̃b〉 + |ψb′ 〉
where |ψ̃b〉 := e−iϕ|ψb〉, and get a different reduced state
|ψ〉 �−→ eiϕ|b〉 + |b′〉.

Reduction of coherence terms between the blocks is simply
undefined by the classical CG procedure. If we insist on using
the classical notion as it is, the only sensible approach is to
discard the coherence terms altogether. That is, the reduction of
|ψ〉 = |ψb〉 + |ψb′ 〉 should be |ψ〉 �−→ |b〉〈b| + |b′〉〈b′|. Such
CG of quantum states is consistently defined, but it is not truly
quantum.

For the truly quantum notion of CG we have to consistently
account for coherence terms between the CG blocks. In order
to do that, we will adopt a different perspective. Recall that
classical CG was eventually understood as marginalization of
a (partial) subsystem. This observation is key, because it shifts
the focus from blocks and states to subsystems. Thus, quantum
coarse graining can be introduced as quantum marginaliza-
tion of a partial subsystem. Since the notion of quantum
marginalization—the partial trace map—already exists, all we
have left is to identify partial subsystems in the quantum
setting.

It should be noted that mathematically equivalent defini-
tions of the QCG map have been presented in Refs. [9] and
[7]. Our definition is different in that it is derived by a direct
analogy with the classical case. Furthermore, we will expand
on the formal structure of QCG by identifying bipartition
operators as key mathematical objects and bipartition tables
as their graphical representation. We will also provide QCG
with operational meaning.

1. Partial subsystems and bipartitions

Consider a finite-dimensional physical Hilbert spaceH. The
choice of orthonormal basis {|γik〉} and their arrangement into
a bipartition table (Table I) constitutes a partial bipartition
of H. The auxiliary Hilbert space HA (HB) of the partial
subsystem A (B) is formally defined as the span of row kets
{|αi〉}ni=1 (column kets {|βk〉}mk=1) as illustrated in Table I. The
physical Hilbert space H can now be isometrically embedded
into the subspace of HAB := HA ⊗ HB with the map V :
|γi,k〉 �−→ |αi〉|βk〉. For every |γi,k〉 ∈ H there is a matching
pair |αi〉|βk〉 ∈ HAB , but not vice versa. The extra pairs in
HAB that do not have a match in H correspond to the missing
elements of the bipartition table that would complete it to a
rectangular form. The case where the chosen bipartition table
ofH is rectangular, soH ∼= HAB , is the case whereHA andHB

were identified by [10] as virtual subsystems. The construction
here is more general; therefore we refer to such subsystems as
partial subsystems.

In the following it will be useful to express the isometry V

in two complementary forms

V =
m∑

k=1

V A
k ⊗ |βk〉 =

n∑
i=1

|αi〉 ⊗ V B
i . (10)

The partial isometries

V A
k :=

hk∑
i=1

|αi〉〈γi,k|, V B
i :=

wi∑
k=1

|βk〉〈γi,k| (11)

map the individual columns (rows) of the bipartition table into
HA (HB).

2. Quantum coarse graining map

Once the partial subsystem A is identified, QCG is defined
as the map that traces out A. Since the partial trace map trA acts
on operators, we have to elevate the action of the isometry V

to operators as well, thus defining V(·) := V (·)V †. Then, the
composition

tr(A) := trA ◦ V
defines the QCG map tr(A). Since both components of this
composition are completely positive trace preserving (CPTP)
maps, QCG map tr(A) reduces proper quantum states to proper
quantum states [21]. Operator sum representation of tr(A) can
be obtained by expressing V in the second form of Eq. (10)
and applying trA:

tr(A)(ρ) = trA(VρV †) =
n∑

i=1

V B
i ρ V

B†
i .

Reduction with tr(A) maps the density matrices between the
operator spaces as

tr(A) : B(H) −→ B(HA ⊗ HB) −→ B(HB),

so the partial subsystem B embodies the reduced, coarse-
grained state space.

The choice of notation tr(A) for the QCG map is justified by
its action on the matrix elements in the bipartition basis |γi,k〉

tr(A) : |γi,k〉〈γj,l| �−→ δij |βk〉〈βl|. (12)
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So it traces over the indices i, j as if they label basis elements
of a proper subsystem (the bracketed subscript (A), as opposed
to the unbracketed one A, refers to the fact that it traces over a
partial subsystem).

As an illustration, consider the 6-dimensional Hilbert space
H spanned by the orthonormal basis {|s〉} for s = 1, . . . ,6. A
partial bipartition of H is chosen such that in the basis {|s〉} it
is specified by the bipartition table

We will now use the notation |γi,k〉 to refer to the same elements
|s〉 by their row and column indices, for example |4〉 ≡ |γ2,1〉.

An arbitrary pure state can then be written as |ψ〉 = |ψ1〉 +
|ψ2〉 + |ψ3〉, where each unnormalized state |ψi〉 is the support
of |ψ〉 on the row i:

|ψ1〉 := c11|γ1,1〉 + c12|γ1,2〉 + c13|γ1,3〉,
|ψ2〉 := c21|γ2,1〉 + c22|γ2,2〉,
|ψ3〉 := c33|γ3,1〉.

Applying Eq. (12) on the element |ψi〉〈ψj | we get

tr(A)(|ψi〉〈ψj |) = δij

∑
k,l

cikcil |βk〉〈βl |.

Then if we present the density matrix ρ := |ψ〉〈ψ | in the
bipartition basis ordered by their appearance in the bipartition
table (read from left to right and top to bottom), the action of
tr(A) is ⎛

⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14 ρ15 ρ16

ρ21 ρ22 ρ23 ρ24 ρ25 ρ26

ρ31 ρ32 ρ33 ρ34 ρ35 ρ36

ρ41 ρ42 ρ43 ρ44 ρ45 ρ46

ρ51 ρ52 ρ53 ρ54 ρ55 ρ56

ρ61 ρ62 ρ63 ρ64 ρ65 ρ66

⎞
⎟⎟⎟⎟⎟⎠

↓tr(A)⎛
⎝ρ11 + ρ44 + ρ66 ρ12 + ρ45 ρ13

ρ21 + ρ54 ρ22 + ρ55 ρ23

ρ31 ρ32 ρ33

⎞
⎠

The colored blocks (color online) of the top matrix correspond
to the elements |ψi〉〈ψi |. From this we learn how to “read” the
action of QCG from the bipartition table:

(1) Coherences between basis elements |γi,k〉〈γj,l| in dif-
ferent rows (i �= j ) of the bipartition table are discarded.

