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The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable.
It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-
Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping
between instantaneous system eigenstates. This phenomenon is first observed in a computational model and
then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter
case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary
in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found
to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also
advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always
yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following
persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases
of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow
cycling and should stimulate future applications of nonunitary dynamics.
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I. INTRODUCTION

Spectral and dynamical aspects of non-Hermitian systems
have attracted considerable theoretical and experimental inter-
ests [1–5]. Such systems may be regarded as certain extensions
of quantum mechanics or phenomenological descriptions of
open quantum systems [6], but more often they model realistic
systems in the classical domain with loss and gain, such as
waveguides [7,8], LRC circuits [9], and mechanical oscillators
[10–14], as well as acoustic systems [15,16]. However, little
is known about the dynamics of these systems when it is
nonunitary. A notable exception was the recent discovery about
the impossibility to achieve the adiabatic following due to the
circling around exceptional points [17–19].

The nonunitary dynamics of non-Hermitian systems is thus
expected to be highly useful to further explore and extend
the physics underlying the quantum adiabatic theorem [20].
Indeed, we shall expose in this work a new face of adiabatic fol-
lowing dynamics, featured by a remarkable hopping behavior
in system’s eigenrepresentation. This hopping yields piecewise
adiabatic following. Whether or not such piecewise adiabatic
following occurs is determined by a phase boundary in the
parameter space, thus identified as a true critical behavior.

Below we work on periodically driven non-Hermitian sys-
tems, where nonunitary but stable time evolution is recently
shown to be possible [21,22]. Thanks to this stable nature of a
wide class of non-Hermitian systems, it is convenient to adopt
conventional quantum mechanics concepts and tools to ex-
plore periodically driven non-Hermitian systems. In particular,
recognizing the importance of geometrical phases in physics
in general [23], we shall examine closely the behavior of
the Aharonov-Anandan (AA) phase [24] in nonunitary cyclic
dynamics to characterize the geometrical aspects of adiabatic
following. It is well known that the Berry phase reflects the

geometry of instantaneous Hamiltonian eigenstates in a pro-
jective Hilbert space [25], whereas the AA phase [24] reflects
the geometry of a curve in a projective Hilbert space traced out
by actual cyclic time evolution (one important application of
the AA phase is nonadiabatic holonomic quantum computation
[26]). By definition then, the Berry phase and the AA phase
in the slow driving limit can be regarded as the same in the
presence of ideal adiabatic following.

For a Hermitian Hamiltonian varies sufficiently slowly; then
the system may always remain in an instantaneous energy
eigenstate. In this case, the AA phase reduces to the Berry phase
in the slow driving limit. However, anticipating the possible
breakdown of adiabatic following in non-Hermitian systems,
one should not preassume any correspondence between the
Berry phase and the AA phase in the slow driving limit. To
address this issue and also to use the AA phase to depict nonuni-
tary dynamics, we surveyed the literature devoted to generaliz-
ing the geometry phases to cases with nonunitary cycling. For
example, Samuel and Bhandari generalized Berry phase in the
most general setting and obtained always real Berry phases
[27]. Mostafazadeh proposed a real Berry phase using the duel
eigenstates in the biorthonormal basis [28]. Complex Berry
phases or complex AA phases in non-Hermitian systems were
obtained or positively discussed in other studies [29–35]. As
elaborated in Sec. II, consistent with the work by Samuel and
Bhandari [27], we adopt a definition for the AA phase that
can be regarded as a natural extension of a previous AA phase
expression [32]. Our definition for the AA phase always yields
real phases, which can be regarded as one side contribution of
this work and lays an excellent foundation for our quantitative
investigations below.

Three specific periodically driven non-Hermitian systems
are studied in this work. In the first exactly solvable model,
it is seen that, as the driving period increases, the AA phase
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smoothly approaches the Berry phase. This feature is a clear
indicator that there is no issue to assume adiabatic following.
In the second model, in one parameter regime it behaves as in
the first model, but in other parameter regimes, the AA phase
is found to violently oscillate without having a limit at all in
the slow driving limit. This is explained by computationally
observing an exotic hopping phenomenon in representation of
instantaneous system eigenstates. To develop more theoretical
understandings, we turn to the third model, the exactly solvable
Berry-Uzdin model [17], but investigated differently than
before. Using the third model, we are able to show theoretically
that the piecewise adiabatic following interrupted by a hopping
behavior originates from a phase transition in the parameter
space. We explain the phase transition boundary by the Stokes
phenomenon. Somewhat surprisingly, the breakdown of adi-
abatic following in our models occurs in a regime far away
from the exceptional points in the parameter space, thereby
distinguishing our findings from previous discussions.

This paper is organized as follows. In Sec. II, we provide
an original framework regarding an always real definition of
the AA phase. In Sec. III, we present our analysis for our
first exactly solvable model. We then computationally study
a second model in Sec. IV. To develop a theory of piecewise
adiabatic following based on our observations made in Sec.
IV, we theoretically study the Berry-Uzdin model in Sec. V.
Section VI concludes this work.

II. REVISITING AA PHASE IN NONUNITARY DYNAMICS

A. General considerations

Consider a general time-evolving state |ψ(t)〉 being cyclic
at t = T , with |ψ(T )〉 = eiα|ψ(0)〉. The context of |ψ(t)〉 and
its detailed time dependence (may satisfy a linear or even non-
linear equation of motion) are not needed here. Because the dy-
namics under consideration is nonunitary in general, α can be
complex. The above-defined phase factor α can be expressed as

α = 1

i
ln

〈ψ(0)|ψ(T )〉
〈ψ(0)|ψ(0)〉 . (1)

In this paper, we adopt a single base notation with the bra
states being defined as the Hermitian conjugate of the ket states,
〈·| ≡ |·〉†. This is simpler than the use of biorthonormal basis
adopted in some literature. The normalization of |ψ(t)〉 is of no
interest in developing geometrical insights into the dynamics.
Indeed, since the geometry in the projective Hilbert space is the
main concern, there is no reason to be particularly interested in
the time dependence of the normalization of |ψ(t)〉. Associated
with |ψ(t)〉, we now define a normalized time-evolving state as

|φ(t)〉 ≡ |ψ(t)〉√〈ψ(t)|ψ(t)〉 . (2)

