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We present a mathematical framework based on quantum interval-valued probability measures to study the effect
of experimental imperfections and finite precision measurements on defining aspects of quantum mechanics such
as contextuality and the Born rule. While foundational results such as the Kochen-Specker and Gleason theorems
are valid in the context of infinite precision, they fail to hold in general in a world with limited resources. Here we
employ an interval-valued framework to establish bounds on the validity of those theorems in realistic experimental
environments. In this way, not only can we quantify the idea of finite-precision measurement within our theory,
but we can also suggest a possible resolution of the Meyer-Mermin debate on the impact of finite-precision
measurement on the Kochen-Specker theorem.
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I. INTRODUCTION

In this investigation, we explore the implications of extend-
ing conventional quantum-mechanical probability measures to
include the effect of imperfect measurements. There are long-
standing debates in the foundations of quantum mechanics
regarding the tension between finite precision measurement
and contextuality [1,2]. The outcome of a theory that is contex-
tual depends upon whether compatible sets of observables are
measured together or separately; a noncontextual theory gives
the same results in either case. A classic example of the varying
opinions on the impact of imprecision is the claim by Meyer
[3] that finite-precision measurements invalidate the spirit of
the Kochen-Specker theorem. This claim was countered in the
same year by Havlicek et al. [4] and Mermin [5] and the debate
continues to be an active topic of research [1,2,6–13].

The Kochen-Specker theorem [14–20] is in essence a
mathematical statement about contextuality, asserting that
in a Hilbert space of dimension d � 3, it is impossible to
associate determinate probabilities, μ(Pi) = 0 or 1, with every
projection operator Pi , in such a way that if a set of commuting
Pi satisfies

∑
i Pi = 1, then

∑
i μ(Pi) = 1. Meyer showed that

one can assign determinate probabilities zero or one to the
measurement outcomes when the Hilbert space is defined over
the field of rational numbers, therefore nullifying the theorem
[3]. However, Mermin then argued that measurement outcomes
must depend smoothly on slight changes in the experimental
configuration, leading him to assert that the impact of Meyer’s
negative result is “unsupportable” on physical grounds [5].
The question of how to address this controversy, and the effect
of finite precision on measurements in general, is therefore
a fundamental problem of physics. How does one develop
mathematical theories of quantum mechanics that are intrinsi-
cally, rather than only implicitly, consistent with the resources
available for the realistic accuracy of an actual measurement?

In this paper, we extend our previous work on the foun-
dations of computability in quantum physics by exploring the

application of interval-valued probability measures (IVPMs)
to achieving a coherent formulation of finite-resource quantum
mechanics. From this starting point, we develop a mathemati-
cal framework that includes the uncertainties of finite precision
and imperfections in the quantum measurement process. In
particular, we are able to suggest a way to quantify the concept
of imperfect quantum measurement and its impact on the in-
terpretation of the Kochen-Specker and Gleason theorems and
their implications for the foundations of quantum mechanics.
We have reason to believe that essential objectives of our
program to achieve a computable theory of quantum mechanics
and finite-resource measurement, attempted previously with
computable number systems [21–23], may be achievable by
extending classical IVPMs [24] to the quantum domain. We
thus begin by axiomatizing a quantum interval-valued proba-
bility measure (QIVPM) framework.

To put our investigation in perspective, we note that Meyer
attributes finite-precision errors exclusively to the description
of the states defined in a general Hilbert space. Mermin’s
response argues against Meyer’s interpretation but, indeed,
accepts his framework. Others, however, have argued that the
effect of finite-precision measurements on the Kochen-Specker
theorem requires a different approach altogether (see, for
example, Ax and Kochen’s communication cited by Cabello
[8]). Here, we propose such an approach.

Our approach, based on QIVPMs, introduces the concept of
δ determinism, where δ quantifies the effect of finite-precision
uncertainties on measurement outcomes. Our parameter δ is
not necessarily related to the description of states; we are
agnostic about attributing elements of reality to the state
function. Instead, we attribute lack of certainty to the uncertain
results obtained through the use of a measuring instrument.
Thus the parameter δ in our framework reflects insufficient
knowledge of the experimenter, which could be due to a variety
of reasons related to imperfections of devices. For example,
a typical question that an experimenter may not be able to
answer accurately would be “did an electron land in the left
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half or the right half of the screen?” There are cases in which the
electron would land too close to the middle of the screen for the
experimenter to be able to determine with certainty that it was
left or right of the center. We simply record this imprecision
by generalizing the probabilities assigned to events to intervals
reflecting the uncertainties.

We then recast the Kochen-Specker theorem using δ deter-
minism to quantify the effects of finite precision and imperfec-
tions on contextuality. When δ = 0, the generalized theorem
reduces to the conventional one, but as δ varies from zero to one
we note a transition from contextuality to noncontextuality. For
a nonvanishing range of δ, quantum-mechanical contextuality
continues to hold, maintaining the Kochen-Specker result, but
at a certain fixed value, δ = 1

3 , there is a sharp transition to
noncontextuality, parallel in spirit to a phase transition. These
results provide an insight into the Meyer-Mermin debate by
presenting a theory in which there is a parameter interpolating
between what appeared previously to be irreconcilable aspects
of contextuality.

We also investigate the second key aspect of imprecise quan-
tum measurement, which is its statistical nature as reflected in
the application of the Born rule [19,25,26] determining the
probability of a given measurement outcome. Here, Gleason’s
theorem [16,18,27] establishes that there is no alternative to
the Born rule by demonstrating, using reasonable continuity
arguments in Hilbert spaces of dimension d � 3, the existence
of a unique state ρ consistent with the statistical predictions
computed from the Born rule. Our question then concerns what
happens when infinite precision cannot be achieved. We are
able to show that, while a QIVPM incorporating the effects
of finite precision might not be consistent with Gleason’s
unique state ρ on all projectors defined on a Hilbert space
H of dimension d � 3, there is a mathematically precise
sense in which one recovers the original Gleason theorem
asymptotically. Specifically, it is possible to construct a class of
QIVPMs representing bounded resources that is parametrized
by the size of the intervals. We then demonstrate that all
QIVPMs in this class are consistent with a nonempty “ball” of
quantum states whose radius is defined by the maximal length
of the intervals characterizing the uncertainties. As the size of
the intervals goes to zero, this ball of quantum states converges
to a point representing the unique state consistent with the Born
rule and Gleason’s theorem.