(2) For each pair of columns k,l (including k = l), the sum
of coherences between |γi,k〉〈γi,l| over all rows i is the new
coherence term for the reduced element |βk〉〈βl|.

The original Hilbert space can then be decomposed to
sectors

H =
m⊕

k=1

Hk, (13)

where Hk is the span of elements in column k of the bipartition
table. This decomposition is analogous to the partition of the
classical state space to blocks. The rule 2 above suggests

that a state supported on a single column Hk collapses into a
macrostate |βk〉, as in the classical case. Similarly, all statistical
mixtures of states supported on different columns collapse
into statistical mixtures of the corresponding macrostates.
The quantum-classical similarities end when we consider
superpositions between the blocks. QCG attempts to reduce
the coherence terms between the blocks into a single coherence
term between the corresponding macrostates, but it cannot do
so perfectly. The result is potentially diminished coherence
between the macrostates of the reduced state.

Although the visual representation of QCG in terms of
columns and rows of the bipartition table is appealing, its
operational meaning is not clear. In the following we will
identify a set of operators that capture the structure of the
bipartition table and use them to gain insight about QCG’s
operational meaning.

3. Bipartition operators

Similarly to how we obtained the operator sum representa-
tion of tr(A), we can obtain another representation by using the
first form of V in Eq. (10):

tr(A)(ρ) = trA(VρV †)

= trA

[(
m∑

l=1

V A
l ⊗ |βl〉

)
ρ

(
m∑

k=1

V
A†
k ⊗ 〈βk|

)]

=
m∑

k,l=1

tr
[
V

A†
k V A

l ρ
]|βl〉〈βk|.

This brings us to the definition of the bipartition operators

Skl := V
A†
k V A

l =
min(hk,hl )∑

i=1

|γi,k〉〈γi,l| (14)

that map between columns of the bipartition table by preserving
the row index i of each element (the element is eliminated if
the row is not present in the destination column).

As a result, we obtain a different representation of the QCG
map (in Ref. [22] such representation of quantum channels is
described as input-output, or tomographic representation):

tr(A)(ρ) =
∑
k,l

tr(Sklρ)|βl〉〈βk|. (15)

Since the bipartition operators can be read directly from the
bipartition table, from now on we will use the right-hand side
of Eqs. (14) and (15) as the defining constructs of QCG and
leave the isometry V behind (the bipartition table is of course
still the underlying structure from which all of these constructs
are derived).

In order to obtain the operational meaning of QCG, consider
what observable information is preserved in the reduced
state. Formally, the information in the reduced state ρB :=
tr(A)(ρ) predicts, according to Born’s rule, the expectation
values tr(OBρB) for all observables OB in O(HB) (the set
of observables on B). Since Born’s rule is identical to the
Hilbert-Schmidt (HS) inner product 〈OB,ρB〉HS := tr(O†

BρB),
we can lift the QCG map from states and apply it to
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observables,

tr(OBρB) = 〈OB,tr(A)(ρ)〉HS = 〈tr†(A)(OB),ρ〉HS,

where tr†(A) is the Hermitian adjoint of tr(A) with respect to the
HS inner product (the same symbol † for Hermitian adjoint will
be used for both operators and superoperators). The following
set of observables on the original (unreduced) system,

OB(H) := {tr†(A)(OB) | OB ∈ O(HB)} ⊂ O(H), (16)

consists of all the observables whose expectation values are
preserved by QCG.

The explicit form of tr†(A) can be derived by rearranging the
traces and sums in

〈OB,tr(A)(O)〉HS = tr

(
O

†
B

∑
k,l

tr(SklO)|βl〉〈βk|
)

= tr

(∑
k,l

Skl tr(O
†
B |βl〉〈βk|)O

)

=
〈(∑

k,l

Skl〈βk|O†
B |βl〉

)†

,O

〉
HS

.

Then, using Skl = S
†
lk and rearranging the indices, we get

tr†(A)(OB) =
∑
k,l

Skl〈βk|OB |βl〉. (17)

It is now clear that OB(H) ⊂ span{Skl}. Conversely, for
every observable O ∈ span{Skl} we can find an OB ∈ O(HB)
such that O = tr†(A)(OB). Therefore, bipartition operators Skl

span the operator subspace containing all and only the ob-
servables preserved by QCG. Then we can interpret the
coarse-grained state ρB as the state that contains all and
only the information that is accessible to observer restricted
to span{Skl}. The QCG map can then be understood as a
change-of-observer transformation.

In the familiar case of tensor product bipartitionH = HA ⊗
HB , bipartition operators take the form

Skl := IA ⊗ |βk〉〈βl|.
The restricted set of observables span{Skl} = IA ⊗ B(HB)
implies that the observer can only measure system B. The QCG
map (15) specializes to the usual trA and the reduced states
trA(ρ) represent what the restricted observer can actually “see.”
In Sec. III B we will see other familiar state transformations
that can be understood as special cases of QCG.

This closes the circle with the classical picture of CG
from which we started. Classical CG was introduced as the
manifestation observer’s inability to distinguish some states,
which is in fact a restriction of observational power. Now
we see that both classical and quantum notions admit the
same operational interpretation: CG is the result of restricted
observational ability.

4. Generalization: Quantum-classical hybrid

With bipartition operators it is easy to extend the quantum
notion of CG to include the original classical one. Intermediate

notions, which combine both classical and quantum features,
are quick to follow (we will keep referring to them as QCG).
This generalization will allow us to associate QCG with
symmetries in Sec. III D.