Note again that this normalization procedure only removes
the non-norm-preserving aspect of nonunitary dynamics, with
other impact of nonunitary dynamics still captured by the
normalized state |φ(t)〉. We then have

〈φ(t)|φ̇(t)〉 = 〈ψ(t)|ψ̇(t)〉
〈ψ(t)|ψ(t)〉 − 1

2

d

dt
ln〈ψ(t)|ψ(t)〉. (3)

Here the overhead dot denotes the time derivative. It is
obvious that 〈φ(t)|φ̇(t)〉 is always purely imaginary because

〈φ(t)|φ(t)〉 = 1. Via the construction above, |φ(t)〉 is also a
cyclic state, with the following property:

|φ(T )〉 = ei Re α|φ(0)〉. (4)

Consider next the following time-evolving state:

|ϕ(t)〉 ≡ e−if (t)|φ(t)〉, (5)

with the real function f (t) satisfying

f (T ) − f (0) = Re α. (6)

Clearly,

|ϕ(T )〉 = |ϕ(0)〉. (7)

So |ϕ(t)〉 is a periodic function of t , thus being a single-valued
function along a closed curve in the projective Hilbert space
traced out by |ψ(t)〉. A connection of |ϕ(t)〉 along this closed
curve, namely, 〈ϕ(t)|ϕ̇(t)〉, can be well defined and easily
evaluated. One immediately has

〈ϕ(t)|ϕ̇(t)〉 = −iḟ (t) + 〈φ(t)|φ̇(t)〉. (8)

The AA phase is then obtained as an integral of the connection
of |ϕ(t)〉 along the closed curve in the projective Hilbert space,

β ≡ i

∫ T

0
dt〈ϕ(t)|ϕ̇(t)〉

= f (T ) − f (0) + i

∫ T

0
dt〈φ(t)|φ̇(t)〉 (9)

= 1

i
ln

〈ψ(0)|ψ(T )〉
〈ψ(0)|ψ(0)〉 + i

∫ T

0
dt

〈ψ(t)|ψ̇(t)〉
〈ψ(t)|ψ(t)〉 (10)

= α + i

∫ T

0
dt

〈ψ(t)|ψ̇(t)〉
〈ψ(t)|ψ(t)〉 . (11)

A few important remarks are in order. First, because
〈ϕ(t)|ϕ̇(t)〉 is purely imaginary as 〈φ(t)|φ̇(t)〉, the AA phase
β obtained above is always real, irrespective of the context
of the cyclic state |ψ(t)〉. Second, β is gauge invariant [32].
That is, multiplying |ψ(t)〉 by an arbitrary time-dependent
c-number factor, one obtains precisely the same AA phase.
This further confirms that the AA phase obtained above reflects
the geometry of a closed curve in a projective Hilbert space.
In addition, it can be also easily checked that β can be
understood as a consequence of a parallel transport along
this curve. Third, if the cyclic dynamics is known to arise
from adiabatic following of some instantaneous eigenstates
of some (non-Hermitian) Hamiltonian (see below), then the
AA phase will become the Berry phase by definition, and
the resulting Berry phase must be always real, too. Indeed,
if the cyclic state follows instantaneous energy eigenstates,
then they differ only by a dynamical phase factor and the
gauge invariance guarantees that the AA phase is the same
as the Berry phase. Fourth, the above final expression for the
AA phase is almost the same as in Ref. [32], with the only
difference being the 〈ψ(0)|ψ(0)〉 factor in the first term of
Eq. (10). That is, the earlier expression for the AA phase [32]
can equally apply to arbitrary nonunitary dynamics so long as
〈ψ(0)|ψ(0)〉 = 1, with Eq. (10) reducing to Eq. (22) in [32].
This fourth point is one very interesting (side) finding here.
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Interestingly, authors of Ref. [32] did not realize the generality
and the always real nature of the β expression above. Instead,
they [33] adopted an approach based on a biorthonormal basis
[29] to tackle nonunitary dynamics. That approach yields a
complex Berry connection and complex geometric phases in
general [29,33,34], of which the physics is unclear as compared
with the original meaning of the geometric phase.

B. Nonunitary dynamics in systems
with non-Hermitian Hamiltonians

If |ψ(t)〉 is governed by a Schrödinger equation with a non-
Hermitian Hamiltonian H (t),

ih̄|ψ̇(t)〉 = H (t)|ψ(t)〉, (12)

then Eq. (3) becomes

〈φ(t)|φ̇(t)〉 = 1

2ih̄
〈φ(t)|H (t) + H †(t)|φ(t)〉. (13)

The AA phase obtained in Eq. (9) becomes

β = Re α + 1

2h̄

∫ T

0
dt〈φ(t)|H (t) + H †(t)|φ(t)〉

= Re α + 1

h̄
Re

∫ T

0
dt〈φ(t)|H (t)|φ(t)〉

= Re α + 1

h̄
Re

∫ T

0
dt

〈ψ(t)|H (t)|ψ(t)〉
〈ψ(t)|ψ(t)〉 . (14)

Interestingly, plugging Eq. (12) into Eq. (11), one arrives at an
alternative but equivalent expression, namely,

β = α + 1

h̄

∫ T

0
dt

〈ψ(t)|H (t)|ψ(t)〉
〈ψ(t)|ψ(t)〉 . (15)

However, it should be stressed that the AA phase expressions
of Eqs. (9) and (11) are general and Eq. (14) and Eq. (15) only
apply to those cases where the time evolution is governed by
a Schrödinger equation. Related to this, it is also necessary to
discuss the dynamical phase. It is often said that the overall
phase of a cyclic state is the sum of a dynamical phase and a
geometric phase. Applying this understanding to Eq. (11) or
Eq. (15), it is seen that α is the overall phase complex in general,
whereas the dynamical phase − 1

h̄

∫ T

0 dt
〈ψ(t)|H (t)|ψ(t)〉

〈ψ(t)|ψ(t)〉 is also
complex in general. On the other hand, Eq. (14) indicates that,
in representation of normalized states |φ(t)〉, both the overall
phase and the dynamical phase are always real. This second
perspective is consistent with the one adopted by Samuel and
Bhandari [27]. It is important to note that the above two pictures
based on |ψ(t)〉 and |φ(t)〉 are equivalent because the AA
phase is gauge invariant. The earlier criticisms in Ref. [31]
on Ref. [27] in the related literature are hence unfounded.

