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Driven-dissipative quantum Monte Carlo method for open quantum systems
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We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-
dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling
of the Liouville–von Neumann time evolution of the density matrix thanks to a massively parallel algorithm, thus
providing estimates of observables on the nonequilibrium steady state. We present the underlying theory and
introduce an initiator technique and importance sampling to reduce the statistical error. Finally, we demonstrate
the efficiency of our approach by applying it to the driven-dissipative two-dimensional XYZ spin- 1

2 model on a
lattice.
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I. INTRODUCTION

The study of the nonequilibrium dynamics of many-body
open quantum systems has attracted increasing attention in
recent years due to the progress in several experimental
areas, including ultracold atomic gases, trapped ions, and
superconducting circuits [1–4]. A common feature of these
systems is the coupling to an external environment. The
time evolution is then governed by the Liouville–von Neu-
mann equation which—in the case of stationary external
conditions—typically drives it into a nonequilibrium steady
state (NESS). Here, the competition between the Hamiltonian
dynamics and the system-bath interaction gives rise to a
multitude of phenomena, including nonequilibrium dissipative
phase transitions [5,6].

Generally, the steady-state density matrix can be obtained in
two different ways. First, one can integrate the time evolution
until the stationary state is reached or, second, one can
find the solution associated with the null eigenvalue of the
Liouvillian superoperator. The theoretical description of open
many-body systems represents a major challenge, and in spite
of the numerous improvements, the numerical modeling can
be handled only for small system sizes. While several studies
have been restricted to mean-field approximations [7–9], in
the case of one-dimensional systems highly accurate results
were obtained via the density-matrix renormalization-group
technique [10–12], and the equivalent variational approach
based on the matrix product state ansatz [13–15]. Alternatively,
a stochastic method, i.e., the Monte Carlo wave function
[16,17], can be used, which unravels the system-bath in-
teraction onto a stochastic process that adds to the unitary
Hamiltonian dynamics and to the effective damping terms.
Furthermore, a spatial renormalization approach—the corner
space renormalization method—was recently proposed, which
relies on an ad hoc spatial decimation protocol for the density
matrix [18,19].

For closed Hamiltonian systems, various quantum Monte
Carlo approaches have been the election tools to stochastically
sample system properties, both at zero and finite temperature
[20,21]. A class of methods generally known as projector
Monte Carlo (PMC) [22]—such as diffusion Monte Carlo

(DMC) [23,24] and Green’s function Monte Carlo [25]—
enables modeling the ground-state properties at zero temper-
ature by stochastically sampling the time evolution of the
imaginary-time Schrödinger equation. However, PMC meth-
ods may suffer from the sign problem, which results in compu-
tational cost growing exponentially with system size. Recently,
an approach called the full-configuration-interaction Monte
Carlo (FCIQMC) has been introduced for quantum chemistry
simulations [26–29] and for the simulation of other strongly
correlated systems, modeling both the ground-state [30,31]
and the real-time dynamics [32]. A finite-temperature variant
of the method was developed to model the density matrix at
thermal equilibrium through an imaginary time formulation
[33–35]. As a projector technique for zero temperature, it has
features in common with DMC and Green’s function Monte
Carlo, although a radically different sampling protocol was
introduced, which has proven to significantly alleviate the sign
problem [27,36].

A mutual feature of the Liouvillian dynamics and the
imaginary-time Schrödinger equation is the fact that, in the
long-time limit, the eigenstate with the smallest-real-part-
eigenvalue will dominate. In the Liouvillian case, where the
eigenvalues of the Liouvillian superoperator are complex
valued with nonpositive real part [37], this corresponds to
the null eigenvalue solution—to the NESS (Table I). It would
therefore be natural to apply projector Monte Carlo techniques
to the simulation of the NESS. In this case however, we
expect the sign problem to be highly relevant, because the
complex-valued density matrix cannot be expected to possess
elements only of the same sign.

In this paper, we develop a real-time FCIQMC approach
to open quantum systems, which we call driven-dissipative
quantum Monte Carlo (DDQMC). DDQMC shares many
of the features of FCIQMC, but it samples the elements
of the complex-valued density matrix instead of the wave
function. The method does not truncate the Hilbert space and,
contrary to tensor network methods, its applicability is not
bound to the dimensionality of the system. To demonstrate the
use of DDQMC, we simulate a two-dimensional spin lattice
governed by the Heisenberg XYZ Hamiltonian interacting
with a dissipative environment. The study of this model has
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TABLE I. A parallel is drawn between the imaginary-time evolution of closed Hamiltonian systems and the real-time evolution of the
quantum master equation for open quantum systems. In the case of open systems we assume, here and throughout this work, that a unique
steady state exists.