The paper is organized as follows. In Sec. II we begin
by introducing the foundations of quantum probability space
and fuzzy measurement. We then move on to introduce
the concept of quantum interval-valued probability measures
in Sec. III. These QIVPMs will provide the mathematical
framework we need to quantify the impact of finite preci-
sion measurements on quantum mechanics. For instance, in
Sec. IV, we quantify the domain of validity of a contextual
measurement, thus addressing the conditions under which the
Kochen-Specker theorem applies. This provides a way not only
of resolving the Meyer-Mermin debate, but also of revealing
a precise transition to noncontextuality; these are the results
of our Theorem 3. In Sec. V, we study Gleason’s theorem
in the context of imprecise measurements, concluding that
QIVPMs provide a framework with quantitative bounds in
which Gleason’s theorem, while formally invalid in a universe
with bounded resources, holds asymptotically in a mathe-

matically precise way. Finally, we present our conclusions in
Sec. VI.

II. FUZZY MEASUREMENTS

A probability space is a mathematical abstraction specify-
ing the necessary conditions for reasoning coherently about
collections of uncertain events [28–31]. In the quantum case,
the events of interest are specified by projection operators P

satisfying the condition P 2 = P . These include the empty
projector 0, the identity projector 1, projectors of the form
|φ〉〈φ| where |φ〉 is a pure quantum state (an element of a
Hilbert space H), sums of orthogonal projectors P0 and P1

with P0P1 = 0, and products of commuting projectors P0

and P1 with P0P1 = P1P0. In a quantum probability space
[16,27,32–34], each event Pi is mapped to a probability μ(Pi)
using a probability measure μ : E → [0,1], where E is the set
of all events (i.e., projectors on a given Hilbert space), subject
to the following constraints: μ(0) = 0, μ(1) = 1, μ(1 − P ) =
1 − μ(P ), and for each pair of orthogonal projectors P0

and P1:

μ(P0 + P1) = μ(P0) + μ(P1). (1)

Given a Hilbert space H of dimension d and a probability
assignment for every projectorP , we can define the expectation
value of an observable O having spectral decomposition O =∑d

i=1 λiPi , with eigenvalues λi ∈ R, as [19,29]

〈O〉μ =
d∑

i=1

λiμ(Pi). (2)

A conventional quantum probability measure can easily be
constructed using the Born rule if one knows the current pure
normalized quantum state |φ〉 ∈ H; then the Born rule induces
a probability measure μB

φ defined as μB
φ (P ) = 〈φ|P |φ〉. For

mixed states ρ = ∑N
j=1 qj |φj 〉〈φj |, where |φj 〉 ∈ H, qj >

0, and
∑N

j=1 qj = 1, the generalized Born rule induces
a probability measure μB

ρ defined as μB
ρ (P ) = Tr (ρP ) =∑N

j=1 qjμ
B
φj

(P ) [19,25,26].
The quantum probability postulates assume a mathematical

idealization in which quantum states and measurements are
both infinitely precise, i.e., sharp. In an actual experimental
setup with an ensemble of quantum states that would ideally
be identical, but are not actually identically prepared, with
imperfections and inaccuracies in measuring devices, an exper-
imenter might only be able to determine that the probability of
an event P is concentrated in the range [0.49,0.51] instead
of being precisely 0.5. The spread in this range depends
on the amount of resources (time, energy, money, etc.) that
are devoted to the experiment. In the classical setting, this
“fuzziness” can be formalized by moving to interval-valued
probability measures (IVPMs), which we explore in the next
section, along with our proposed extension to the quantum
domain.

III. INTERVALS OF UNCERTAINTY

We will start by reviewing classical IVPMs and then pro-
pose our quantum generalization. In the classical setting, there
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are several proposals for “imprecise probabilities” [24,31,35–
40]. Although these proposals differ in some details, they
all share the fact that the probability μ(E) of an event E is
generalized from a single real number to an interval [�,r],
where � intuitively corresponds to the strength of evidence for
the event E and 1 − r corresponds to the strength of evidence
against the same event. Under some additional assumptions,
this interval could be interpreted as the Gaussian width of a
probability distribution.

We next introduce probability axioms for IVPMs. First,
for each interval [�,r] we have the natural constraint 0 �
� � r � 1 that guarantees that every element of the interval
can be interpreted as a conventional probability. We also
include F = [0,0] and T = [1,1] as limiting intervals that refer,
respectively, to the probability interval for impossible events
and for events that are certain. We can write the latter as
μ(∅) = F and μ(�) = T, where ∅ is the empty set and � is
the event covering the entire sample space. For each interval
[�,r], we also need the dual interval [1 − r,1 − �] so that if one
interval refers to the probability of an event E, the dual refers
to the probability of the event’s complement E. For example, if
we discover as a result of an experiment that μ(E) = [0.2,0.3]
for some event E, we may conclude that μ(E) = [0.7,0.8]
for the complementary event E. In addition to these simple
conditions, there are some subtle conditions on how intervals
are combined, which we discuss next.

Let E1 and E2 be two disjoint events with probabilities
μ(E1) = [�1,r1] and μ(E2) = [�2,r2]. A first attempt at cal-
culating the probability of the combined event that either
E1 or E2 occurs might be μ(E1 ∪ E2) = [�1 + �2,r1 + r2].
In some cases, this is indeed a sensible definition. For ex-
ample, if μ(E1) = [0.1,0.2] and μ(E2) = [0.3,0.4] we get
μ(E1 ∪ E2) = [0.4,0.6]. But consider an event E such that
μ(E) = [0.2,0.3] and hence μ(E) = [0.7,0.8]. The two events
E and E are disjoint; the naive addition of intervals would
give μ(E ∪ E) = [0.9,1.1], which is not a valid probability
interval. Moreover, the event E ∪ E is the entire space; its
probability interval should be T which is sharper than [0.9,1.1].
The problem is that the two intervals are correlated: there is
more information in the combined event than in each event
separately so the combined event should be mapped to a sharper
interval. In our example, even though the “true” probability
of E can be anywhere in the range [0.2,0.3] and the true
probability of E can be anywhere in the range [0.7,0.8], the
values are not independent. Any value of μ(E) � 0.25 will
force μ(E) � 0.75. To account for such subtleties, the axioms
of interval-valued probability do not use a strict equality for
the combination of disjoint events. The correct constraint
enforcing coherence of the probability assignment for E1 ∪ E2

when E1 and E2 are disjoint is taken to be

μ(E1 ∪ E2) ⊆ [�1 + �2,r1 + r2]. (3)

Note that for any event E with μ(E) = [�,r], we always have
μ(�) = T ⊆ [�,r] + [1 − r,1 − �] = μ(E) ∪ μ(E).