III. SOLVABLE MODEL WITH ADIABATIC FOLLOWING

In this section, we investigate a periodically driven, non-
Hermitian Hamiltonian (in dimensionless units) treated pre-
viously [29,31,34] as our first model. The Hamiltonian is
given by

H1(t) =
(

ε e−iωt

eiωt −ε

)
, (16)

where ω is real and ε is complex in general. The propagator
U (t) of this system can be calculated analytically. An arbi-
trary eigenstate of the one-period (Floquet) operator U (T )
is called “cyclic,” because upon one period time evolution,
it only gains a phase factor (which can be complex). The
possible breakdown of adiabatic following can be examined by
analyzing the time-dependent projection of one time-evolving
cyclic state onto the instantaneous eigenstates of H1(t). Using
the AA phase as one simple quantitative characterization, it
is of particular interest to inspect if the AA phase in the slow
driving limit can approach the Berry phase.

The Floquet operator U (T ) in general has two eigenstates
|u±〉, which generate the following two cyclic states:

|F±(t)〉 ≡ U (t)|u±〉 = e
∓i	t−i

1
2 ωt+iγ±

(
cos

(
1
2�±

)
sin

(
1
2�±

)
ei�±

)
,

(17)

where

	 ≡
√

1 + (
ε − 1

2ω
)2

, (18)

�± = 2 cot−1
∣∣ε − 1

2ω ± 	
∣∣, (19)

�± = ωt − γ±, (20)

and γ± is the phase of the complex variable (ε − 1
2ω ± 	).

The AA phase β± for |F±(t)〉 is then found by plugging
into Eq. (10). Specifically,

β± = 1

i
ln

〈F±(0)|F±(T )〉
〈F±(0)|F±(0)〉 + i

∫ T

0
dt

〈F±(t)|Ḟ±(t)〉
〈F±(t)|F±(t)〉 . (21)

As elaborated in Sec. II, the above expression for the AA phase
is always real in arbitrary nonunitary dynamics. For the model
in Eq. (16), we obtain

β± = 2π
∣∣ε − 1

2ω ± 	
∣∣2∣∣ε − 1

2ω ± 	
∣∣2 + 1

. (22)

Clearly, AA phases in Eq. (22) are nothing but the half of the
solid angles traced out by the cyclic states |F±(t)〉 on the Bloch
sphere, i.e.,

β± = π (1 + cos �±), (23)

where �± is given in Eq. (19). This explicitly confirms the
physical meaning of the AA phase adopted in this work.

We are now ready to examine what happens in the slow
driving limit, namely, cases with ω → 0. First of all, the AA
phases in Eq. (22) reduce to

β± → 2π |ε ± √
1 + ε2|2

|ε ± √
1 + ε2|2 + 1

. (24)

On the other hand, cyclic states |F±(t)〉 are found to reduce to
instantaneous energy eigenstates of H1(t) up to overall phases.
This indicates that β± obtained above become Berry phases
(they are certainly real). Interestingly, the Berry phase obtained
in Ref. [29] in our notation would be β−

GW = π (1 − ε√
1+ε2 ),

which is complex in general and does not have a simple
geometrical interpretation as the original Berry phase.
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IV. COMPUTATIONAL STUDIES
OF A “HOPPING” MODEL

Here we computationally study a second simple model with
the following non-Hermitian Hamiltonian (in dimensionless
units):

H2(t) =
(

1 iμ(cos ωt + i)

iμ(cos ωt + i) −1

)
. (25)

As previously shown by us [22], though H2(t) is non-
Hermitian, its time evolution can be stable because its cyclic
states may only acquire a real overall phase after one period.
Our results discussed below are indeed in this stable region.
Analytical cyclic states here are not available. We hence use
two numerically obtained cyclic states as the initial states. We
then analyze the details of the resulting cyclic time evolution in
terms of the ratio of the two components of the time-evolving
state, as compared with the instantaneous eigenstates of H2(t).
Of particular interest here is what happens if the driving period
T = 2π/ω becomes large.

For small values of μ, it is found that the cyclic states can
follow the instantaneous eigenstates of H2(t) as the driving
slows down. As illustrated in Fig. 1, for T of the order of
hundreds, adiabatic following of the cyclic states with the H2(t)
eigenstates is already clearly visible. Indeed, the AA phase
obtained numerically approaches a zero geometric phase, in
agreement with a direct calculation [based on instantaneous
eigenstates of H2(t)] that gives a zero Berry phase. All these
features are analogous to what we obtain in Sec. III.

However, as shown in Fig. 2, for larger values ofμ, the above
observations break down completely. In cases of slow driving,
the time evolution of the cyclic states now displays exotic
dynamics by hopping between two instantaneous eigenstates.
Before and after one hopping, a cyclic state tends to follow one
of the instantaneous eigenstates of H2(t). That is, the adiabatic
following is only true piecewise. This clearly shows that when
the overall time evolution is stable, local instability can still
dominate over the dynamics during certain time windows
that can be very small compared with the driving period. It
should be noted that the hopping behavior observed here is
displayed by a time-evolving state projected onto well-behaved

FIG. 1. Comparison between the cyclic states of the model
Eq. (25) for μ = 0.2 and the instantaneous eigenstates of H2(t)
for sufficiently slow driving (T = 200). For a state [a(t),b(t)]T , the
plotted vertical coordinates represent the time dependence of the real
and imaginary parts of the ratios [denoted ψ = b(t)/a(t)] of the two
components of the time-evolving cyclic states (solid lines) or that
of the eigenstates of H2(t) (dotted line). Panels (a) and (b) are for
two different cyclic states. Note that the solid lines almost perfectly
overlapping with dotted lines indicates adiabatic following.

FIG. 2. Comparison between two cyclic states of the model de-
picted by Eq. (25) forμ = 1.2 and the two instantaneous eigenstates of
H2(t) for sufficiently slow driving (T = 100). For a state [a(t),b(t)]T ,
the plotted vertical coordinates represent the ratios [denoted ψ =
b(t)/a(t)] of the two components of time-evolving cyclic states (solid
lines), as compared with the parallel behavior of two instantaneous
eigenstates of H2(t) (upper and lower dotted lines). Panels (a) and (b)
are for one cyclic state and panels (c) and (d) are for the other cyclic
state. Note that both cyclic states here exhibit hopping.

instantaneous eigenstates [see, e.g., Eq. (29)]. It is hence unre-
lated to any numerical instabilities when parametrically tracing
the instantaneous eigenstates of a non-Hermitian system [36].