Closed system Open system

System operator Hamiltonian Liouvillian
H = H † L

Dynamics Imaginary time Real time
ψ̇(τ ) = −(Ĥ − E0)ψ(τ ) ˙̂ρ(t) = Lρ̂

Long-time limit Ground state Nonequilibrium steady state

e−τ (Ĥ−E0) : ψin

τ→∞−−−→ ψ0 eLt : ρin

t→∞−−→ ρss

recently attracted interest as an example of a dissipative phase
transition resulting from the nontrivial competition between
the coherent and incoherent dynamics [19,38]. The single-site
Gutzwiller mean-field study of the system predicts a phase
transition from a paramagnetic phase to a magnetically ordered
one [39,40], while a recent analysis showed that this transition
should survive in two-dimensional (2D) lattices and disappear
in case of one-dimensional lattices [41].

The paper is organized as follows: In Sec. II we give an
overview of the original FCIQMC algorithm, setting the basis
to the formulation of DDQMC in Sec. III. In Sec. IV the
initiator approach and the importance sampling are introduced.
The method is then applied to the XYZ Heisenberg lattice in
Sec. V and the results are compared with those obtained by an
optimized exact diagonalization method and by quantum tra-
jectories. Finally, we discuss the effectiveness of the approach
and offer some concluding remarks.

II. OVERVIEW OF FULL-CONFIGURATION-
INTERACTION MONTE CARLO ALGORITHM

We begin by giving a short overview of the FCIQMC
method. For a more complete derivation readers are referred to
Refs. [26,27,33,36,42]. In general, PMC methods are stochas-
tic implementations of the power method, which aims to
compute the expectation values of operators on the dominant
eigenstate of the projector. They prove to be particularly
useful when the Hilbert space is so large that the storage of
matrix and vector representations becomes computationally
unfeasible. PMC techniques get around this memory limitation
by storing at any instant in time only a random sample of
vector and matrix elements. The expectation values are then
computed as time averages. In common with PMC, FCIQMC
also performs the long-time integration of the imaginary-time
Schrödinger equation. However, unlike PMC, this is achieved
with a completely different sampling strategy.

Consider the imaginary-time Schrödinger equation (we
assume here and in what follows that h̄ = 1)

˙|ψ〉 = −Ĥ |ψ〉, (1)

the general solution of the equation is

|ψ(τ )〉 = e−Ĥ τ |ψ(τ = 0)〉. (2)

Once expanded onto the basis spanned by the eigenvectors
of the Hamiltonian {|φi〉}, the wave function results in a sum
of exponentially decaying terms. To prevent the ground-state
component from decaying in the infinite time limit, a constant

energy shift E0 can be introduced, where E0 is the ground-state
energy. Since the value of E0 is unknown in advance, one solves
the equation with an arbitrary shift S:

˙|ψ〉 = −(Ĥ − S1)|ψ〉. (3)

During the simulated time evolution the value of the S is
slowly adjusted to maintain a constant normalization and—at
convergence—provides an estimate of the actual ground-state
energy E0.

FCIQMC stochastically samples the first-order Euler ap-
proximation of Eq. (3). Furthermore, the algorithm works on
a discrete basis set {|φi〉}, and the Hamiltonian and the wave
function are projected onto the space spanned by the basis
elements

ψ(τ ) =
∑

i

cτ
i |φi〉. (4)

The evolution of the expansion coefficients is then governed
by

c
(τ+�τ )
i = [1 − �τ (Hii − S)]cτ

i − �τ
∑
j �=i

Hij c
τ
j , (5)

where Hij = 〈φi |Ĥ |φj 〉.
To stochastically represent Eq. (5), we introduce a funda-

mental unit called walker. Each walker has a sign (q = ±1) and
contributes to sampling the amplitude of one of the |φi〉 basis
states. Let n+

i be the number of walkers with positive sign on a
given state and n−

i that of walkers with negative sign. Then the
amplitude of a basis state in the expansion is proportional to
the net walker number residing there: ci ∝ n+

i − n−
i . In cases

where the ci amplitudes are complex valued, this representation
can be generalized by using two sets of walkers for the real and
imaginary parts [30]. This is the approach that we adopt below
for the description of density matrices. Then, starting from
an initial distribution, the walkers evolve following a set of
rules designed to sample the time evolution of Eq. (5) over a
time step. This dynamics is then iterated until convergence is
reached.