When combining nondisjoint events, there is a further sub-
tlety whose resolution will give us the final general condition
for IVPMs. For events E1 and E2, not necessarily disjoint, we
have

μ(E1 ∪ E2) + μ(E1 ∩ E2) ⊆ μ(E1) + μ(E2), (4)

which is a generalization of the classical inclusion-exclusion
principle that uses ⊆ instead of = for the same reason as before.
This condition, known as convexity [31,37,38,41–43], reduces
to the previously motivated Eq. (3) when the events are disjoint,
i.e., when μ(E1 ∩ E2) = 0.

We now have the necessary ingredients to define the quan-
tum extension, QIVPMs, as a generalization of both classical
IVPMs and conventional quantum probability measures. We
will show that QIVPMs reduce to classical IVPMs when the
space of quantum events E is restricted to mutually commuting
events EC , i.e., to compatible events that can be measured
simultaneously. In Sec. V we will discuss the connection
between QIVPMs and conventional quantum probability mea-
sures in detail.

Definition 1 (QIVPM). Assume a collection of intervals I
including F and T with addition and scalar multiplication
defined as follows:

[�1,r1] + [�2,r2] = [�1 + �2,r1 + r2], (5a)

x[�,r] =
{

[x�,xr] for x � 0,

[xr,x�] for x � 0.
(5b)

Then we take a QIVPM μ̄ to be an assignment of an interval
to each event (projection operator P ) subject to the following
constraints:

μ̄(0) = F, (6a)

μ̄(1) = T, (6b)

μ̄(1 − P ) = T − μ̄(P ), (6c)

and satisfying for each pair of commuting projectors P0 and
P1 with P0P1 = P1P0,

μ̄(P0 + P1 − P0P1) + μ̄(P0P1) ⊆ μ̄(P0) + μ̄(P1). (7)

The first three constraints, Eqs. (6), are the direct counterpart
of the corresponding ones for classical IVPMs. Note that the
minus sign appearing in Eq. (6c) is accommodated by the x �
0 case in Eq. (5b). With the understanding that the union of
classical sets E1 ∪ E2 is replaced by P0 + P1 − P0P1 in the
case of quantum projection operators [30], the last condition,
Eq. (7), is a direct counterpart of the convexity condition of
Eq. (4). Thus our definition of QIVPMs merges aspects of
both classical IVPMs and quantum probability measures.

Our definition of QIVPMs is consistent with classical
IVPMs in the sense that a restriction of QIVPMs to mutually
commuting events, EC , recovers the definition of classical
IVPMs [24]. The proof of this fact is included in the forthcom-
ing thesis by the first author [44]. A consequence is that known
properties of classical IVPMs directly hold for QIVPMs when
one restricts to mutually commuting events, EC . In particular,
in the classical world, it is impossible for experiments to
result in probabilities that are inconsistent with every state of
the system under consideration, i.e., all IVPMs must have a
nonempty “core” [45]. Interestingly, as we show in Sec. V, it
is possible in the quantum world for the probabilities associated
with some events to be inconsistent with any quantum state,
i.e., for the QIVPM to have an empty core; in that case, one
cannot guarantee nonempty cores for finite-precision attempts
at proving Gleason’s theorem by extending the Born measure
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μB
ρ (P ) to QIVPMs μ̄(P ). However, if we restrict ourselves to

the set EC of mutually commuting events, the situation reverts
to the classical case in which probabilities always determine
at least one state.

We now give the necessary technical definitions to prove
this nonempty core property.

Definition 2 (Consistency). We say a QIVPM μ̄ is consis-
tent with a stateρ and a projectorP if the interval μ̄(P ) contains
the exact probability calculated by the Born rule [19,25,26],
i.e.,

μB
ρ (P ) = Tr (ρP ) ∈ μ̄(P ). (8)

In contrast with classical probability spaces [45], there is no
guarantee that there exists a state ρ that satisfies Eq. (8) and
therefore is consistent with a QIVPM.

We next refine the concept of consistency by introducing
the idea of a “core” set of states relative to subspaces. First,
we define E ′ as a subspace of a set of events E if E ′ contains
the projectors 0 and 1 and is closed under complements, sums,
and products. In particular, for any projector P ∈ E ′, we have
1 − P ∈ E ′ and for each pair of commuting projectors P0 ∈ E ′
and P1 ∈ E ′, we have P0 + P1 − P0P1 and P0P1 ∈ E ′.

Definition 3 (The core of a probability measure). The core
H(μ̄,E ′) of a probability measure μ̄ relative to a subspace of
events E ′ is the collection of all states ρ that are consistent with
μ̄ on every projector in E ′, that is,

H(μ̄,E ′) = {ρ | ∀P ∈ E ′,μB
ρ (P ) ∈ μ̄(P )}. (9)

We are now in position to state and prove that, for the
special case of commuting events, a QIVPM will always have
a nonempty core.

Theorem 1 (Nonempty core for compatible measurements).
For every QIVPM μ̄ : E → I , if a subspace of events EC ⊆ E
commutes, then H(μ̄,EC) �= ∅.