The hopping phenomenon here thus demonstrates that
adiabatic following in nonunitary dynamics may not hold.
We now discuss one important difference between our finding
and previous studies. In Refs. [19,37], one typically uses an
instantaneous eigenstate of the Hamiltonian as the initial state,
and then adiabatic following is observed to break down due
to non-negligible accumulation of nonadiabatic transitions in
the nonunitary dynamics. By contrast, here we instead use a
cyclic state as the initial state (which is very close to, but not the
same as, instantaneous eigenstates of the Hamiltonian for slow
driving). Now even though the time evolution is both stable and
cyclic, the dynamics still displays intriguing hopping and hence
violates adiabatic following. This hints that the breakdown of
adiabatic following observed here is on a different (and perhaps
more fundamental) level than studied before [19]. Indeed, if we
also use cyclic states as the initial states for the model studied
in Ref. [19], then we still obtain perfect adiabatic following
under slow driving. In addition, as elaborated in Sec. V, the
hopping dynamics found here has a root in a genuine phase
transition in the parameter space.

Figure 3 presents on the Bloch sphere the exotic hopping
dynamics of one cyclic state shown in Fig. 2. It is seen that,
due to the hopping between two instantaneous eigenstates,
the geometry of the curve traced out by the cyclic state
becomes highly nontrivial. Specifically, in this example each
instantaneous eigenstate of H2(t) does not trace out a solid
angle on the Bloch sphere (indicating zero Berry phase), but
the cyclic state does trace out (via hopping) a significant solid
angle on the Bloch sphere, thus yielding a nonzero AA phase.
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FIG. 3. Geometry of one cyclic state (solid line) plotted on the
Bloch sphere (one of the two considered in Fig. 2 with μ = 1.2),
as compared with the geometry of two instantaneous eigenstates of
H2(t) (dotted lines).

We further look into the sensitivity of the obtained AA
phase to the exact values of T . We find that due to the hopping
behavior of the cyclic states, the actual geometry of a cyclic
state changes drastically as T is tuned. The resulting AA phase
in general does not approach any limit. For example, Fig. 4
presents the AA phases vsT for the two cyclic states considered
in Fig. 2, for a small time window T . It is seen that the AA
phase for each individual cyclic state can be extremely sensitive
to T , and oscillate violently between zero and 2π . Based on
these observations and other calculations not shown here, we
conclude that the AA phase in the hopping model cannot have a
large-T limit. The high sensitivity of the AA phase to T hints
that the geometry of cyclic states in nonunitary dynamics is
extremely rich.

V. BERRY-UZDIN MODEL

A. Berry-Uzdin model

To develop theoretical insights into the hopping phe-
nomenon or piecewise adiabatic following observed in Sec. IV,

FIG. 4. AA phases β as functions of period T in the hopping
model H2(t) with μ = 1.2. Note the small range in T and the violent
oscillations in β.

we revisit the Berry-Uzdin model [17],

HBU(t) = i

(
0 1

z[θ (t)] 0

)
, (26)

with

z[θ (t)] ≡ ρ eiθ(t) − r, (27)

where ρ and r are real variables. Because z(θ + 2π ) = z(θ ),
this is hence another periodically driven model. The instanta-
neous eigenvalues of HBU are given by

E±(t) = ±i
√

z[θ (t)], (28)

with the corresponding eigenstates found to be

|E±(t)〉 =
(

z−1/4[θ (t)]

±z1/4[θ (t)]

)
. (29)

They form a complete set as long as the eigenvalues are not
degenerate.

The Berry-Uzdin model depicted above is exactly solvable
if θ is a linear function of time,

θ (t) = 2π
t

T
. (30)

From now on, θ (t) = 2π t
T

can be regarded as a rescaled time
variable. We then find the Floquet eigenstates (cyclic states) as
below, whose explicit time dependence is given by

|F±(t)〉 =
(

J±ν[νx(θ )]

∂tJ±ν[νx(θ )]

)
, (31)

where

ν ≡ T

π

√
r, x(θ ) ≡

√
ρ

r
eiθ/2, (32)

and J±ν being the Bessel functions. Noticing that

|F±(T )〉 = e±iT
√

r |F±(0)〉, (33)

one finds that this periodically driven system is stable (that is,
having extended unitarity) for r > 0 and unstable for r < 0
[21,22]. We also note that though the Berry-Uzdin model was
studied before, its dynamics with one cyclic state as the initial
state was not previously paid any attention.

B. Asymptotic analysis

To develop an explicit theory to account for a hopping
mechanism, we expand the Floquet states |F±(T )〉 in terms
of the instantaneous eigenstates of HBU(t),

|F±(t)〉 = a±
+(t)|E+(t)〉 + a±

−(t)|E−(t)〉, (34)

with the expansion coefficients given by

a±
+(t) ≡ 1

2z1/4(θ )J±ν(νx) + 1
2z−1/4(θ )∂tJ±ν(νx), (35)

a±
−(t) ≡ 1

2z1/4(θ )J±ν(νx) − 1
2z−1/4(θ )∂tJ±ν(νx). (36)

For each one of the two cyclic states, we characterize the
relative weightage of the two projection amplitudes with
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respect to |E±(t)〉 via their ratio, namely,

R+(t) ≡ a+
−

a+
+

=
√

z(θ )Jν(νx) − ∂tJν(νx)√
z(θ )Jν(νx) + ∂tJν(νx)

, (37)

R−(t) ≡ a−
+

a−
−

=
√

z(θ )J−ν(νx) + ∂tJ−ν(νx)√
z(θ )J−ν(νx) − ∂tJ−ν(νx)

. (38)

If |R−(t)| � 1, it is safe to say that the cyclic state |F−(t)〉 is
following the instantaneous eigenstate |E−(t)〉. If |R−(t)| 	 1,
the cyclic state |F−(t)〉 is instead following the instanta-
neous eigenstate |E+(t)〉. The transition from |R−(t)| � 1 to
|R−(t)| 	 1, if completed within a small time window, then
signifies a hopping behavior. Similar analysis can be applied
to the other Floquet state |F+(t)〉 using |R+(t)|.