The purely classical notion of CG can be imported into
quantum state space by simply disregarding the coherence
terms. Using the set {�k} of projections on sectors H =⊕m

k=1 Hk that specify the classical blocks, the classical CG
map is defined as

ρ �−→
∑

k

tr(�kρ)|βk〉〈βk|. (18)

One can always represent probability vectors as diagonal
density matrices and use this map to implement classical CG
as defined by Eq. (1). Comparing Eq. (18) to the quantum
version (15) suggests that the set of projections {�k} is the
classical equivalent of the bipartition operators. In fact, note
that by definition (14), bipartition operators of the form Skk are
projections on sectors. If we think of bipartition operators as k,l

elements of some matrix, then Skk are the diagonal elements.
Classical CG can then be thought of as a restriction of some
QCG specified by {Skl} to the diagonal elements {Skk}.

This perspective leaves room for intermediate cases that
arise from restriction of the complete set {Skl} to block diagonal
elements. It is convenient to introduce the index q to refer to
the blocks of bipartition operators, such that {Sq,kl}kl

is a block
diagonal set with k,l running over the elements of block q. The
hybrid CG map is then specified by the set {Sq,kl} and it acts
similarly to (15),

ρ �−→
∑
q,k,l

tr(Sq,klρ)|βq,l〉〈βq,k|, (19)

with the addition of index q. The purely quantum case is when
q specifies a single block, making the index q unnecessary.
The purely classical case is when each block q has only
one bipartition operator: the projection �q . The truly hybrid
case selects the supersectors H = ⊕

q Hq of the Hilbert
space where each subset {Sq,kl}kl

of bipartition operators is
supported. The map (19) reduces each supersector Hq into a
distinct sector in the reduced state space while discarding all
coherence terms between the different Hq .

We can also generalize the visual representation of QCG
with bipartition tables by allowing block diagonal arrange-
ments of cells. For each subset of operators {Sq,kl}kl

we have a
block of cells in the bipartition table, and the different blocks
live on the diagonal of the full table:
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This arrangement results in the block diagonal set {Sq,kl} if
we use the original construction (14) of bipartition operators
with such tables.

B. Special cases of the coarse-graining map

The general QCG map (19) captures a lot of common state
manipulations—which are not usually thought of as CG—as
its special cases. Since the QCG map is completely specified
by the set of bipartition operators it is possible to capture the
key structure associated with such manipulations in the neat
visual form of the bipartition table. In the following we point
out a few of such state manipulations.

For concreteness we will consider the system of two or more
spin- 1

2 particles:

H := (
H( 1

2 )
)⊗N

, H( 1
2 ) = span{|↑〉,|↓〉}.

Change of basis. The trivial QCG that does not actually
loose any information may still change the basis in which the
density matrix is presented. The change of basis map, disguised
as QCG, is specified by arranging the new basis elements into
a single row of the bipartition table. For 2 spins, changing to
the total spin basis |j,m〉 is given by the table

which specifies the bipartition operators

Sj,m;j ′,m′ := |j,m〉〈j ′,m′|,
where j,m are used to refer to the columns of the table. The
QCG map then simply changes the basis

ρ �−→
∑

j,m;j ′,m′
tr(Sj,m;j ′,m′ρ)|j ′,m′〉〈j,m|

=
∑

j,m;j ′,m′
〈j ′,m′|ρ|j,m〉|j ′,m′〉〈j,m|.

This should make clear the fact that the result of any QCG,
even the trivial one, depends on the choice of basis that go into
the bipartition table.

Projective measurement. Projective measurements, up to
the readout of the outcome, can be thought of as purely classical
CGs. Here the bipartition table has a column-diagonal form and
the columns are specified by the projections on the outcomes.
For 2 spins, the QCG resulting from measurement of the total
spin z component (without reading the outcome) is specified
by the table

There are only 3 bipartition operators defined by this table: the
projections

S1,1 = |↑↑〉〈↑↑|,
S0,0 = |↑↓〉〈↑↓| + |↓↑〉〈↓↑|,

S−1,−1 = |↓↓〉〈↓↓|,

where jz = 1,0,−1 are used to label the columns. The associ-
ated QCG map

ρ �−→
∑

jz=−1,0,1

tr
(
Sjz,jz

ρ
)|jz〉〈jz|

results in a diagonal matrix containing the probability distri-
bution over the three outcomes.

Tensor product structures and (virtual) subsystems. Illus-
trating bipartite tensor product structures is where the bipar-
tition table really simplifies the picture. The natural tensor
product structure of the Hilbert space of 2 spins A and B is
captured by the bipartition table

It is arranged such that the degrees of freedom of spin A are
constant inside the rows and the degrees of freedom of spin B

are constant inside the columns. This table defines the bipar-
tition operators Skl := I ⊗ |k〉〈l| for k,l = ↑,↓ and the asso-
ciated QCG map is just the partial trace over A (rotate the table
by 90◦ to get the partial trace over B):

ρ �−→
∑

k,l=↑,↓
tr(I ⊗ |k〉〈l|ρ)|l〉〈k|

=
∑

k,l=↑,↓
tr(|k〉〈l|trA(ρ))|l〉〈k| = trA(ρ).

For 3 spins we can consider the first 2 spins as subsystem
A and the third spin as subsystem B. Arranging the bipartition
table where B’s degrees of freedom are constant inside the
columns and A’s inside the rows results in

which specifies a QCG map that traces out the first 2 spins.
By rearranging this table we can specify different (possibly
virtual) bipartite tensor product structures.

For example

specifies the natural tensor product structure of the repetition
code. The virtual subsystem associated with the columns now
encodes the logical qubit, while the virtual subsystem associ-
ated with the rows encodes the syndrome. The 4 bipartition
operators consist of 2 projections S00, S11 on the columns (0, 1
label the two columns), and 2 isometries S01, S10 between the
columns that exchange elements inside the rows [recall Eq. (14)
for explicit definition]. A single spin flip error Xi acts on the
top row—the code space—by translating it to the i + 1 row, so

SklXi |↑↑↑〉 = XiSkl|↑↑↑〉,
SklXi |↓↓↓〉 = XiSkl|↓↓↓〉.