We point out here that this approach sets an upper bound to
the time step. Since the initial state is driven into the dominant
eigenstate of the projector, the solution will converge to the
ground state only if |1 − �τ (Ei − S)| � 1 for all eigenvalues
Ei . This corresponds to the requirement �τ � 1/�, where �

is the full spectral width of the Hamiltonian under considera-
tion.
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The rules for evolving the walker population can be sum-
marized as follows: At each time step we loop over the entire
walker population and perform the following operations:

(i) Spawning: For a walker residing on site i a connected
site j is chosen randomly and a spawning event is made
possible with a rate p(j |i) ∝ |Hji |�τ (connected sites are
linked by nonzero off-diagonal Hamiltonian elements Hij ).
If p(j |i) > 1 then a number of walkers equal to the largest
integer part of p(j |i) [denoted as �p(j |i)	] is spawned to
site j . The remaining fractional part p(j |i) − �p(j |i)	 is
realized stochastically [26]. In practice, this is done by drawing
a random number r ∈ [0,1]. If r < (p(j |i) − �p(j |i)	) then
another walker is spawned to site j . The progenies at site j

have a sign qj = sgn(Hji)qi .
(ii) Clone or death: For each walker on a given site, a death

event is sampled with probability

pdeath(i) = �τ (Hii − S). (6)

If pdeath > 0, the walker is removed from the population. If
pdeath < 0, a walker of opposite sign is created. If |pdeath| > 1,
the integer part of pdeath is realized deterministically, and the
fractional part stochastically.

(3) Annihilation: Pairs of walkers of opposite sign residing
on the same basis state are annihilated. Therefore, at the end of
each time step, each state is solely occupied by walkers having
the same sign.

This update strategy of the walker evolution is a stochasti-
cally exact mapping of the discrete-time Schrödinger equation,
when the simple Euler discrete-time scheme (5) is used.

One of the most significant advantages of FCIQMC is due
to the aforementioned annihilation procedure. This step does
not alter the evolution of the ground state but was shown to be
crucial in systems with a sign problem [27]. The sign problem
in FCIQMC simulations is manifested as the fast growth of an
unphysical solution dominating the ground-state result. The
annihilation procedure can suppress this growth and allow the
simulation to converge to the physical solution, but only if a
minimal and system-dependent walker population is present.
Henceforth, building on the massively parallel nature of the
method, a computationally efficient implementation can offer
an insight into the study of systems with a severe sign problem.
Note, however, that the sign problem remains an NP-hard
problem [43] and is not completely solved by FCIQMC.

III. DRIVEN-DISSIPATIVE QUANTUM MONTE CARLO

We now describe how the dynamics of open quantum
systems following the Liouville–von Neumann equation can
be cast into a Monte Carlo algorithm.

A. Theory

The general problem we aim to solve is that of quantum
system with several degrees of freedom, in the presence of
external driving fields and Markovian coupling to the environ-
ment. The evolution of the steady matrix ρ̂ is then governed
by the Liouville–von Neumann master equation [44]

dρ̂

dt
= L(ρ̂) = −i[Ĥ ,ρ̂] +

∑
i

Li(ρ̂). (7)

The dissipative part of the dynamics is described by∑
i

Li(ρ̂) = −
∑

i

γi

2

[{
F̂

†
i F̂i ,ρ̂

} − 2F̂i ρ̂F̂
†
i

]
, (8)

where F̂i are the jump operators, characterizing the transitions
induced by the environment, and γi are the corresponding
transition rates. Contrary to the Hamiltonian, the Liouville
superoperator is not Hermitian. Dissipative systems evolve
under a one parameter semigroup (eLt , t > 0), generated by
the Liouvillian, resulting in a time evolution which is no longer
unitary. Due to its non-Hermiticity,L has complex eigenvalues
with nonpositive real part. It can be shown that the density
matrix, under very general assumptions, will evolve into an
asymptotic steady state, corresponding to the zero eigenvalue
of L [37].

By introducing an additional shift into Eq. (7) for a diagonal
population control,

dρ̂

dt
= L(ρ̂) − Sρ̂ = L̃(ρ̂). (9)

Equation (9) can be stochastically sampled similarly to the
Hamiltonian case and the NESS is obtained as a Monte Carlo
average of the long-time limit. As in the case of FCIQMC, we
take the first-order Euler approximation,

ρ̂(t + �t) = ρ̂(t) + L̃(ρ̂)�t, (10)

and we introduce a set of walkers which now sample the
amplitudes of basis operators |φi〉〈φj |, from now on referred
to as “configurations.”