We focus on the case ρ < r , the so-called “degeneracy-
excluding loops” in Ref. [17]. In this case, |x| < 1. For fixed
and nonvanishing r and ρ, the large T limit becomes the same
as the large ν limit. As ν → ∞, we have [38]

Jν(νx) ∼ e−ν 2
3 ξ 3/2

√
2πν

1

(1 − x2)1/4
, (39)

J ′
ν(νx) ∼ e−ν 2

3 ξ 3/2

√
2πν

(1 − x2)1/4

x
, (40)

where we define a new variable ξ through

2

3
ξ 3/2 = ln

1 + √
1 − x2

x
−

√
1 − x2

= ln

√
r +

√
r − ρ eiθ

√
ρ eiθ/2

−
√

r − ρ eiθ

√
r

. (41)

Clearly then, ξ inherits its time dependence from θ . Plugging
these intermediate results into the expression for R+, one
arrives at

R+(t) ∼ x2

4ν(1 − x2)3/2
= π

4T

ρ eiθ

(r − ρ eiθ )3/2
, T → ∞.

(42)

Because this |R+(t)| (in the regime of ρ < r) smoothly
approaches zero in the slow driving limit, we infer that
there is always adiabatic following for the “+” Floquet state.
Nevertheless, it is entirely a different story for the “−” Floquet
state. As ν → ∞, we obtain [38]

J−ν(νx) ∼ 1√
2πν

(
1 − x2

)1/4

[
cos(νπ )e−ν 2

3 ξ 3/2

+ 2 sin(νπ )eν 2
3 ξ 3/2

]
, (43)

J ′
−ν(νx) ∼

(
1 − x2

)1/4

x
√

2πν

[
cos(νπ )e−ν 2

3 ξ 3/2

− 2 sin(νπ )eν 2
3 ξ 3/2

]
. (44)

Depending on the sign of the real part of the exponent ν 2
3ξ 3/2,

one exponential will be dominant over the other exponential.
This is nothing but the Stokes phenomenon. As a consequence,
R− has two distinct types of behavior in two Stokes wedges.

FIG. 5. Real part of the exponents in the asymptotic behaviors of
Bessel functions. The (blue) line is the exponent with ρ/r = 0.55,
the (orange) dashed line is for ρ/r = c ≈ 0.439 229, and the (purple)
dotted line is for ρ/r = 0.35. For all the shown cases, r = 1 and
T = 200.

That is,

R−(t) ∼
{

x2

4ν(1−x2)3/2 , Re ξ 3/2 > 0,

− 4ν(1−x2)3/2

x2 , Re ξ 3/2 < 0,

=
{

π
4T

ρ eiθ

(r−ρ eiθ )3/2 , Re ξ 3/2 > 0,

− 4T
π

(r−ρ eiθ )3/2

ρ eiθ , Re ξ 3/2 < 0.
(45)

Asymptotic analysis above shows the following. In the
slow driving limit T → ∞, the Floquet state |F−(t)〉 fol-
lows |E−(t)〉 when Re ξ 3/2 > 0 and it follows |E+(t)〉 when
Re ξ 3/2 < 0. When Re ξ 3/2 flips its sign, the “−” Floquet state
makes a switch between the two instantaneous eigenstates
|E±(t)〉.

Still under our early assumption ρ < r (the degeneracy
excluding regime), we further obtain a critical value of ρ for
the hopping to occur. The critical value can be located by the
condition Re ξ 3/2 = 0 at θ = π . As illustrated in Fig. 5, one
can find the following critical boundary:(

ρ

r

)
crit

= c ≈ 0.439 229 . . . , (46)

where the c value is determined by the algebraic equation,

ln
1 + √

1 + c√
c

= √
1 + c. (47)

Two more explicit results can be obtained. First, if ρ is
slightly beyond the critical ratio, with |ρ/r − c| � 1, then we
can estimate that the hopping occurs when

θ ∼ π ± 2

√
1 + c

c

√∣∣∣∣ρr − c

∣∣∣∣ + O

(
ρ

r
− c

)
. (48)

That is, for ρ/r slightly above its critical value, the hopping is
predicted to occur near θ = π . Secondly, for c < ρ/r < 1, it
is easy to find that the hopping should more or less complete
within a time window given by

Re
2

3
ξ 3/2 ∼ 1

ν
= π

T
√

r
. (49)
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This is a very interesting understanding. The width of the
hopping window in terms of θ is inversely proportional to the
driving period T . This finally justifies the terminology hopping
we advocate here: as we learn from this analytically solvable
model, in the slow driving (large T ) limit, the time window
needed for switching from following one instantaneous eigen-
state to following the other one becomes smaller and smaller
(as compared with the driving period). Note also that θ ∝ t/T ;
hence the absolute time needed for a complete hopping is found
to be independent of T .

C. Phase transition in cyclic dynamics

In the previous subsection we have identified the piecewise
adiabatic following as the consequence of a phase transition
in the parameter space. For ρ/r < (ρ/r)crit , the cyclic states
follow the instantaneous eigenstates in the slow driving limit.
For ρ/r > (ρ/r)crit , one of the cyclic states hops (totally twice
over one period) between the two instantaneous eigenstates.
The critical ratio (ρ/r)crit is the boundary of the two phases.

It is worthwhile further distinguishing our findings from
previous studies. Indeed, as observed in Refs. [17–19], in non-
Hermitian systems, the ensuing dynamics emanating from one
of the instantaneous eigenstates may also show certain hopping
behavior. However, the observed hopping in the literature
is not governed by any known phase transition. To better
appreciate this difference from our results, we note that even for
ρ/r < (ρ/r)crit in the Berry-Uzdin model, the time evolving
state U (t)|E−(0)〉 (that is, time evolution from one eigenstate
of HBU at time zero) may also show certain hopping behavior
when the driving is sufficiently slow. This feature is depicted in
Fig. 6. There we see U (t)|E+(0)〉 displays adiabatic following,
whereas the other case U (t)|E−(0)〉 displays hopping, a situa-
tion well known from the literature. By sharp contrast, as shown
in Fig. 7, the cyclic states for ρ/r < (ρ/r)crit can (almost
perfectly) follow the instantaneous eigenstates, no matter how
slow the driving is. This remarkable difference in the behavior
between U (t)|E−(0)〉 and |F−(t)〉 further confirms what we
observed in our second model. Further, that |F−(t)〉 here has
adiabatic following for ρ/r < (ρ/r)crit also confirms what our
theory predicts in the previous subsection. Remarkably, the
hopping behavior of a noncyclic state such as U (t)|E−(0)〉
does not critically depend on the exact value of ρ/r . That
is, the smaller value of ρ/r , the longer T required to cause
U (t)|E−(0)〉 to hop.