Therefore, for any encoding |ψ〉 = α|↑↑↑〉 + β|↓↓↓〉 we
can have a single spin flip error that will not affect the
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coarse-grained state:

Xi |ψ〉〈ψ |Xi �−→
∑

k,l=0,1

tr(SklXi |ψ〉〈ψ |Xi)|l〉〈k|

=
∑

k,l=0,1

tr(Skl|ψ〉〈ψ |)|l〉〈k|

= (α|0〉 + β|1〉)(α〈0| + β〈1|).
In this context we think of the QCG map as a decoding

procedure that traces out the syndrome degrees of freedom
and produces the encoded qubit.

Reference frames and noiseless subsystems. For errors
that arbitrarily change the reference frame (RF) there are
noiseless subsystems where information can be encoded in
RF-independent degrees of freedom [20]. Such degrees of
freedom can be associated with the reduced state that is seen
by an observer that does not have access to the RF in which
the state was prepared [23]. This reduction of state can also be
considered as QCG.

Since RFs are completely specified by a group of trans-
formations that change them, the relevant structure of QCG is
selected by the irreducible representations of the group (we will
elaborate on this in Sec. III D). Considering a system of three
spins and a RF of direction associated with global rotations,
we get the bipartition table

There are two blocks in this table corresponding to the
irreducible representations of total spin 3

2 and 1
2 . The block of

total spin 1
2 specifies the virtual tensor product | 1

2 ,± 1
2 〉 ⊗ |k〉

where k = 0,1 labels the two copies of this representation. The
5 bipartition operators specified by this table are

S 3
2

:=
∑

jz=− 3
2 ,..., 3

2

∣∣∣∣3

2
,jz

〉〈
3

2
,jz

∣∣∣∣ = I ( 3
2 ),

S 1
2 ,kl :=

∑
jz=− 1

2 , 1
2

∣∣∣∣1

2
,jz,k

〉〈
1

2
,jz,l

∣∣∣∣ = I ( 1
2 ) ⊗ |k〉〈l|,

and, according to Schur’s lemmas [19], they span the space of
all operators that commute with all global rotations that act on

(H( 1
2 ))

⊗3
. Therefore, according to the operational interpreta-

tion of QCG, the reduced state retains only the information
accessible with rotationally invariant measurements. Such
restriction of measurements is what defines the observer that
has no access to the RF of direction [23] so this QCG produces
the effective state that such observer can see.

In the context of noiseless subsystems we can say that such
QCG “traces out” rotationally noninvariant degrees of freedom
and produces the qubit encoded in the rotationally invariant
degrees of freedom.

C. Compatibility with dynamics

As was discussed in the classical case, the coarse-grained
state may fail to follow a well-defined dynamical rule. The
dynamics in the coarse-grained state space may be such that it
is impossible to tell, from the initial conditions alone, where
the system will go. The situation is essentially the same as
the one we see in open quantum systems (see [13] or [11]
for a comprehensive review). In fact it was recently shown
[7] that under dimension-reducing maps, such as our QCG
map, the reduced dynamics can be described in the same
way we describe the dynamics of open quantum systems.
This conclusion should also be evident from the approach to
QCG we have developed here: if QCG is a marginalization
of a (partial) subsystem then the remaining subsystem should
evolve as an open quantum system. This means that in general
the evolution may not be universal, so the dynamical map
that governs the evolution is different for different initial
conditions and may not be completely positive [11]. Even when
the dynamics are universal we may still lose the semigroup
structure which allows us to characterize the dynamics with
generators.

How to deal with these difficulties in the context of open
quantum systems is an area of active research [24] and we
will not attempt to address it here. Our situation is different in
that we have the freedom to choose the bipartition that may
be compatible with the given dynamics. Instead of asking how
a fixed subsystem evolves, we ask how to choose a (partial)
subsystem so it evolves in a nice way. This question will be
now addressed in the form of compatibility condition between
QCGs and dynamics.

The way the compatibility condition was derived in the
classical case (Sec. II B) is sufficiently general to be reproduced
in the quantum setting. The classical condition PQ = PQP

of Theorem 1 has two components: the generator of dynamics
Q and the CG projection P . Since the QCG map tr(A) is
a superoperator that acts on density matrices, the quantum
analogs of Q and P must also be superoperators. The analog
of Q is the Lindblad superoperator L [11,13], which generates
time evolutions of the density matrix ρ as the solutions of

d

dt
ρ = L(ρ). (20)

This equation is the quantum analog of Eq. (5).
The QCG projection can be defined identically to its

classical analog P = M+M as

P := tr+(A) ◦ tr(A), (21)

where tr+(A) is the Moore-Penrose pseudoinverse of the QCG
map tr(A). The explicit form of this pseudoinverse is not
necessary for our purposes and we will only use its defining
properties and the fact that it exists (all finite-dimensional
linear operators—including tr(A)—have one). For the sake of
completeness we will present the explicit forms of tr+(A) and P
after proving Lemma 1 bellow.

With these definitions Theorem 1 can be reproduced in the
quantum setting by replacing P with P , Q with L, M (M+)
with tr(A) (tr+(A)), probability vectors with density matrices, and
Eq. (5) with Eq. (20). The proof is the same because it relies
on the linear algebraic properties of the operators (which in
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both cases are assumed to be finite-dimensional matrices) and
nothing more. The result is that

PL = PLP (22)

is the quantum compatibility condition in the general form.
When this condition holds, and only then, the reduced state
ρB := tr(A)(ρ) evolves according to

d

dt
ρB = L̃(ρB),

where L̃ = tr(A) ◦ L ◦ tr+(A).
The compatibility condition in its general form (22) is quite

opaque. In the classical case it was Corollary 1 that provided
some insight into how to find compatible CG by looking
at transition rates. Extracting similar insight for quantum
dynamics is not as easy. We will not address this general case
here but we will specialize the generatorL to unitary dynamics
(given by a Hamiltonian) and reformulate the condition (22)
in a more transparent way. In the next subsection we will
specialize this condition further by focusing on QCGs given
by a group representation.