The stochastic sampling of the unnormalized density ma-
trix gives access to the expectation value of any quantum-
mechanical observable. The expectation value of observable
Ô at a given instant in time is computed by

〈Ô〉(t) = Tr[Ôρ̂(t)]

Tr[ρ̂(t)]
=

∑
i,j ρij (t)Oji∑

i ρii(t)
. (11)

Once the simulation has asymptotically approached the
steady state—i.e., the shift S has reached the steady-state
eigenvalue of the Liouvillian, S = 0—the numerator and the
denominator can be averaged separately over a sufficiently
large number of iteration steps. Not setting Tr(ρ) = 1 in the
simulation is analogous to not setting 〈ψ |ψ〉 = 1 in the stan-
dard FCIQMC scheme. Equation (11) ensures that the norm is
correctly accounted for in the calculation of expectation values.

B. Multinomial formalism

The original FCIQMC sampling protocol was described,
e.g., in Ref. [26]. Here we developed a variant which optimizes
the computational cost of the evolution generated by off-
diagonal Hamiltonian elements. In the following we refer to
this variant as “multinomial formalism.”

In the original scheme, to perform the stochastic evolution
induced by the off-diagonal Hij elements in Eq. (5), the
algorithm requires a loop over the entire walker population at
each time step. This method becomes computationally heavy
as the walker population increases.

Here we introduce an alternative strategy for the spawning
generation. Let p(j |i) be the probability of choosing the j th
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child starting from site i:

p(j |i) = |Hji |�τ∑
k |Hki |�τ

= |Hji |�τ

Ptot
. (12)

Then the number of actual spawning events Ni
sp occurring for

Ni walkers residing on site i is determined by a stochastic
process following a binomial distribution

f
(
Ni

sp; Ni,Ptot
) = Ni!

Ni
sp!

(
Ni − Ni

sp

)
!
P

Ni
sp

tot (1 − Ptot)
Ni−Ni

sp .

(13)

Then the Ni
sp walkers are divided into groups {M1, . . . ,Ml},

where l is the number of states connected to the starting state by
a nonzero Hamiltonian element. For each group, Mj children
are spawned to the j th site with sign qj = sgn(Hji)qi . The set
of integers {Mj } is drawn randomly following the multinomial
distribution:

fM

(
M1, . . . ,Ml ; N

i
sp,p(1|i), . . . ,p(l|i))

= Ni
sp!

M1! · · · Ml!
p(1|i)M1 × · · · × p(l|i)Ml . (14)

Therefore, in each time step we perform a loop over
the currently populated basis states rather than over the
whole walker population. In systems with local coupling the
Hamiltonian is represented by a highly sparse matrix, and a
computationally effective state representation makes the extra
memory allocation negligible (for an occupied site i it is
necessary to store all the possible connected states with the
corresponding probabilities). Efficient algorithms for binomial
and multinomial random number generation are also available
in the literature [45–47].

C. Algorithm

The dynamics of the walker population is determined by
a set of rules designed to stochastically sample Eq. (10).
However, the elements of the density matrix are complex
valued. Similarly to Ref. [30], we can sample a complex density
matrix with two types of walkers, respectively, for the real and
imaginary parts. If the density matrix is expressed in vectorized
form, the shifted Liouvillian superoperator can be expressed
in matrix form by using Kronecker products as [48]

L̃ = −i(1 ⊗ Ĥ − Ĥ T ⊗ 1) − S1 ⊗ 1

+
∑

i

γi

2

(
2F̂ ∗

i ⊗ F̂i − 1 ⊗ F̂
†
i F̂i − F̂ T

i F̂ ∗
i ⊗ 1

)
. (15)

Then Eq. (9) can be written in the form

dρij

dt
= L̃ij

ij ρij +
∑

l,m�=i,j

L̃lm
ij ρlm, (16)

where L̃lm
ij are the matrix elements of the superoperator. Here

ρij represents the now complex-valued population on a given
configuration |φi〉〈φj |.