Consider then cases with ρ/r > (ρ/r)crit . We examine the
different hopping features between |F−(t)〉 (time evolution
from a cyclic state), U (t)|E−(0)〉 (time evolution from one
instantaneous eigenstate), as well as more general superpo-
sition states involving both |F+(t)〉 and |F−(t)〉 (time evo-
lution from a superposition of two cyclic states). In Table I,
we compare numerically obtained hopping timing between
them, using U (t)|E−(0)〉 and 0.1|F+(t)〉 + |F−(t)〉 as well
as 0.5|F+(t)〉 + |F−(t)〉 as three cases with noncyclic states
as the initial states. Note that the hopping takes time and the
“hopping timing” cannot be clearly defined. In this specific
model, we note that the imaginary part of the ratio of the two
components of the state vanishes only once in each hopping
[see panel (d) of Fig. 6]. Thus we use it to define the hopping
timing. The hopping timing for |F−(t)〉 quickly converges to

FIG. 6. Comparison between two noncyclic states started from
the energy eigenstates of the model depicted by Eq. (26) for ρ/r = 0.3
and the two instantaneous eigenstates of HBU(t) for sufficiently
slow driving (T = 250). For a state [a(t),b(t)]T , the plotted vertical
coordinates represent the ratios [denoted ψE = b(t)/a(t)] of the two
components of time-evolving noncyclic states U (t)|E±(0)〉 (solid
lines), as compared with the parallel behavior of two instantaneous
eigenstates of HBU(t) (dotted lines). Panels (a) and (b) are for one
evolving state starting from one energy eigenstate and panels (c) and
(d) are for that from the other energy eigenstate.

a fixed ratio with T for sufficiently large T , in full agree-
ment with our theory in the previous subsection (our theory
predicts that the hopping occurs around 0.294T ). However,
for the other three cases U (t)|E−(0)〉, 0.1|F+(t)〉 + |F−(t)〉,
and 0.5|F+(t)〉 + |F−(t)〉, their hopping timing is qualitatively
different from |F−(t)〉, with nongeneric characteristics. In
the slow driving limit, the state 0.5|F+(t)〉 + |F−(t)〉 with
similar weightage on both cyclic states tends to hop at a
rather fixed absolute time, whereas both states U (t)|E−(0)〉 and
0.1|F+(t)〉 + |F−(t)〉 display some in-between features com-
promising the behavior of |F−(t)〉 and 0.5|F+(t)〉 + |F−(t)〉.

FIG. 7. Comparison between the cyclic states of the model
Eq. (26) for ρ/r = 0.3 and the instantaneous eigenstates of HBU(t)
for sufficiently slow driving (T = 250). For a state [a(t),b(t)]T ,
the plotted vertical coordinates represent the ratios [denoted ψF =
b(t)/a(t)] of the two components of the time-evolving cyclic states
|F ±(t)〉 (solid lines), compared with two respective instantaneous
eigenstates of HBU(t) (dotted line). Panel (a) is for the real parts of two
different cyclic states and panel (b) is for the imaginary parts. That
the solid lines almost perfectly overlap with dotted lines indicates
adiabatic following.
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TABLE I. Hopping timing for three types of states. Here the hopping timing is defined subjectively as when the imaginary part of b/a

vanishes, where the state vector is (a,b)T . The parameters used are r = 1 and ρ = 0.5.

Period |F −(t)〉 U (t)|E−(0)〉 [0.1|F +(t)〉 + |F −(t)〉] [0.5|F +(t)〉 + |F −(t)〉]
20 0.376T ≈ 7.5 0.286T ≈ 5.7 0.243T ≈ 4.9 0.153T ≈ 3.1
50 0.262T ≈ 13.1 0.202T ≈ 10.1 0.162T ≈ 8.1 0.083T ≈ 4.2
100 0.297T ≈ 29.7 0.150T ≈ 15.0 0.113T ≈ 11.3 0.051T ≈ 5.1
150 0.298T ≈ 44.7 0.127T ≈ 19.1 0.086T ≈ 12.9 0.051T ≈ 7.6
200 0.299T ≈ 59.7 0.115T ≈ 23.0 0.071T ≈ 14.1 0.042T ≈ 8.3
250 0.302T ≈ 75.4 0.106T ≈ 26.5 0.068T ≈ 16.9 0.035T ≈ 8.8

To understand these, we stress again that the cyclic state
hops due to the Stokes phenomenon exposed above, which
has a fixed limit in θ for the hopping timing (relative time).
Other states such as U (t)|E−(0)〉 hop due to a more obvious
reason, namely, the continuous accumulation of nonadiabatic
transitions (absolute time). As the driving becomes slower, the
initial state |E−(0)〉 gets closer to the cyclic state, thus having
a smaller projection on the “wrong” cyclic state and hence
exhibiting a different hopping timing.

To conclude, the hopping behavior of cyclic states is a true
critical phenomenon, but the hopping arising from other non-
cyclic states is not and hence exhibiting nongeneric features.
Finally, we note that in all these cases, hopping occurs with the
system parameter far away from the exception (degeneracy)
point.

VI. CONCLUSIONS

In this work, we have analyzed the adiabatic following
dynamics of periodically driven non-Hermitian systems. We
have uncovered an unforeseen possibility of adiabatic fol-
lowing when considering the time evolution of cyclic states
in terms of instantaneous eigenstates of the system. As seen
from our second and third models, the adiabatic following can
be piecewise due to a hopping behavior in representation of
instantaneous eigenstates. We have shown that the hopping
behavior can occur with system parameters far from the
degeneracy (exceptional) point. In the third (exactly solvable)
model, the piecewise adiabatic following therein is found to
have an underlying phase boundary in the parameter space. It
is hence a genuine critical behavior. The phase boundary is
also located by a straightforward asymptotic analysis.