The first step in clarifying the condition (22) is finding out
the operator subspace on which P projects.

Lemma 1. Let {Skl} be a set of bipartition operators, and let
P be the associated coarse-graining projection as defined by
Eq. (21). Then P is an orthogonal projection on the operator
subspace span{Skl}.

Proof. The defining properties of the Moore-Penrose pseu-
doinverse [12] imply that the map P is an orthogonal pro-
jection on the subspace orthogonal to the kernel of tr(A),
that is, im(P) = ker(tr(A))⊥. Next, to see that ker(tr(A))⊥ =
span{Skl}, we will apply tr(A) on Skl . Using the action (12) on
the definition (14) we get

tr(A)(Skl) = min(hk,hl)|βk〉〈βl|. (23)

From this we see that the image of span{Skl} under tr(A) is
the whole im(tr(A)). The minimal subspace with such property
is ker(tr(A))⊥; therefore ker(tr(A))⊥ ⊆ span{Skl}. On the other
hand, every nonzero operator in span{Skl} does not vanish
under tr(A); therefore span{Skl} ⊆ ker(tr(A))⊥. The two mutual
inclusions then imply

span{Skl} = ker(tr(A))
⊥ = im(P).

�
Now we note that the pseudoinverse tr+(A) is a map from

im(tr(A)) to ker(tr(A))⊥, that is,

tr+(A) : span{|βk〉〈βl |} → span{Skl}.
Equation (23) suggests that for the inverse property
tr(A) ◦ tr+(A) = I to hold we must have tr+(A)(|βk〉〈βl |) =
min(hk,hl)−1Skl which defines the pseudoinverse

tr+(A)(OB) =
∑
kl

〈βk|OB |βl〉
min(hk,hl)

Skl.

This map can be seen as a composition of tr†(A) [see Eq. (17)]
with rescaling by min(hk,hl).

The explicit form of P = tr+(A) ◦ tr(A) is then given by acting
with tr+(A) on Eq. (15):

P(O) =
∑
k,l

tr(SklO)tr+(A)(|βl〉〈βk|)

=
∑
k,l

tr(SklO)

min(hk,hl)
Slk.

It should be noted that even though the QCG tr(A) maps states
to states (is CPTP), we cannot claim that tr+(A) and P have
this property in general. Nonetheless, the QCG projection P
is a useful formal construct that captures the compatibility
condition (22) and its properties will be used in the proof of
Theorem 3.

In the following we will use the fact that P is an orthogonal
projection, as stated by Lemma 1, meaning that not only
P2 = P but alsoP† = P [the Hermitian adjoint is defined with
respect to the HS inner product 〈P(A),B〉HS = 〈A,P†(B)〉HS].

Now we will assume unitary dynamics. This means that the
generator L is of the form −i[H,·], where H is the Hamil-
tonian. The following theorem expresses the compatibility
condition (22) in terms of H and {Skl}.

Theorem 3. LetL(·) := −i[H,·] be a generator of dynamics
with Hamiltonian H , and let {Skl} be bipartition operators that
specify a coarse graining. Then, the compatibility condition
(22) is equivalent to

[H,S] ∈ span{Skl}, ∀S ∈ span{Skl}.
Proof. First we note that L is an anti-Hermitian superoper-

ator: L† = −L. This can be shown explicitly:

〈A,L(B)〉HS = tr(A†(−i[H,B]))

= tr(−iA†HB) + tr(iA†BH )

= tr(−iA†HB) + tr(iHA†B)

= tr(−L(A)†B) = 〈−L(A),B〉HS.

By taking the Hermitian adjoint on both sides of (22), and using
the fact that P† = P , we get

−LP = −PLP = −PL.

The compatibility condition is then equivalent to

LP = PL.

Lemma 1 implies that for any S ∈ span{Skl} we have P(S) =
S and P(O) ∈ span{Skl} for any O. Therefore,

[H,S] = iL(S) = iLP(S) = iPL(S) ∈ span{Skl}.
For the opposite direction we assume that iL(S) = [H,S] ∈
span{Skl} for any S ∈ span{Skl}. Since P is an orthogo-
nal projection on span{Skl}, for any O we have LP(O) ∈
span{Skl}, which implies LP = PLP . �

D. Coarse graining and symmetries

As was discussed in the classical case, symmetrizing the
states can also be considered as CG. We will now reproduce
this argument for the quantum case and utilize it to address the
question of reducibility of dynamics.
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Our construction relies on structures selected by irreducible
representations (irreps) of the group and the associated opera-
tor algebras. Developments in fault-tolerant quantum compu-
tation [25–27], the study of quantum reference frames and the
emergence of superselection rules [23,28], and more recently
quantification of the notion of asymmetry [29,30] have all
contributed to the establishment of the algebraic framework
that we will use here.

We begin by recalling Hilbert space decompositions in-
duced by representations of groups [19]. Given a finite or a
compact Lie group G, with the unitary representation U (G)
on the Hilbert space H, there is a decomposition

H =
⊕
q,n

Mq,n
∼=

⊕
q

Mq ⊗ Nq . (24)

The sectors Mq,n carry irreps of the group, the index q

runs over the inequivalent irreps, and n labels the different
occurrences of the same irrep. The isomorphism on the right
follows by “collecting” all the equivalent irreps into a tensor
product of the virtual subsystems Mq (the irrep space) and
Nq (the multiplicity space). Then, the group action can be
expressed in the form

U (g) =
⊕

q

UMq
(g) ⊗ INq

, (25)

where UMq
(g) are irreducible unitary representations of the

group action. This explicitly shows that the group acts by
transforming all Mq independently according to the irrep q,
while leaving all Nq unaffected.