An outline of the proof, detailed in the forthcoming thesis
[44], proceeds as follows. From a subspace EC of mutually
commuting events, one can construct a partial orthonormal ba-
sis by diagonalization, and complete this to a full orthonormal
basis EC . We can then build a bijection between the QIVPM
on the set of projectors associated with this basis and the
set of classical events corresponding to this basis. Using this
correspondence together with the classical result by Shapley
[31,37,41,42], we can establish that for the special case of
commuting events, a QIVPM will always have a nonempty
core.

We conclude this section with a generalization of expec-
tation values of observables in the context of QIVPMs. In
conventional quantum mechanics the expectation value of an
observable as defined in Eq. (2) is a unique real number. The
generalization to QIVPMs implies that this expectation value
will itself become bounded by an interval.

Definition 4 (Expectation value of observables over
QIVPMs). Let I be a set of intervals, H a Hilbert space
of dimension d with event space E , and O an observable
with spectral decomposition

∑d
i=1 λiPi . Let E ′ be the minimal

subspace of events containing all the projectors Pi in the
spectral decomposition of O and define

〈O〉μ̄ =
[

min
ρ∈H(μ̄,E ′)

〈O〉μB
ρ
, max

ρ∈H(μ̄,E ′)
〈O〉μB

ρ

]
. (10)

Intuitively the expectation value of an observable relative
to a QIVPM μ̄ lies between two possible outcomes, which
themselves lie between the minimum and maximum bounds
of the probability intervals associated with each state ρ that is
consistent with μ̄ on every projector in the spectral decomposi-
tion of the observable. If μ̄ is a conventional (Born) probability
measure induced by a state ρ, then the Born rule probability
induced by every state in H(μ̄,E ′) will be μB

ρ and the interval
collapses to a point, thus reducing the definition to that of
Eq. (2) [44]. We also note that, when restricted to commuting
projectors, Eq. (10) is consistent with the classical notion of
the Choquet integral [31,37,46], which is used to calculate the
expectation value of random variables as a weighted average
[44].

IV. KOCHEN-SPECKER THEOREM AND
CONTEXTUALITY

Our generalization of quantum probability measures to
QIVPMs allows us to strengthen the scope of one of the fun-
damental theorems of quantum physics: the Kochen-Specker
theorem [14–20]. Our finite-precision extension of that the-
orem will suggest a resolution to the debate initiated by
Meyer and Mermin on the relevance of the Kochen-Specker
to experimental, and hence finite-precision, quantum mea-
surements [1–13]. Specifically, the original Kochen-Specker
theorem is formulated using a model quantum-mechanical
system that has definite values at all times [20], i.e., its
observables have infinitely precise values at all times. Our
interval-valued probability framework will allow us to state,
and prove, a stronger version of the theorem that holds even if
the observables have values that are only definite up to some
precision specified by a parameter δ. Our approach provides a
quantitative realization of Mermin’s intuition [5]: “...although
the outcomes deduced from such imperfect measurements will
occasionally differ dramatically from those allowed in the
ideal case, if the misalignment is very slight, the statistical
distribution of outcomes will differ only slightly from the ideal
case.”

A. Finite-precision extension of the Kochen-Specker theorem

The first step in our formalization is to introduce a family
of QIVPMs parametrized by an uncertainty δ, which we call
δ-deterministic QIVPMs.

Definition 5 (δ determinism). A QIVPM μ̄ : E → I is δ

deterministic if, for every event P ∈ E , we have that either
μ̄(P ) ⊆ [0,δ] or μ̄(P ) ⊆ [1 − δ,1].

This definition puts no restrictions on the set of intervals
itself, only on which intervals are assigned to events. When
δ = 0, every event must be assigned a probability either in F or
in T, i.e., every event is completely determined with certainty.
As δ gets larger, the QIVPM allows for more indeterminate
behavior.

The expectation value of an observable O in a Hilbert space
H of dimension d relative to a zero-deterministic QIVPM is
fully determinate and is equal to one of the eigenvalues λi

of that observable. To see this, note that given an orthonor-
mal basis � = {|ψ0〉 , |ψ1〉 , . . . , |ψd−1〉}, a zero-deterministic
QIVPM must map exactly one of the projectors |ψi〉〈ψi | to
T and all others to F. This is because, by Eq. (6b), we have
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μ̄(
∑d−1

j=0 |ψj 〉〈ψj |) = T and by inductively applying Eq. (7),
we must have one of the μ̄(|ψi〉〈ψi |) = T and all others mapped
to F. Given any state ρ that is consistent with this QIVPM
on all the projectors in �, we have by Eq. (9) that μB

ρ must
also map exactly one of the projectors in � to one and all
others to zero. If an observable has a spectral decomposition
along � then, by Eq. (2), its expectation value relative to μB

ρ is
the eigenvalue λi whose projector is mapped to 1. It therefore
follows, by Eq. (10), that the expectation value relative to the
zero-deterministic μ̄ is fully determinate and lies in the interval
[λi,λi].

We can now proceed with the main technical result of this
section. We first observe that the original Kochen-Specker
theorem is a statement regarding the nonexistence of a zero-
deterministic QIVPM, and generalize to a corresponding
statement about δ-deterministic QIVPMs.

Theorem 2 (Zero-deterministic variant of the Kochen-
Specker theorem). Given a Hilbert space H of dimension
d � 3, there is no zero-deterministic measure μ̄ mapping every
event to either F or T.

To explain why this result is equivalent to the original
Kochen-Specker theorem and to prove it at the same time,
we proceed by assuming a zero-deterministic QIVPM μ̄ and
derive the same contradiction as the original Kochen-Specker
theorem. Instead of adapting the more complicated proof for
d = 3, the counterexample presented below uses the simpler
proof for a Hilbert space of dimension d = 4 and is constructed
as follows.