As a side contribution, we have also advocated to use the AA
phase to characterize and understand the geometrical aspects

of adiabatic following in nonunitary dynamics. Without using
any sophisticated terminologies, we have shown that the AA
phase we propose to use and likewise the Berry phase in
the case of perfect adiabatic following are always real in
nonunitary dynamics. In particular, we have shown that an
earlier expression for the AA phase in Hermitian systems can
also apply to nonunitary dynamics (with normalized initial
states). From our results, it becomes clear now that previous
studies suggesting complex AA phases, though interesting
in their own right, are not really consistent with the simple
notion that the AA phase for nonunitary dynamics should just
reflect the geometry of a closed curve in a projective Hilbert
space. As detailed in two models, if adiabatic following with
instantaneous eigenstates persists without hopping, then the
AA phase expectedly reduces to the Berry phase in the slow
driving limit. However, for piecewise adiabatic following, the
AA phase behavior is found to be extremely complicated,
suggesting rich geometrical features of nonunitary dynamics.

Note added. We recently became aware of another study
reporting a hopping behavior also away from exceptional
points [39]. However, the hopping behavior in Ref. [39] is not
about cyclic states and hence does not have the critical features
as exposed here.

ACKNOWLEDGMENTS

Q.W. thanks Professor Yogesh N. Joglekar and Professor
Gerardo Ortiz for the interesting discussions and suggestions.
Q.W. also thanks Professor Ali Mostafazadeh for comments
and Ref. [28]. J.G. is supported by Singapore Ministry
of Education Academic Research Fund Tier I (WBS No.
R-144-000-353-112) and by the Singapore NRF Grant No.
NRF-NRFI2017-04 (WBS No. R-144-000-378-281). Q.W.
is supported by Singapore Ministry of Education Academic
Research Fund Tier I (WBS No. R-144-000-352-112).

[1] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[2] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[3] J. B. Gong and Q.-H. Wang, Phys. Rev. A 82, 012103 (2010);

J. Phys. A: Math. Theor. 46, 485302 (2013).
[4] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and

Z. H. Musslimani, Opt. Lett. 32, 2632 (2007); K. G. Makris,
R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani,
Phys. Rev. Lett. 100, 103904 (2008); Z. H. Musslimani, K. G.
Makris, R. El-Ganainy, and D. N. Christodoulides, ibid. 100,
030402 (2008); C. T. West, T. Kottos, and T. Prosen, ibid. 104,

054102 (2010); Y. D. Chong, L. Ge, and A. D. Stone, ibid. 106,
093902 (2011); Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos,
H. Cao, and D. N. Christodoulides, ibid. 106, 213901 (2011).

[5] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009); T. Kottos, Nat. Phys. 6,
166 (2010); C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, ibid. 6, 192 (2010);
L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F.
Chen, Y. Fainman, and A. Scherer, Science 333, 729 (2011);

052126-8

https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevA.82.012103
https://doi.org/10.1103/PhysRevA.82.012103
https://doi.org/10.1103/PhysRevA.82.012103
https://doi.org/10.1103/PhysRevA.82.012103
https://doi.org/10.1088/1751-8113/46/48/485302
https://doi.org/10.1088/1751-8113/46/48/485302
https://doi.org/10.1088/1751-8113/46/48/485302
https://doi.org/10.1088/1751-8113/46/48/485302
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.104.054102
https://doi.org/10.1103/PhysRevLett.104.054102
https://doi.org/10.1103/PhysRevLett.104.054102
https://doi.org/10.1103/PhysRevLett.104.054102
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1612
https://doi.org/10.1038/nphys1612
https://doi.org/10.1038/nphys1612
https://doi.org/10.1038/nphys1612
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1126/science.1206038
https://doi.org/10.1126/science.1206038
https://doi.org/10.1126/science.1206038
https://doi.org/10.1126/science.1206038


PIECEWISE ADIABATIC FOLLOWING IN NON- … PHYSICAL REVIEW A 97, 052126 (2018)

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D.
N. Christodoulides, and U. Peschel, Nature (London) 488, 167
(2012); L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Nat. Mater.
12, 108 (2013); B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M.
Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L.
Yang, Nat. Phys. 10, 394 (2014); M. Brandstetter, M. Liertzer,
C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser,
K. Unterrainer, and S. Rotter, Nat. Commun. 5, 4034 (2014);
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li,
G. Wang, and M. Xiao, Nat. Photon. 8, 524 (2014); H. G. L.
Schwefel, Science 346, 304 (2014); B. Peng, S. K. Ozdemir,
S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender,
F. Nori, and L. Yang, ibid. 346, 328 (2014); L. Feng, Z. J.
Wong, R.-M. Ma, Y. Wang, and X. Zhang, ibid. 346, 972 (2014);
H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides,
and M. Khajavikhan, ibid. 346, 975 (2014); M. Wimmer, A.
Regensburger, M.-A. Miri, C. Bersch, D. N. Christodoulides,
and U. Peschel, Nat. Commun. 6, 7782 (2015); B. Zhen,
C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua,
J. D. Joannopoulos, and M. Soljačić, Nature (London) 525, 354
(2015).

[6] I. Rotter and J. P. Bird, Rep. Prog. Phys. 78, 114001 (2015).
[7] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).
[8] R. Uzdin and N. Moiseyev, Phys. Rev. A 85, 031804 (2012).
[9] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Phys.

Rev. A 84, 040101 (2011).
[10] H. Okamoto, A. Gourgout, C.-Y. Chang, K. Onomitsu, I. Mah-

boob, E. Y. Chang, and H. Yamaguchi, Nat. Phys. 9, 480 (2013).
[11] T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig,

Nat. Phys. 9, 485 (2013).
[12] X.-W. Xu, Y.-X. Liu, C.-P. Sun, and Y. Li, Phys. Rev. A 92,

013852 (2015).
[13] A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D.

Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, Phys.
Rev. Lett. 112, 013602 (2014).

[14] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori,
Phys. Rev. Lett. 113, 053604 (2014).

[15] R. Fleury, D. Sounas, and A. Alu, Nat. Commun. 6, 5905 (2015).
[16] C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang,

and X. Zhang, Nat. Commun. 7, 11110 (2016).
[17] M. V. Berry and R. Uzdin, J. Phys. A: Math. Theor. 44, 435303

(2011).

[18] R. Uzdin, A. Mailybaev, and N. Moiseyev, J. Phys. A: Math.
Theor. 44, 435302 (2011).

[19] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter,
and P. Rabl, Phys. Rev. A 92, 052124 (2015); J. Doppler,
A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J.
Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Nature (London)
537, 76 (2016).