For the sampling protocol we use the multinomial formal-
ism, described in Sec. III B. Let us refer to this scheme as a
function, introducing a shorthand notation

y = Multinomial(x), (17)

where x takes values of the Lindbladian superoperator ele-
ments and y returns the number of spawned walkers on a
given configuration, as obtained by the procedure defined in
Eqs. (12)–(14). At each time step, we loop over the list of
currently occupied configurations and perform the following
steps:

(i) Spawning: Consider the complex walker population
residing on ρij and perform spawning to all the connected
configurations. The real (Re) and imaginary (Im) parts of
L̃lm

ij are considered in turn and two spawning attempts are
realized respectively for real and imaginary parents. The
number of walkers spawned to each ρlm are determined by
the multinomial formalism. For real parents[

NRe
lm = Multinomial

(
Re

(
L̃lm

ij

))
sgn = sgn

(
Re(ρij )Re

(
L̃lm

ij

))
,

(18)

[
N Im

lm = Multinomial
(
Im

(
L̃lm

ij

))
sgn = sgn

(
Re(ρij )Im

(
L̃lm

ij

))
,

(19)

and for imaginary parent walkers[
NRe

lm = Multinomial
(
Im

(
L̃lm

ij

))
sgn = −sgn

(
Im(ρij )Im

(
L̃lm

ij

))
,

(20)

[
N Im

lm = Multinomial
(
Re

(
L̃lm

ij

))
sgn = sgn

(
Im(ρij )Re

(
L̃lm

ij

))
,

(21)

where NRe
lm and N Im

lm are the number of real and imaginary walk-
ers being spawned to configuration ρlm and “sgn” indicates the
sign of the progeny.

(ii) Clone or death: This step is required because a real
(imaginary) walker can produce an imaginary (real) walker on
the same configuration. The spawning occurs on-site with a
population determined by the binomial distribution. The real
and imaginary parts of L̃ij

ij are considered in turn and two
spawning attempts are realized respectively for the real and
imaginary population.

(iii) Annihilation: On a given site the real and imaginary
population are considered in turn, and pairs of walkers having
opposite signs are removed from the simulation.

Unlike in FCIQMC, here the target value of the diagonal
shift S is known. In the infinite-time limit the master equation is
assumed to drive the density matrix into the steady state, which
by definition belongs to the zero eigenvalue of the Lindbladian.
Therefore, the time evolution of the shift S will indicate if
convergence is reached and one can start gathering statistics
on the observables. As before, the shift is slowly adjusted
to maintain a constant walker population. Since estimators
for most operators of interest only receive contributions from
walkers on or near the diagonal elements, we chose to control
the amount of population distributed along the diagonal of
the density matrix. The value of the shift is then adjusted
according to the familiar shift-update algorithm implemented
in FCIQMC [26] calculations:

S(t) = S(t − �t) + δ

�t
log10

(
Nw(t)

Nw(t − �t)

)
, (22)
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where δ is a damping parameter, and Nw is the total weight
of real walkers residing on diagonal density-matrix elements.
The method does not have a built-in constraint on the diagonal
elements being real. The value of the imaginary part fluctuates
around zero and its expectation value naturally vanishes during
the simulation.

IV. INITIATOR APPROACH AND IMPORTANCE
SAMPLING

The algorithm described in Sec. III allows the stochastic
sampling of the steady-state density matrix of open quantum
systems whose dynamics follows the Liouville–von Neumann
equation. However, with the increase in the number of con-
figurations, the walker population tends to become dilute,
resulting in a situation where the simulation contains only
a few walkers per configuration. This leads to an increased
statistical error thus reducing dramatically the accuracy of
the sampling. To address this issue one needs to increase
the walker number in the system which—with large system
sizes—becomes computationally unfeasible.

To overcome this issue two different methods were intro-
duced: initiator approach and importance sampling. Each of the
techniques reduces the minimal required walker population by
decreasing the number of simultaneously occupied configura-
tions; however, the strategy of selecting the configurations to
be sampled is fundamentally different. The initiator approach
allows the significant configurations to emerge naturally during
the simulation, while importance sampling gives the possibility
to drive the walker population to a selected subset of presum-
ably relevant configurations.

These methods can improve the sampling quality with great
success; however, they have to be applied carefully, as both
introduce a bias on the result.

A. Initiator approach

Our initiator approach is based on the FCIQMC adaptation
detailed in Ref. [29]. For the newly spawned walkers an ad-
ditional survival criteria is introduced which can dramatically
reduce the population required to reach convergence. Some
of the configurations are tagged as “initiator,” which have
the ability to spawn progeny onto unoccupied basis states.
However, progeny of the noninitiator states can only survive if
they spawn to a configuration that was previously occupied or
to diagonal elements. All the diagonal configurations are ini-
tiators by definition and, during the simulation, a configuration
might become initiator if its population exceeds a preset value
(Ilimit).

This method results in a series of systematically improvable
approximations which will tend to the original algorithm in
three limits:

(i) With decreasing Ilimit every basis element will become
initiator. All the progeny survives regardless of the parent state,
which is equivalent to the original method.