We consider a two spin- 1
2 Hilbert space H = H1 ⊗ H2 of

dimension d = 4. We use the same nine observables Oij with
i and j ranging over {0,1,2} from the Mermin-Peres “magic
square” used to prove the Kochen-Specker theorem [17,18,30]:

Oij j = 0 j = 1 j = 2

i = 0 1 ⊗ σz σz ⊗ 1 σz ⊗ σz

i = 1 σx ⊗ 1 1 ⊗ σx σx ⊗ σx

i = 2 σx ⊗ σz σz ⊗ σx σy ⊗ σy

The observables are constructed using the Pauli matri-
ces {1,σx,σy,σz} whose eigenvalues are all either 1 or −1

[16,19,26,29,30]. They are arranged such that in each row
and column, except the column j = 2, every observable is
the product of the other two. In the j = 2 column, we have
instead that (σz ⊗ σz)(σx ⊗ σx) = −σy ⊗ σy . Now assume a
zero-deterministic QIVPM μ̄; the expectation values of the
observables in each row relative to this zero-deterministic
QIVPM are fully determinate and must lie in either the interval
[1,1] or the interval [−1, − 1] depending on which eigenvalue
is the one whose associated projector is certain. Since the
product of any two observables in a row is equal to the third,
there must be an even number of occurrences of the interval
[−1, − 1] in each row and hence in the entire table [44].
However, looking at the expectation values of the observables
in each column, there must be an even number of occurrences
of the interval [−1, − 1] in the first two columns and an odd
number in the j = 2 column and hence in the entire table [44].
The contradiction implies the nonexistence of the assumed
zero-deterministic QIVPM.

Our framework allows us to generalize the above theorem
to state that, for small enough δ, it is impossible to have
δ-deterministic QIVPMs, which is a stronger statement of
contextuality that includes the effects of finite precision. Every
QIVPM must map some events to truly uncertain intervals, not
just “almost definite intervals.” The proof requires two simple
lemmas that we present first.

The first lemma shows a simpler way to prove the convexity
condition. Recall that the convexity condition for a QIVPM
μ̄ : E → I states that for each pair of commuting projectors
P and P ′ with PP ′ = P ′P , the following equation holds:

μ̄(P + P ′ − PP ′) + μ̄(PP ′) ⊆ μ̄(P ) + μ̄(P ′). (11)

Lemma 1. To verify the convexity condition of a QIVPM
μ̄ : E → I , it is sufficient to check that

μ̄(P0 + P1) = μ̄(P0) + μ̄(P1) (12)

for all orthogonal projectors P0 and P1.
The proof follows the outline of the proof of the classical

inclusion-exclusion principle. From the commuting projectors
P and P ′, we construct the following three orthogonal pro-
jectors: PP ′, P (1 − P ′), and (1 − P )P ′. Then we proceed as
follows:

μ̄(P + P ′ − PP ′) + μ̄(PP ′)

= μ̄(PP ′ + P (1 − P ′) + P ′ − PP ′) + μ̄(PP ′) (because P = PP ′ + P − PP ′)

= μ̄(P (1 − P ′) + P ′) + μ̄(PP ′)

= μ̄(P (1 − P ′) + PP ′ + (1 − P )P ′) + μ̄(PP ′) (because P ′ = PP ′ + P ′ − PP ′)

= μ̄(P (1 − P ′)) + μ̄(PP ′) + μ̄((1 − P )P ′) + μ̄(PP ′) [using Eq. (12) twice]

= μ̄(P (1 − P ′) + PP ′) + μ̄((1 − P )P ′ + PP ′) [using Eq. (12) twice]

= μ̄(P ) + μ̄(P ′).

The next lemma relates δ-deterministic QIVPMs with δ < 1
3

to zero-deterministic QIVPMs.
Lemma 2. From any δ-deterministic QIVPM μ̄ : E → I

with δ < 1
3 , we can construct a zero-deterministic QIVPM μ̄D :

E → {F,T} defined as follows:

μ̄D(P ) =
{

F if μ̄(P ) ⊆ [0,δ],

T if μ̄(P ) ⊆ [1 − δ,1].
(13)
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The most important part of the proof is to verify the
convexity condition for μ̄D . By Lemma 1, it is sufficient to
verify the following equation for orthogonal projectors P0

and P1,

μ̄D(P0 + P1) = μ̄D(P0) + μ̄D(P1) , (14)

for two cases, which we now examine in detail.
When one of μ̄D(P0) and μ̄D(P1) is T, say μ̄D(P0) = F and

μ̄D(P1) = T, we have μ̄(P0) ⊆ [0,δ] and μ̄(P1) ⊆ [1 − δ,1],
which implies μ̄(P0 + P1) ⊆ [1 − δ,1 + δ]. Since μ̄(P0 + P1)
is a subset of [0,1], μ̄(P0 + P1) must be a subset of [1 − δ,1],
which implies μ̄D(P0 + P1) is also T, thus satisfying Eq. (14).

When both μ̄D(P0) and μ̄D(P1) are F, we have both
μ̄(P0) and μ̄(P1) ⊆ [0,δ], which implies μ̄(P0 + P1) ⊆ [0,2δ].
Since we assume δ < 1

3 , [0,2δ] and [1 − δ,1] are disjoint,
which implies μ̄(P0 + P1) and [1 − δ,1] are disjoint. Together
with the fact that μ̄(P0 + P1) is a subset of either [0,δ] or
[1 − δ,1], μ̄(P0 + P1) must be a subset of [0,δ], which implies
μ̄D(P0 + P1) = F, and hence also Eq. (14) is again satisfied.

Theorem 3 (Finite-precision extension of the Kochen-
Specker theorem). Given a Hilbert space H of dimension
d � 3, there is no δ-deterministic QIVPM for δ < 1

3 .
The proof is by contradiction: suppose there is a δ-

deterministic QIVPM μ̄ : E → I . By Lemma 2, we can
construct a zero-deterministic QIVPM; however, by Theorem
2, such zero-deterministic QIVPMs do not exist.

The bound δ < 1
3 is tight as it is possible to construct a

1
3 -deterministic QIVPM μ̄ : E → I . For example, consider
a three-dimensional Hilbert space H with orthonormal basis
{|0〉 , |1〉 , |2〉} and a state ρ = 1

3 |0〉〈0| + 1
3 |1〉〈1| + 1

3 |2〉〈2|.
Let P be an operator projecting onto an n-dimensional sub-
space of H, where n � 3. It is straightforward to check that
μB

ρ (P ) = n
3 . Therefore, μ̄(P ) = [μB

ρ (P ),μB
ρ (P )] is a valid

1
3 -deterministic QIVPM.