[20] M. Born and V. A. Fock, Z. Phys. A 51, 165 (1928).
[21] Y. N. Joglekar, R. Marathe, P. Durganandini, and R. K. Pathak,

Phys. Rev. A 90, 040101(R) (2014); T. E. Lee and Y. N. Joglekar,
ibid. 92, 042103 (2015).

[22] J. B. Gong and Q.-H. Wang, Phys. Rev. A 91, 042135 (2015).
[23] Geometric Phase in Physics, edited by A. Shapere and F.

Wilczek (World Scientific, Singapore, 1989); Geometric Phases
in Classical and Quantum Mechanics, edited by D. Chruściński
and A. Jamiołkowski (Birkhäuser, Boston, 2004).

[24] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593
(1987).

[25] M. V. Berry, Proc. R. Soc. London, A 392, 45 (1984).
[26] See, for example, S.-L. Zhu and P. Zanardi, Phys. Rev. A 72,

020301(R) (2005).
[27] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339

(1988).
[28] A. Mostafazadeh, Phys. Lett. A 264, 11 (1999).
[29] J. G. Garrison and E. M. Wright, Phys. Lett. A 128, 177 (1988).
[30] I. J. R. Aitchison and K. Wanelik, Proc. R. Soc. London, A 439,

25 (1992).
[31] Z. Wu and J. Wang, Physica A 232, 201 (1996).
[32] Y. C. Ge and M. S. Child, Phys. Rev. Lett. 78, 2507 (1997).
[33] Y. C. Ge and M. S. Child, Phys. Rev. A 58, 872 (1998).
[34] X.-D. Cui and Y. Zheng, Phys. Rev. A 86, 064104 (2012); Sci.

Rep. 4, 5813 (2014).
[35] M. Maamache, Phys. Rev. A 92, 032106 (2015).
[36] I. Rotter, J. Phys. A: Math. Theor. 42, 153001 (2009).
[37] G. Nenciu and G. Rasche, J. Phys. A: Math. Gen. 25, 5741

(1992).
[38] NIST Digital Library of Mathematical Functions, edited by

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider,
R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders
[DLMF], http://dlmf.nist.gov/, release 1.0.15 of 2017-06-01.

[39] A. U. Hassan, G. L. Galmiche, G. Harari, P. LiKamWa, M.
Khajavikhan, M. Segev, and D. N. Christodoulides, Phys. Rev.
A 96, 052129 (2017).

052126-9

https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nature11298
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1126/science.1260707
https://doi.org/10.1126/science.1260707
https://doi.org/10.1126/science.1260707
https://doi.org/10.1126/science.1260707
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1038/nature14889
https://doi.org/10.1038/nature14889
https://doi.org/10.1038/nature14889
https://doi.org/10.1038/nature14889
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevA.85.031804
https://doi.org/10.1103/PhysRevA.85.031804
https://doi.org/10.1103/PhysRevA.85.031804
https://doi.org/10.1103/PhysRevA.85.031804
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1103/PhysRevA.84.040101
https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2665
https://doi.org/10.1038/nphys2666
https://doi.org/10.1038/nphys2666
https://doi.org/10.1038/nphys2666
https://doi.org/10.1038/nphys2666
https://doi.org/10.1103/PhysRevA.92.013852
https://doi.org/10.1103/PhysRevA.92.013852
https://doi.org/10.1103/PhysRevA.92.013852
https://doi.org/10.1103/PhysRevA.92.013852
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1103/PhysRevLett.112.013602
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1088/1751-8113/44/43/435303
https://doi.org/10.1088/1751-8113/44/43/435303
https://doi.org/10.1088/1751-8113/44/43/435303
https://doi.org/10.1088/1751-8113/44/43/435303
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1103/PhysRevA.90.040101
https://doi.org/10.1103/PhysRevA.90.040101
https://doi.org/10.1103/PhysRevA.90.040101
https://doi.org/10.1103/PhysRevA.90.040101
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.91.042135
https://doi.org/10.1103/PhysRevA.91.042135
https://doi.org/10.1103/PhysRevA.91.042135
https://doi.org/10.1103/PhysRevA.91.042135
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevA.72.020301
https://doi.org/10.1103/PhysRevA.72.020301
https://doi.org/10.1103/PhysRevA.72.020301
https://doi.org/10.1103/PhysRevA.72.020301
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1016/S0375-9601(99)00790-2
https://doi.org/10.1016/S0375-9601(99)00790-2
https://doi.org/10.1016/S0375-9601(99)00790-2
https://doi.org/10.1016/S0375-9601(99)00790-2
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1098/rspa.1992.0131
https://doi.org/10.1098/rspa.1992.0131
https://doi.org/10.1098/rspa.1992.0131
https://doi.org/10.1098/rspa.1992.0131
https://doi.org/10.1016/0378-4371(96)00092-1
https://doi.org/10.1016/0378-4371(96)00092-1
https://doi.org/10.1016/0378-4371(96)00092-1
https://doi.org/10.1016/0378-4371(96)00092-1
https://doi.org/10.1103/PhysRevLett.78.2507
https://doi.org/10.1103/PhysRevLett.78.2507
https://doi.org/10.1103/PhysRevLett.78.2507
https://doi.org/10.1103/PhysRevLett.78.2507
https://doi.org/10.1103/PhysRevA.58.872
https://doi.org/10.1103/PhysRevA.58.872
https://doi.org/10.1103/PhysRevA.58.872
https://doi.org/10.1103/PhysRevA.58.872
https://doi.org/10.1103/PhysRevA.86.064104
https://doi.org/10.1103/PhysRevA.86.064104
https://doi.org/10.1103/PhysRevA.86.064104
https://doi.org/10.1103/PhysRevA.86.064104
https://doi.org/10.1038/srep05813
https://doi.org/10.1038/srep05813
https://doi.org/10.1038/srep05813
https://doi.org/10.1038/srep05813
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1103/PhysRevA.92.032106
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1088/0305-4470/25/21/027
https://doi.org/10.1088/0305-4470/25/21/027
https://doi.org/10.1088/0305-4470/25/21/027
https://doi.org/10.1088/0305-4470/25/21/027
http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevA.96.052129
https://doi.org/10.1103/PhysRevA.96.052129
https://doi.org/10.1103/PhysRevA.96.052129
https://doi.org/10.1103/PhysRevA.96.052129