(ii) With increasing total population all configuration will
acquire walkers; therefore, all spawned children will survive
regardless of the flag of the parent state.

0 200 400 600 800 1000
0.25

0.3

0.35

0.4

0.45

0.5

FIG. 1. The initiator approach used to extrapolate the Mz magne-
tization (in units of h̄) in the case of the 4 × 4 dissipative XYZ Heisen-
berg model. Parameters of the model are Jx/γ = 0.225, Jy/γ =
0.335, Jz/γ = 0.25, h = 0.1, θ = 0. Parameters of the simulation
are p = 2.5, with a population of 106 walkers. The straight line is a
linear extrapolation of the lowest initiator values.

(iii) Extending the initiator space by definition will result
again in all configurations becoming initiators; consequently,
all progeny will survive.

Setting an initiator limit introduces a dynamical truncation
on the available configurations, leading to a biased result. To
compute the unbiased expectation values, we progressively
decrease the initiator limit in different simulations and fit the
estimated expectation values, thus extrapolating the value in
the limit Ilimit → 0 (Fig. 1).

B. Importance sampling

We start by identifying the basis elements whose sampling
needs to be improved. Then a straightforward way to do so is by
reducing the probability of spawning out these configurations.
Walkers that do reside on unessential elements are given a
correspondingly larger weight, hence the expectation values
of the observables will be unchanged. We define the following
simple importance sampling procedure:

The evolution of the density matrix in the DDQMC for-
malism follows Eq. (16). To associate weights to the matrix
elements depending on their importance we multiply them a
factor wij :

ρij → ρ̃ij = wijρij . (23)

The time evolution of the importance-sampled density matrix
then becomes

dρ̃ij

dt
= L̃ij

ij ρ̃ij +
∑

l,m�=i,j

(
wij L̃lm

ij

1

wlm

)
ρ̃lm, (24)

which is fully analogous to Eq. (16) and can be simulated by
the DDQMC method. The expectation value of an observable
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2.5

3

3.5

4

4.5
10 6

DDQMC + initiator + importance s.
DDQMC

FIG. 2. The amount of simultaneously occupied density-matrix
elements, with and without using the initiator approach and impor-
tance sampling in the case of the 4 × 4 XYZ Heisenberg lattice.
Parameters of the model are Jx/γ = 0.225, Jy/γ = 0.225, Jz/γ =
0.25, h = 0.1, θ = 0. Parameters of the simulation are p = 1.5,
Ilimit = 25; 75 with a population of 108 walkers.

Ô is thus

〈Ô〉 =
∑

ij

ρ̃ij

wij
Oji∑

i ρ̃ii

. (25)

In this work we introduce a single importance sampling
parameter p > 0 and give all the off-diagonal elements a
weight wij = e−p. Meanwhile, the diagonal coefficients are
not altered. This strategy focuses on sampling the diagonal
density-matrix elements and gives an easy access to tune the
strength of the importance sampling.

Figure 2 shows the amount of simultaneously occupied
density-matrix elements before and after using the initiator
approach and importance sampling given the XYZ Heisenberg
lattice model that we describe later.

V. RESULTS

To demonstrate the effectiveness of DDQMC, we simulated
the two-dimensional spin- 1

2 XYZ Heisenberg lattice in the
presence of a dissipating channel which tends to relax each
spin into the |sz = − 1

2 〉 state.
The model follows the Liouville–von Neumann equation

and the Hamiltonian is governed by (h̄ = 1)

Ĥ =
∑
〈l,m〉

(
JxŜ

x
l Ŝx

m + JyŜ
y

l Ŝy
m + JzŜ

z
l Ŝ

z
m

)
, (26)

dρ̂

dt
= −i[Ĥ ,ρ̂] − γ

2

∑
k

[{
Ŝ+

k Ŝ−
k ,ρ̂

} − 2Ŝ−
k ρ̂Ŝ+

k

]
, (27)

where Ŝα
l are the spin operators acting on the lth spin, Jα are

the coupling constants between nearest-neighbour spins, γ is
the dissipation rate, and Ŝ±

m = Ŝx
m ± iŜ

y
m.