The structure (24) selected by the group (from here on, by
“group” we refer to the group of unitary operators acting on
the Hilbert space, not the abstract representationless group)
can now be used to implement a QCG. For an isolated sector
q, tracing over the virtual subsystemMq can be seen as a QCG
given by the bipartition operators

Sq,kl := IMq
⊗ |q,k〉〈q,l|, (26)

where |q,k〉 are some arbitrary orthonormal basis of Nq . The
combined set (for all q) of bipartition operators {Sq,kl} specifies
a hybrid notion of QCG as defined by Eq. (19).

Such QCG will be called coarse graining by symmetriza-
tion because it eliminates all information in the asymmetric
degrees of freedom. In order to see that explicitly, consider the
commutant algebra of the group, defined by

U (G)′ := {B ∈ B(H) | [B,U (g)] = 0, ∀g ∈ G}.
It is an immediate consequence of Schur’s lemmas, and the
group action (25), that U (G)′ consists of all operators of the
form

B =
⊕

q

IMq
⊗ BNq

. (27)

Compare it to Eq. (26), from which follows U (G)′ =
span{Sq,kl}. Since the loss of information under QCG is
captured by orthogonal projection on span{Sq,kl}, it then
follows that the information that is eliminated in this case
resides in the degrees of freedom that are not invariant under
the action of the group.

So far we have established that unitary representations of
groups can be used to specify a QCG scheme. The question

remaining is which groups are useful for the reduction of
dynamics. Historically, the groups that are considered in the
study of dynamical processes are the ones that commute with
the dynamics. In the case of unitary time evolutions, these are
the groups that commute with the Hamiltonian [U (g),H ] = 0.
In this case H ∈ U (G)′ so it can be expressed in the form (27)

H =
⊕

q

IMq
⊗ HNq

. (28)

Dynamics generated by such Hamiltonians keep the irrep
spaces Mq stationary, while evolving the multiplicity spaces
Nq independently in each sector. Therefore, the degrees of
freedom associated with the irrep spaces Mq can be safely
ignored when considering time evolutions. From this we con-
clude that QCG by symmetrization with the symmetry group
of the Hamiltonian is compatible with dynamics. [This can be
shown rigorously by invoking the compatibility condition of
Theorem 3 and using the fact that H ∈ U (G)′ = span{Sq,kl}.]

This however, does not mean that symmetries of the Hamil-
tonian are the only groups that are useful for the reduction of
dynamics. The appropriate generalization of symmetries of the
Hamiltonian, capturing all groups that can be used to reduce
the dynamics, is given in the following theorem.

Theorem 4. Let G be a finite or a compact Lie group
with unitary representation U (G) on H. Then, coarse graining
by symmetrization with U (G) is compatible with dynamics
generated by the Hamiltonian H if and only if

[U (g),H ] ∈ U (G)′′, ∀g ∈ G, (29)

where U (G)′′ is the commutant of U (G)′.
Proof. Using the fact that the bipartition operators {Sq,kl}

of QCG by symmetrization span U (G)′, we can express the
compatibility condition of Theorem 3 as

[H,B] ∈ U (G)′, ∀B ∈ U (G)′.

By definition of U (G)′, this is equivalent to

[U (g),[H,B]] = 0, ∀B ∈ U (G)′,∀g ∈ G.

Since [U (g),B] = 0, we can rearrange the Lie bracket

[[U (g),H ],B] = 0, ∀B ∈ U (G)′,∀g ∈ G.

But this means that for all g, [U (g),H ] must be in the
commutant of U (G)′, so

[U (g),H ] ∈ U (G)′′, ∀g ∈ G.

Since it is equivalent to the condition of Theorem 3,
which is necessary and sufficient, it is also necessary and
sufficient. �

The commutant U (G)′′ of the algebra U (G)′ consists of all
operators of the form [25]

A =
⊕

q

AMq
⊗ INq

.

Since all U (g) are of this form, that is U (g) ∈ U (G)′′, condition
(29) implies that groups such that H ∈ U (G)′′ are compatible.
Symmetries of the Hamiltonian, for which H ∈ U (G)′, triv-
ially comply with the condition (29) because 0 ∈ U (G)′′. In
general, the compatibility condition (29) implies a very specific
form for the Hamiltonian.
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Proposition 2. Any operator H that complies with the
condition (29) is of the form

H = A + B =
⊕

q

(
AMq

⊗ INq
+ IMq

⊗ BNq

)
, (30)

where A ∈ U (G)′′ and B ∈ U (G)′.
Proof. Condition (29) implies that for every g ∈ G there is

an Ag ∈ U (G)′′ such that

U (g)HU (g)† − H = Ag.

Rearranging the terms and integrating over G (summing for
finite groups) with an invariant measure dμ(g) we get

H = −
∫

G

dμ(g)Ag︸ ︷︷ ︸
A

+
∫

G

dμ(g)U (g)HU (g)†︸ ︷︷ ︸
B

.

We have A ∈ U (G)′′ by definition of Ag , and B ∈ U (G)′

because of the invariance of the measure dμ(g) = dμ(g′) (or
rearrangement theorem for finite groups). �

It is now easy to see why groups that comply with condition
(29) lead to compatible QCG by symmetrization. The form (30)
implies that the subsystems Mq and Nq do not interact with
each other. The explicit form of the time evolution operator is

UH (t) = e−itH =
⊕

q

e−itAMq ⊗ e−itBNq ,

so each part of the virtual composite systemMq ⊗ Nq evolves
independently from the other. Therefore, we can generate time
evolutions in Nq without having to know the state of Mq (and
vise versa), and that is the defining property needed for the
reduction of dynamics.

Symmetries of the Hamiltonian ([U (g),H ] = 0) are too
restrictive for the purposes of reduction of dynamics. They re-
quire that, in addition to subsystemNq evolving independently,
subsystem Mq must be stationary, which is not necessary.
Relaxing the condition to (29), and lettingMq evolve leads to a
broader set of groups, beyond symmetries of the Hamiltonian.
Thus, Theorem 4 provides us with more possibilities to confine
the dynamical evolutions to smaller state spaces.

For practical applications it is beneficial to express the
compatibility condition (29) in terms of the generators of
the group. Assuming {Lα} are the generators of U (G), and
using the group action near the identity U (εα) = I − εαiLα

(for finite groups we can use the generators directly), the
compatibility condition becomes

[Lα,H ] ∈ U (G)′′, ∀Lα.