When δ � 1
3 , i.e., when the uncertainty in measurements be-

comes too large, it becomes possible to map every observable to
some (quite inaccurate) probability interval, thus invalidating
the Kochen-Specker theorem.

We can summarize and illustrate the above arguments using
Fig. 1.

As in the case for conventional, infinitely precise, quantum
probability measures, the theorem is only applicable to dimen-
sions d � 3. Indeed when the Hilbert space has dimension 2, it
is straightforward to construct a zero-deterministic QIVPM as
follows. Consider a noncontextual hidden variable model for
d = 2 (e.g., as proposed by Bell or Kochen-Specker [14,15]).
Such a two-dimensional model assigns definite values to all
observables at all times, and hence assigns a determinate prob-
ability (zero or one) to each event. This probability measure
directly induces a zero-deterministic QIVPM by changing zero
to F and one to T. It follows that every zero-deterministic
QIVPM is δ deterministic.

B. Experimental data and δ determinism

We have thus quantified one important aspect of uncertainty
in quantum mechanics—the effect of the imprecise nature of
devices—which is an addition to the theory of measurement.
Indeed, as Heisenberg emphasized in his famous microscope
example [47], the conventional theory of measurement states

C

FIG. 1. Region to the left of the vertical line at δ = 1
3 is where we

assume small measurement degradation; in that region our extension
of the KS theorem definitely demonstrates contextuality (C). In the
region to the right, the degradation of the data is large and our
extension of the KS theorem no longer refutes other explanations
for the experimental data.

that it is impossible to precisely measure any property of
a system without disturbing it somewhat. Thus there are
fundamental limits to what one can measure and these limits
have traditionally been attributed to complementarity. Our
imprecision represents an additional source of indeterminacy
beyond the inherent probabilistic nature of quantum mechan-
ics.

In an experimental setup, δ is calculated as follows. To
determine the probability of any event, we typically repeat an
experiment m times and count the number of times we witness
the event. This assumes that for each run of the experiment we
can determine, using our apparatus, whether the event occurred
or not. Assume an event has an ideal mathematical probability
of zero, and we repeat the experiment 100 times. In a perfect
world we should be able to refute the event 100 times and
calculate that the probability is zero. We might also observe
the event twice and refute it 98 times and therefore calculate
the probability to be 0.02. Note that this situation assumes
perfect measurement conditions and remains within the context
of conventional (real-valued) probability theory. The question
we focus on is what happens if we are only able to refute it 97
times and are uncertain three times? This is quite common in
actual experiments. Mathematically we can model this idea
by stating that the probability of the event is in the range
[0,0.03] which says that the probability of the event could
be 0, 0.01, 0.02, or 0.03 as each of the three uncertain records
could either be evidence for the event or against it. We just
cannot nail it down given the current experimental results and
therefore represent the evidence as a (δ =)0.03-deterministic
probability measure. The interesting observation is that the
axioms of probability theory (like additivity and convexity)
impose enough constraints on the structure of interval-valued
quantum probability measures to make them robust in the face
of small nonvanishing δ’s.

To see this idea in the context of a quantum experiment, con-
sider a three-dimensional Hilbert space with one-dimensional
projectors Pρ , two-dimensional projectors Pρ + Pσ , and an
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TABLE I. Possible probability measures on a Hilbert space of
dimension d = 3, where μ̄′

2 and μ̄3 are QIVPMs while μ̄0, μ̄1, and
μ̄2 are not. Events are listed in the column labeled by P .

P μ̄0(P ) μ̄1(P ) μ̄2(P ) μ̄′
2(P ) μ̄3(P )

0 F F F F F
All one-dimensional [0,0] [0, 1

4 ] [0, 1
3 ] [ 1

3 , 1
3 ] [0, 1

2 ]
projectors

All two-dimensional [1,1] [ 3
4 ,1] [ 2

3 ,1] [ 2
3 , 2

3 ] [ 1
2 ,1]

projectors
1 T T T T T

experiment that is repeated 12 times. By the Kochen-Specker
theorem, it is impossible to build a probability measure that
maps every projection to either 0 = 0

12 or 1 = 12
12 . That is, the

assignment μ̄0 defined in Table I is not a QIVPM.
Now consider what happens if 1

4 of the data for every
one-dimensional projector is uncertain. A potential account
of this degradation is to assign to each event P the entire range
of possibilities μ̄1(P ) as defined in Table I. This measure is not
a valid QIVPM because it does not satisfy the convexity con-
dition: for any two orthogonal one-dimensional events P0 and
P1, the convexity condition requires μ̄1(P0 + P1) ⊆ μ̄1(P0) +
μ̄1(P1), but μ̄1(P0 + P1) = [ 3

4 ,1], which is not a subset of
[0, 1

2 ] = μ̄1(P0) + μ̄1(P1). Interestingly, it is impossible to find
any probability measure that would be consistent with these
observations, as the interval [ 3

4 ,1] is completely disjoint from
the interval [0, 1

2 ] and no amount of shifting of assumptions
regarding the precise outcome of the uncertain observations
could change that disjointness. However, as shown next, a sharp
transition occurs when δ = 1

3 .
When the proportion of uncertain data reaches 1

3 , the
probability measure that assigns to each event the entire
range of possibilities is μ̄2 defined in Table I. This is also
not a valid probability measure by the same argument as
above. However, in this case μ̄2(P0 + P1) = [ 2

3 ,1] and [0, 2
3 ] =

μ̄2(P0) + μ̄2(P1) have a common point. Hence, by assuming
that the uncertain data for one-dimensional projectors always
support the associated event, while those for two-dimensional
projectors always refute the event, we can find the probability
measure μ̄′

2 that can be verified to be a valid QIVPM and is
consistent with the experimental data.

A similar situation happens when more than 1
3 of data is

uncertain. In particular, if half of the data is uncertain, the
probability measure μ̄3 that assigns to each event the entire
range of possibilities is already a QIVPM.

V. BORN RULE AND GLEASON’S THEOREM

A conventional quantum probability measure can be eas-
ily constructed from a state ρ according to the Born rule
[19,25,26]. According to Gleason’s theorem [16,18,27], this
state ρ is also the unique state consistent with any possible
probability measure.