Recently, the system has attracted significant interest be-
cause the competition between the coherent Hamiltonian
dynamics and the incoherent spin flips leads to a dissipative
phase transition. Due to the anisotropy, the Hamiltonian part
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DDQMC

0 1 2 3 4

10 4
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-0.9
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-0.885
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-0.895

-0.89

-0.885

(a)

(b)

FIG. 3. The exact and the DDQMC magnetization values (in
units of h̄) for the 3 × 3 dissipative XYZ Heisenberg lattice with
periodic boundary conditions. The coupling parameters are Jx/γ =
0.225, Jy/γ = 0.335, and Jz/γ = 0.25. The diagonal population was
limited to (a) 504 and (b) 206 walkers.

induces a nonzero spin expectation value on the xy plane, while
dissipation would drive each site to the spin-down state. This
competition leads to a phase transition from a paramagnetic
phase (with no magnetization in the xy plane) to a magnetically
organized phase (which presents a finite polarization in the
xy plane). Both the Gutzwiller mean-field theory [39–41] and
the corner space renormalization method [19,38] predicts this
dissipative phase transition.

To study the model we chose three different lattice sizes:
2 × 2, 3 × 3, and 4 × 4. The first two sizes are small enough
to derive an exact numerical solution of the master equation in
the steady state, thus allowing a direct check of the accuracy
of our DDQMC results. In the case of the 4 × 4 lattice, the
magnetization is compared with those obtained by the Monte
Carlo wave-function technique.

A. Magnetization in the steady state

The steady-state magnetization per site is defined as

Mz = 1

N

N∑
k=1

Tr
(
ρ̂σ̂ z

k

)
, (28)

where N is the number of lattice sites.
Figure 3(a) shows the magnetization of the 3 × 3 lattice as

a function of the Monte Carlo iteration step with a diagonal
population of 504 walkers. The exact solution obtained by
directly solving the linear system is also plotted. Increasing the
diagonal population to 206 reduces the statistical error as seen
in the corresponding result in Fig. 3(b). In Fig. 4, we present
the magnetization per site Mz as a function of the normalized
coupling constant Jy/γ for square lattices of different size.
To assess the validity of the method we compare it with exact
numerical solutions for the steady state in the case of the two
smallest lattice sizes. For a 4 × 4 lattice, the exact numerical
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FIG. 4. The magnetization Mz per site (in units of h̄) as a function
of the normalized coupling parameter Jy/γ for different lattice sizes.
The other coupling parameters are Jx/γ = 0.225 and Jz/γ = 0.25.
The exact (2 × 2 and 3 × 3) and MCWF (4 × 4) results are plotted for
comparison. Error bars, when not shown, are smaller than the symbol
size.

solution of the master equation is beyond computational reach,
and we compare instead with results obtained by the Monte
Carlo wave-function method [16], for which we accurately
verified the convergence with respect to the number of quantum
trajectories and to the time-step size. Both the exact and Monte
Carlo wave-function calculations are in agreement with the one
obtained by DDQMC.

B. Angularly averaged susceptibility

Following the scheme presented in Ref. [19], we study the
system in the presence of an applied magnetic field in the xy

plane:

Ĥext =
∑

i

h
[

cos (θ )σ̂ x
i + sin (θ )σ̂ y

i

]
. (29)

The linear response is then summarized in the 2 × 2 suscepti-
bility tensor

χαβ = ∂Mα

∂hβ

∣∣∣
h = 0

, (30)

with α, β = x, y.
It is convenient to calculate one single quantity, the angu-

larly averaged susceptibility:

χav = 1

2π

∫ 2π

0
dθ

∂| 
M(h,θ )|
∂h

∣∣∣∣∣
h = 0

, (31)

where

∂| 
M(h,θ )|
∂h

∣∣∣∣∣
h = 0

=
∣∣∣∣(χxx cos(θ ) + χxy sin(θ )

χyx cos(θ ) + χyy sin(θ )

)∣∣∣∣. (32)

For a more complete derivation readers are referred to
Ref. [19]. In Fig. 5, we present the angularly averaged suscep-

0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

2.5
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3.5

4

4.5
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5.5

6

6.5

7

7.5
2x2
3x3
4x4

FIG. 5. The angle-averaged susceptibility χav per site as a func-
tion of the normalized coupling parameter Jy/γ for different lattice
sizes. The other coupling parameters are Jx/γ = 0.225 and Jz/γ =
0.25. Each point on the plot was determined by 21 simulations,
which corresponds to 525 calculations per lattice size. For each point,
we considered 3 + 3 + 1 values of the applied field (three for each
in-plane direction and one with no external field), and for each setting
an extrapolation over three different initiator values was carried out.

tibility χav as a function of the normalized coupling parameter
Jy/γ for different lattice sizes.

The magnetic susceptibility for the different lattice sizes
exhibits a peak of increasing height which qualitatively corre-
sponds to the results obtained in Ref. [19].