Furthermore, the operator algebra Alg{Lα}, of all polynomials
in {Lα}, is a subalgebra of U (G)′′ [by definition of U (G)′, every
Lα must commute with everything in U (G)′]. Thus, replacing
U (G)′′ with Alg{Lα} results in the sufficient condition

[Lα,H ] ∈ Alg{Lβ}, ∀Lα.

E. Example: Continuous-time quantum walk on a binary tree

Continuous-time quantum walk (CTQW) is a generic model
of quantum dynamics that admits visually intuitive demon-
stration of QCG by symmetrization. More specifically, we

FIG. 5. Quantum walk on a tree (a) is reduced to parallel quantum
walks over the columns of the tree (b). Labels on the edges indicate
transition rates and labels under the vertices indicate local potentials
(the default value is 1 for both). Addition of the red dashed edge in
(a) results in the addition of identical edge in (b). Even though the red
edge breaks the symmetry of the tree it does not affect the reduced
dynamics between the columns (see main text).

will focus on CTQW on binary trees introduced by [31] and
demonstrated to evolve in a reduced state space in Ref. [32].

The CTQW model is specified by a simple undirected graph
G with vertices V and edges E. The Hilbert space is defined
as H := span{|vi〉}vi∈V , and the Hamiltonian is constructed in
the same way as the stochastic transition rates matrix (in this
case all rates are normalized to 1):

H := −
∑

(vi ,vj )∈E

(|vi〉〈vj | + |vj 〉〈vi |) +
∑
vi∈V

di |vi〉〈vi |.

(31)

The degree di of a vertex vi is the total number of vertices
connected to it.

The concrete example we will analyze is shown in Fig. 5(a),
where we ignore the red dashed line for now and focus on
the tree spanned by the solid edges. If this was a classical
random walk, then CG by partition of vertices to the 3 columns
would be compatible with dynamics. In the quantum case,
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however, partition to sectors is not enough to specify a CG,
and there is not much else to guide us in the appropriate choice
of compatible bipartition other than symmetries.

Symmetries of CTQWs arise from the automorphisms of
the underlying graph [33]. Graph automorphisms form a group
AutG := {ϕ} that consists of permutations of vertices that leave
the set of edges unchanged

(vi,vj ) ∈ E ⇔ (vϕ(i),vϕ(j )) ∈ E.

Using the cycle notation for permutations, our graph automor-
phisms are generated by a = (45) and b = (23)(47)(56); it is
also instructive to point out the group element c = bab = (67).
Permutation b can be thought of as a flip of the whole tree
around the horizontal axes through the root, while permutations
a and c are flips of the subtrees around horizontal axes through
their own roots.

In order to streamline the calculations, it is convenient to ex-
press the Hamiltonian as a sum of permutations. Permutations
are naturally represented by orthogonal (unitary) operators

�ϕ :=
∑

i

|vϕ(i)〉〈vi |.

The Hamiltonian (31) can now be written as a sum of 2-cycle
permutations (ij ) (note that �(ij ) acts as the identity on vertices
that are not vi or vj ):

H = −
∑

(vi ,vj )∈E

�(ij ) + |E|I.

Since |E|I only adds a total phase to the evolutions we can
safely drop it. In our concrete case the Hamiltonian is

H = −�(12) − �(13) − �(24) − �(25) − �(36) − �(37). (32)

Note that the adjoint action of any permutation ϕ on a 2-cycle
results in another 2-cycle:

�ϕ�(ij )�
T
ϕ = �(ϕ(i)ϕ(j )).

It is now easy to check that the group generated by a = (45) and
b = (23)(47)(56) commutes with the Hamiltonian, because the
adjoint action of �a or �b permutes the 2-cycles in Eq. (32),
but leaves the whole sum unchanged:

�aH�T
a = �bH�T

b = H.

Therefore, the finite group AutG represented by the unitary
operators {�a,�b} is a symmetry of the Hamiltonian.

Using the shorthand notation

|+ijk...〉 = |vi〉 + |vj 〉 + |vk〉 + · · ·
normalization

,

|±ijk...〉 = |vi〉 − |vj 〉 + |vk〉 − · · ·
normalization

,

we first identify the 3 trivial irreps of AutG as the subspaces

M1,1 := span{|+1〉},
M1,2 := span{|+23〉},
M1,3 := span{|+4567〉}.

There are also 2 nontrivial but equivalent irreps, where �a acts
by 1 and �b acts by −1:

M2,1 := span{|±23〉},
M2,2 := span{|±4657〉}.

The last irrep is single and 2-dimensional:

M3 := span{|±4567〉,|±5467〉}.

Accounting for multiplicities, the Hilbert space decomposes
to

H = (M1 ⊗ N1) ⊕ (M2 ⊗ N2) ⊕ M3,

where N1 and N2 are 3 and 2 dimensional multiplicity spaces.
Now we can change to the new bases |ui〉 that are native to
these irreps:

|u1〉 := |+1〉, |u4〉 := |±23〉, |u6〉 := |±4567〉,
|u2〉 := |+23〉, |u5〉 := |±4657〉, |u7〉 := |±5467〉,
|u3〉 := |+4567〉.

In the new bases the Hamiltonian is block diagonal H = H1 ⊕
H2 ⊕ H3, where

H1 =
⎛
⎝ 2 −√

2 0
−√

2 3 −√
2

0 −√
2 1

⎞
⎠,

H2 =
(

3 −√
2

−√
2 1

)
, (33)

H3 =
(

1 0
0 1

)
.

(We added back the global term |E|I to present the more
conventional diagonal elements.) This is the explicit form
(28) of H that acts nontrivially on multiplicity spaces only.
The terms H1, H2 act on multiplicity spaces of 1-dimensional
irreps, and the term H3 acts trivially becauseM3 is multiplicity
free. Therefore, the dynamics can be isolated as quantum walks
on disconnected components associated with the irreps; see
Fig. 5(b). One complication that arises, caused by boundaries
of the finite graph, is the nonconstant potential on the vertices,
as seen on the diagonal of the Hamiltonian.