A. Finite-precision extension of Gleason’s theorem

In order to reexamine these results in our framework, we
first reformulate Gleason’s theorem in QIVPMs using infinitely
precise uncountable intervals I∞ = {[x,x] | x ∈ [0,1]}.

Theorem 4 (I∞ variant of the Gleason theorem). In a
Hilbert space H of dimension d � 3, given a QIVPM
μ̄ : E → I∞, the state ρ consistent with μ̄ on every projector
is unique, i.e., there exists a unique state ρ such that
H(μ̄,E) = {ρ}.

Now let us consider relaxing I to a countable set of finite-
width intervals. As the intervals in the image of a QIVPM
become less and less sharp, we expect more and more states
to be consistent with it. In the limit of minimal sharpness, all
states ρ are consistent with the QIVPM

μ̄(P ) =

⎧⎪⎨
⎪⎩

F if P = 0,

T if P = 1,

U = [0,1] otherwise,

(15)

mapping nearly all projections to the unknown interval U.
There is, however, a subtlety: as shown in the theorem below, it
is possible for an arbitrary assignment of intervals to projectors
to be globally inconsistent.

Theorem 5 (Empty cores exist for general QIVPMs). There
exists a Hilbert space H and a QIVPM μ̄ : E → I such that
H(μ̄,E) = ∅.

To prove this theorem, we need to construct a QIVPM on
some Hilbert space, and verify that there are no states that
are consistent (see Definitions 2 and 3) with it on all possible
events. Assume a Hilbert space of dimension d = 3 with
orthonormal basis {|0〉 , |1〉 , |2〉}, let |+〉 = (|0〉 + |1〉)/√2,
|+′〉 = (|0〉 + |2〉)/√2, and assign

I0 = {T,F,U}. (16)

The map μ̄ : E → I0 defined in Table II can be verified
to be a QIVPM [44]. Next we will prove by contradiction
that H(μ̄,E) is the empty set. Suppose there is a state ρ =∑N

j=1 qj |φj 〉〈φj | ∈ H(μ̄,E), where
∑N

j=1 qj = 1 and qj > 0.

Since we assumed the core H(μ̄,E) is nonempty, so μB
ρ (P ) ∈

μ̄(P ), and Table II tells us that μ̄(|0〉〈0|) = F = [0,0], we must
conclude that μB

ρ (|0〉〈0|) = 0 ∈ [0,0], and similarly for |+〉〈+|
and |+′〉〈+′|. If this is true, then 〈0|φj 〉 = 〈+|φj 〉 = 〈+′|φj 〉 =
0 for all j , and thus

〈1|φj 〉 =
√

2〈+|φj 〉 − 〈0|φj 〉 = 0, (17a)

〈2|φj 〉 =
√

2〈+′|φj 〉 − 〈0|φj 〉 = 0. (17b)

The above equations imply |φj 〉 = |0〉 〈0|φj 〉 +
|1〉 〈1|φj 〉 + |2〉 〈2|φj 〉 = 0, violating the assumption that
|φj 〉 is a normalized state, and thus the theorem is proved.

The fact that a collection of poor measurements on a quan-
tum system cannot reveal the underlying state is not surprising.
Under certain conditions, we can however guarantee that the
uncertainty in measurements is consistent with some nonempty
collection of quantum states. Furthermore, we can relate the

TABLE II. QIVPM μ̄ : E → I0 on a Hilbert space of dimension
d = 3. Events are listed in the column labeled by P .

P μ̄(P )

0, |0〉〈0|, |+〉〈+|, |+′〉〈+′| F
1, 1 − |0〉〈0|, 1 − |+〉〈+|, 1 − |+′〉〈+′| T
All other projectors U
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uncertainty in measurements to the volume of quantum states
such that, in the limit of infinitely precise measurements, the
volume of states collapses to a single state.

To that end, we introduce the concept of interval maps,
which we can use to construct a consistent family of QIVPMs.
An interval map f : [0,1] → I maps every real-valued prob-
ability x ∈ [0,1] to a set of intervals f (x) = [�,r] containing
x, where [0,1] denotes the set of real-valued probabilities (this
should not be confused with the interval-valued probability
U). We also need a notion of norm to quantify the distance
between (pure or mixed) states. The norm of a pure state ρ =
|ψ〉〈ψ | is defined as usual by ‖ψ‖ = √〈ψ |ψ〉. For any given
Hermitian operator A, we choose the operator norm ‖A‖ =
max‖ψ‖=1 ‖A |ψ〉 ‖, which is also known as the two-norm or
the spectral norm [18,48–50]. In fact, for any such matrix,
including the density matrix ρ, this norm is the maximum
absolute value of its eigenvalues. Then, a finite-precision
extension of Gleason’s theorem can be stated as follows.

Theorem 6 (Finite-precision extension of the Gleason the-
orem). Let f : [0,1] → I be an interval map and let the
composition f ◦ μB

ρ be a QIVPM, where μB
ρ is the probability

measure induced by the Born rule for a given state ρ. Let α be
the maximum length of intervals in I . If a state ρ ′ is consistent
with f ◦ μB

ρ on all events, i.e., ρ ′ ∈ H(f ◦ μB
ρ ,E), then the

norm of their difference is bounded by α, i.e., ‖ρ − ρ ′‖ � α.
The proof proceeds as follows. Given a state ρ ′ consistent

with f ◦ μB
ρ , we have μB

ρ ′ (|ψ〉〈ψ |) ∈ f (μB
ρ (|ψ〉〈ψ |)) for any

one-dimensional projector P = |ψ〉〈ψ |. Since the maximum
length of the intervals in I is α, it is also the upper bound of
the difference:∣∣μB

ρ ′ (|ψ〉〈ψ |) − μB
ρ (|ψ〉〈ψ |)∣∣ = |〈ψ |ρ − ρ ′|ψ〉| � α.

Since ρ − ρ ′ is Hermitian, max‖ψ‖=1 |〈ψ |ρ − ρ ′|ψ〉| is the
maximum absolute value of the eigenvalues of ρ − ρ ′ [29],
and equal to ‖ρ − ρ ′‖ [49,50]. Hence ‖ρ − ρ ′‖ � α.