VI. OUTLOOK

The DDQMC method presented here constitutes a basic
PMC approach to the nonequilibrium steady state of open
quantum systems. As such, it contains only the basic building
blocks of the PMC method, and its effectiveness may be
considerably improved by introducing any of the several tools
that are common in other PMC schemes. Here, we describe as
an outlook three such possible improvements.

The first possible improvement consists of the implemen-
tation of a mixed-estimator scheme, in analogy with the one
used in projector and diffusion Monte Carlo to find the ground
state of Hamiltonian systems [20–22]. Here, a possible mixed-
estimator strategy may consist of formally carrying out an exact
real-time evolution, starting from a DDQMC sampled density
matrix. More specifically, let us assume that at time t the current
DDQMC sample of the density matrix is ρ̂(t). We can formally
apply the exact-time evolution for an additional time T and
then evaluate the expectation value of an observable Ô at time
t + T as

〈Ô〉 = Tr(ÔeLT ρ̂(t))

Tr(eLT ρ̂(t))
= Tr(ÔeLT ρ̂(t))

Tr(ρ̂(t))
, (33)

where the second equality results from the trace-preserving
character of the time evolution. In the limit T → ∞, Eq. (33)
provides the steady-state expectation value independently of
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the actual value of the density matrix ρ̂(t) when assuming
that a unique steady state exists. A mixed-estimator strategy
would then consist in building a “trial” observable ÔT which
can still be efficiently computed element-wise, and such that
ÔT � ÔH (T ) = ÔeLT . Here, ÔH (t) represents the Heisen-
berg picture of the observable Ô and, for time-independent
Liouvillian maps, it obeys the adjoint quantum master equation
dÔH (t)

dt
= L†ÔH (t) [49]. Hence, the mixed estimator approach

in the present case would require the knowledge of an approx-
imate time dependence for ÔH (t), which may be obtained, for
instance, from a time-dependent variational principle [50,51]
applied to a separable or short-range-correlated ansatz for the
observable.

A second improvement would consist of using a “guiding
density matrix” for the importance sampling. A natural choice
for such a guiding density matrix would again be a variational
ansatz, because the variational principle for the NESS is now
well established [6], and some variational approaches have
already been developed [52–54].

A possible application of the method could be to sample the
full-time dynamics of the model, in analogy to the way in which
finite-temperature states are sampled in the finite-temperature
density-matrix formalism introduced in Refs. [33–35]. In fact,
sampling the real-time dynamics would require averaging over
several Monte Carlo instances in order to accumulate sufficient
statistics for each given time. The steady state, on the other
hand, can be sampled from one single Monte Carlo realization,
once stationarity has been reached in the simulation.

Finally, the present scheme is based on the Euler method
(10) for the numerical solution of the time-dependent master
equation. The Euler method is a first-order method in the time
step and is only stable if �t is chosen to be smaller than the
inverse of the full spectral width of the master equation. In
PMC, several approaches have been proposed to sample a
higher-order discrete-time-step propagator [24], or even the
exact one [55]. While a similar approach would be highly
beneficial to FCIQMC and DDQMC, the question is still open
whether higher-order propagators may be efficiently sampled

within the spawn-annihilation sampling protocol characteriz-
ing these Monte Carlo methods.

VII. CONCLUSIONS

We have introduced a quantum Monte Carlo approach to
open many-body quantum systems with Markovian system-
bath coupling, called DDQMC. The method is based on the
FCIQMC algorithm exploiting the analogy between the long-
time dynamics of the Lindbladian master equation and the
imaginary-time Schrödinger equation. DDQMC allows direct
sampling of the steady-state density matrices in any discrete
basis set, and in all cases studied it has proven to be accurate.

DDQMC, as FCIQMC, uses an annihilation procedure
which helps to alleviate the sign problem. The introduction
of the initiator approach and importance sampling can lead to
a significant improvement in the statistical accuracy and reduce
the required walker population. The validity of the method was
proven by investigating a dissipative phase transition on the
two-dimensional Heisenberg model. The defining feature of
DDQMC is that it samples the whole density matrix and it does
not introduce a truncation in Hilbert space. Experience showed
that the applicability of the code does not solely depend on
the system size, but also on the correlations characterizing the
steady state. The application presented in this work is a proof of
principle, demonstrating the possibility to stochastically sam-
ple the Liouville–von Neumann equation in a finite-difference
approximation. DDQMC holds promise as a powerful tool in
the study of open quantum systems.
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