Quantum walk in the multiplicity space of the trivial irrep
[top row in Fig. 5(b)] was first shown in Ref. [32] to be the
reduced 1D walk over the “column states” (|u1〉, |u2〉, |u3〉 in
our notation). Boundary effects, causing a potential “bump,”
were numerically shown to be not significant in the larger trees.
More importantly, it was understood that the reduced quantum
walk on the 1D chain of “column states” is responsible for
the exponential speedup in propagation time from the leafs to
the root, compared to the classical walk. Note however that the
full speedup occurs only from the initial state |u3〉. If the initial
state is also supported on |u5〉 then the speedup will only carry
it to the second column, and if it had support on |u6〉 or |u7〉
then those parts are stuck in the initial column.

The insight is that the reduced dynamics of quantum walks
on trees persist even if the symmetry of the tree is broken in a
manner that is described by Eq. (29). Adding the red dashed
edge to the tree in Fig. 5(a) breaks the original automorphism
symmetry since (v4,v5) ∈ E but (vb(4),vb(5)) = (v7,v6) /∈ E.
The new Hamiltonian H ′, when expressed as a sum of 2-cycles,
receives an additional term H ′ = H − �(45), which breaks the
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symmetry under the action of b:

�bH
′�T

b = H − �(76) �= H ′.

The action of a = (45), however, still commutes with H ′. The
commutator of H ′ with �b can be expressed as

[�b,H
′] = [�b,H ] − [�b,�a] = [�a,�b],

so it belongs to the operator algebra spanned by the gener-
ators {�a,�b}. Theorem 4 then implies that QCG by such
symmetrization is still compatible with dynamics. The only
difference is that in addition to acting on the multiplicity
spaces, the Hamiltonian may act independently on the irreps. In
this case, onlyM3 can be affected (dynamics in 1-dimensional
irreps are absorbed into the multiplicity spaces). Even though
|ui〉 are now native to irreps of a group that is not a symmetry of
the Hamiltonian, we can still use them to block-diagonalize the
Hamiltonian. The new decomposition is H ′ = H1 ⊕ H2 ⊕ H ′

3
where H1, H2 are the same as before (33), and

H ′
3 =

(
2 −1

−1 2

)
.

H ′
3 generates nontrivial evolutions in M3 which can be seen

graphically as addition of the red dashed edge in Fig. 5(b). It
generates evolutions vertically, in a stationary subspace of the
right column, but it does not interfere with dynamics across
the columns.

This example demonstrates the fact that strict symmetries of
the Hamiltonian are not necessary for the effective reduction of
dynamics. That being said, it is not easy to see a priori which
groups are compatible. This would not work, for example,
if we broke the symmetry with �(56) instead of �(45), since
[�(56),�a] is not an element in the operator algebra spanned
by {�a,�b}. Just because �(56) generates dynamics within
the column does not mean that it cannot interfere with the
dynamics across the columns. In our case, the choice of �(45)

to break the symmetry works, because it is the element a of
the symmetry group of the Hamiltonian. Since AutG is not
Abelian, the modified Hamiltonian was no longer commuting
with it, but because the symmetry-breaking element came from
the group, the commutant was guaranteed to be in the operator
algebra spanned by the group.

IV. SUMMARY AND OUTLOOK

We have established the common notion of coarse graining
in both classical and quantum settings and provided it with
operational meaning. By introducing bipartition tables we were
able to capture the key structure of a coarse-graining scheme
in a concise, visual form. Our main focus—the reduction
of dynamics by coarse-graining the state space—led to the
formulation of compatibility conditions between a coarse-
graining scheme and dynamics. Such compatibility conditions
were shown to be necessary and sufficient for the existence of a
reduced generator of dynamics that governs time evolutions in
the coarse-grained state space. Considering symmetrizations

of states with a group representation as a special case of coarse
graining, and specializing the compatibility condition to this
case, we showed how group representations can be used to
reduce the dynamics. This result turned out to be closely related
to Noether’s theorem that uses symmetries of dynamics to
identify the static degrees of freedom, i.e., constants of motion.
We generalized this perspective with less restricted group
representations to identify dynamically independent degrees of
freedom. Such degrees of freedom are not necessarily constants
of motion and the group representations are not necessarily
symmetries of dynamics.

The task of reducing dynamics that was studied here
demands an exact reproduction of dynamical evolutions in the
reduced state space. The only way to satisfy such demand is
to single out the degrees of freedom that evolve independently
from the rest. As we pointed out, finding group representations
that satisfy the commutation relation (29) is one possible
approach to the problem of exact reduction. This formulation,
however, might be too strict for some practical application and
an approximate reduction may be in order. The compatibility
conditions for the exact reduction can then be taken as a
starting point for the development of approximations when
the conditions are not exactly satisfied.

Aside from the reduction of dynamics, the notion of coarse
graining raises some interesting questions on its own. QCG
was shown to be the map that accounts for some ignorance
of the observer. Specifically, it accounts for the restriction to
measurements that belong to the span of bipartition operators
that define the QCG scheme. Such restricted observers arise
naturally in physical situations characterized by inability to
measure external environment, or inaccessibility of a particular
reference frame in which the system is prepared. The QCG
formalism allows us to account for all these and more general
restrictions, but the physical situations that lead to the more
general cases are not so clear. In particular, we can now account
for restrictions to observables that do not form an algebra: the
general span of bipartition operators is an operator system.
Then the question is, what physical situations lead to the
restriction to observables that form an operator system, but
not an algebra?

Regardless of physical interpretations, QCG is a power-
ful analytical concept that offers flexible ways to “select”
quantum information encoded in the physical state. Within
the framework of QCG we can capture information selected
by group representations, virtual subsystems, and restricted
observables under the same umbrella concept. We believe that
this generic nature makes QCG a fundamental concept of
quantum information with potential applications in quantum
error correction, tomography, and quantum thermodynamics.
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