B. Ultramodular functions

Theorem 6 generalizes Gleason’s theorem in the sense that it
accounts for a larger class of probability measures that includes
the conventional one as a limit. The theorem is however
“special” in the sense that it only applies to the particular
class of QIVPMs constructed by composing an interval map
with a conventional quantum probability measure. QIVPMs
constructed in this manner have some peculiar properties that
we examine next.

An interval map is called ultramodular if it satisfies the
following properties.

Definition 6 (Ultramodular functions). Given a collection
of intervals I including F and T, an interval mapM : [0,1] →
I is called ultramodular if

M(0) = F, (18a)

M(1) = T, (18b)

M(1 − x) = T − M(x), (18c)

and for any three numbers x0, x1, and x2 ∈ [0,1] such that
y = x0 + x1 + x2 ∈ [0,1], we have

M(y) + M(x2) ⊆ M(x0 + x2) + M(x1 + x2). (19)

The first three constraints, Eqs. (18), are the direct coun-
terpart of the corresponding QIVPM constraints, Eqs. (6);
the last condition, Eq. (19), is the direct counterpart of the
convexity conditions, Eqs. (4) and (7) [41–43,46]. Therefore,
these conditions guarantee that, for any conventional quantum
probability measure μ, the composition M ◦ μ defines a valid
QIVPM. Conversely, if for every quantum probability measure
μ, it is the case that f ◦ μ is a QIVPM, then the interval map f

is an ultramodular function. Formally, we have the following
result.

Theorem 7 (Equivalence of ultramodular functions and
IVPMs). The following three statements are equivalent.

(1) A function M : [0,1] → I is ultramodular.
(2) The composite function M ◦ μ : EC → I is a classical

IVPM for all classical probability measures μ : EC → [0,1].
(3) The composite function M ◦ μ : E → I is a QIVPM

for all quantum probability measures μ : E → [0,1].
Statement (1) implies (2) and (3) as we have outlined above.

Conversely, for the quantum case, we want to show that ifM is
not ultramodular, then for some quantum probability measure
μ, the composite M ◦ μ might not be a QIVPM. Suppose
there are three particular numbers x0, x1, and x2 ∈ [0,1] such
that y = x0 + x1 + x2 ∈ [0,1], but they don’t satisfy Eq. (19).
Consider the state

ρ = x0|0〉〈0| + x1|1〉〈1| + x2|2〉〈2| + (1 − y)|3〉〈3|.
The induced map M ◦ μB

ρ constructed using the Born rule and
blurred byM fails to satisfy Eq. (7) when P0 = |0〉〈0| + |2〉〈2|
and P1 = |1〉〈1| + |2〉〈2|. In other words, this induced map
fails to be a QIVPM. For the classical case, if M is not
ultramodular, we also want to find a classical probability
measure μ : EC → [0,1] such that M ◦ μ is not a classical
IVPM. This can be done by restricting our previous quantum
probability measure μB

ρ to the space of events EC generated by
the mutually commuting projectors |0〉〈0|, |1〉〈1|, |2〉〈2|, and
|3〉〈3|. The restricted function μ = μB

ρ |EC
is then a classical

probability measure and the induced map M ◦ μ fails to be a
classical IVPM for the same reason as in the quantum case.

In other words, essential properties of QIVPMs constructed
using interval maps can be gleaned from the properties of
ultramodular functions. The following is a most interesting
property in our setting.

Theorem 8 (Range of ultramodular functions). For any ul-
tramodular function M : [0,1] → I , either I = I0 as de-
fined in Eq. (16), or I contains uncountably many intervals.

Since M maps to intervals, we can decompose it into two
functions: its left end and right end, where [ML(x),MR(x)] =
M(x). By Eq. (19), the left-end function ML : [0,1] → [0,1]
is Wright convex [48,51,52], i.e.,

ML(y) + ML(x2) � ML(x0 + x2) + ML(x1 + x2)

for three numbers x0, x1, and x2 ∈ [0,1] with y = x0 + x1 +
x2 ∈ [0,1]. Together with the fact that ML maps to a bounded
interval [0,1], the left-end function ML must be continuous
on the unit open interval (0,1) [43]. Therefore, either M maps
every number in (0,1) to the same interval, or the number of
intervals to which M maps must be uncountable.

To summarize, a conventional quantum probability measure
has an uncountable range [0,1]. A QIVPM constructed by
blurring such a conventional quantum probability measure
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must also have an uncountable range of intervals. Of course,
any particular QIVPM, or any particular experiment, will use
a fixed collection of intervals appropriate for the resources and
precision of the particular experiment.

VI. CONCLUSION

Foundational concepts in quantum mechanics, such as the
Kochen-Specker and Gleason theorems, rely in subtle ways on
the use of unbounded resources. By assuming infinitely precise
measurements, these two insightful theorems form the founda-
tions of two fundamental aspects of quantum mechanics. On
the one hand, the Kochen-Specker result reveals a distinctive
aspect of physical reality, the fact that it is contextual, and, on
the other hand, Gleason’s theorem establishes a relationship
between quantum states and probabilities uniquely defined
by Born’s rule. Our goal in this paper has been to analyze
the physical consequences of a mathematical framework that
allows for finite precision measurements by introducing the
concept of quantum interval-valued probability. This frame-
work incorporates uncertainty in the measurement results by

defining fuzzy probability measures, and includes standard
quantum measurement as the particular instance of sharp,
infinitely precise, intervals.

In addition, we showed how these two theorems emerge as
limiting cases of this same framework, thus connecting two
seemingly unrelated aspects of quantum physics. We noted
that arbitrary finite precision measurement conditions can
nullify the main tenets of both theorems. However, by carefully
specifying experimental uncertainties, we were able to estab-
lish rigorous bounds on the validity of these two theorems.
Therefore, we have established a context in which infinite
precision quantum-mechanical theories can be reconciled with
finite precision quantum-mechanical measurements, and have
provided a possible resolution of the Meyer-Mermin debate on
the impact of finite precision on the Kochen-Specker theorem
[3,5].
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