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We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in
one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian
systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of
the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the
summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding
numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the
exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the
second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger
model and an extended version of it, we show that the topologically different phases can be well characterized
by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is
closely related to the winding number ν1 and ν2.
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I. INTRODUCTION

Recently there has been a growing interest in the study of
topological properties of non-Hermitian Hamiltonian systems
[1–19]. In comparison with Hermitian systems, non-Hermitian
systems exhibit special spectral degeneracies known as excep-
tional points (EPs) [19–25], where the Hamiltonian becomes
nondiagonalizable, making it have complex band structure [26]
and achieve different properties from Hermitian systems. In
Hermitian systems, Hermiticity grants the real eigenvalue and
the eigenvector orthogonality, while in non-Hermitian systems,
the eigenvalue can be complex and the Hamiltonian admits a
complete biorthonormal system of eigenvectors when it is diag-
onalizable [27]. A number of theoretical works have indicated
that various non-Hermitian models may support topologically
nontrivial properties. For example, non-Hermitian analogs of
the Su-Schrieffer-Heeger (SSH) model either with parity-time
(PT ) symmetry [13,14,28,29] or without PT symmetry have
been studied, and recent experimental realizations of the
PT-symmetry SSH model have demonstrated the existence
of robust edge states. More recently, particular attention has
been paid to a one-dimensional (1D) non-Hermitian model
with its Hamiltonian in the momentum space encircling an
EP [5], which stimulates the intensive theoretical studies of
the characterization of topological phases and bulk-boundary
correspondence in non-Hermitian systems [5,6,9–11,14].

For 1D topological systems, the winding number can be
used to characterize the topological properties of the Z-class
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insulators, which is closely related to the quantized Berry phase
(Zak phase) [30] and protected by chiral symmetry [31]. In
Hermitian systems, the winding number ν is always an integer.
While ν = 0 describes the topologically trivial state, ν = ±1
correspond to topological states with zero-energy edge states.
When the momentum runs over the Brillouin zone (BZ), the
topologically nontrivial system is characterized by a quantized
Berry phase π with a modulus of 2π , and correspondingly,
the Hamiltonian in the momentum space encircles the original
point. The number of times encircling the original point is
described by the winding number. It has been demonstrated that
some extended topological models with long-range hopping
terms support topological phases characterized by winding
numbers with ν > 1 and exhibit rich phase diagrams [31–33].
In contrast to the Hermitian topological system, the geometric
meaning of winding number of non-Hermitian systems is still
not very clear. Moreover, although there exist debates on the
validity of the bulk-boundary correspondence, it may still be
an important principle in topological non-Hermitian systems
[2,5,6].

In this work, we study the geometrical meaning of the wind-
ing number and explore the relation between the winding num-
ber and zero-mode edge states by studying a non-Hermitian
SSH model and its extension with more rich topological phases
described by higher winding numbers. The winding number of
non-Hermitian Hamiltonian ν is found to be equal to half of the
summation of two winding numbers ν1 and ν2, which describe
the times of trajectory of the real part of the non-Hermitian
Hamiltonian surrounding two EPs, respectively. From the
trajectory picture, it is clear that the winding numbers ν1 and
ν2 can only take integers. We also find that the difference of ν1
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and ν2 is equal to twice that of the second winding number or
energy vorticity defined in previous works [6,26]. By studying
the non-Hermitian SSH and extended SSH models and scruti-
nizing the zero-mode solutions of semi-infinite systems under
open boundary condition (OBCs), we further demonstrate that
ν1 and ν2 correspond to zero-mode edge states at different
boundaries, i.e., ν1 gives the number of zero-mode states at the
left edge and ν2 at the right edge.

The paper is organized as follows. In Sec. II, we introduce
the definition of winding number surrounding EPs and derive
its relation with the winding number of the non-Hermitian
Hamiltonian. In Secs. III and IV, two examples (non-Hermitian
SSH model and extended non-Hermitian SSH model, respec-
tively) are explored in detail. Topologically different phases in
the phase diagram are determined via the calculation of wind-
ing numbers, and the relation between the winding number and
the number of zero-mode edge states is also discussed. A brief
summary is given in Sec. V.

II. WINDING NUMBER FOR CHIRAL NON-HERMITIAN
SYSTEM

We consider a general two-band non-Hermitian system,
whose Hamiltonian in momentum space contains only two of
the three Pauli matrices and can be written in the form of

h(k) = hxσx + hyσy, (1)

after some rotations, with σ the Pauli matrices. Here k is the
momentum, and hx and hy are generally functions of k. This
model has chiral symmetry as

σzh(k)σz = −h(k).

When k varies from 0 to 2π, hx and hy form a close loop. Thus
we can generalize the definition of the winding number for the
Hamiltonian in the parameter space spanned by hx and hy :

ν = 1

2π

∮
c

hxdhy − hydhx

h2
x + h2

y

(2)

= 1

2π

∫ 2π

0
dk

hx∂khy − hy∂khx

h2
x + h2

y

, (3)

where c is a close loop with k varying from 0 to 2π . The
winding number for this chiral-symmetry-protected system
can be associated to the non-Hermitian Zak phase,

γ =
∫ 2π

0
dk

〈
uL

k

∣∣i∂k

∣∣uR
k

〉
〈
uL

k

∣∣uR
k

〉 , (4)

via the relation γ = νπ , where u
L(R)
k denotes the occupied

left and right Bloch state eigenvectors of the Hamiltonian.

The eigenstate for the band with eigenvalue −
√

h2
x + h2

y

then has the form of 〈uL
k | = 1√

2
( hx+ihy√

h2
x+h2

y

,−1) and |uR
k 〉 =

1√
2
( hx−ihy√

h2
x+h2

y

,−1)
T

.

For the non-Hermitian system, hx and hy are generally
complex or at least one of them is complex, so we introduce a
complex angle φ satisfying tan φ = hy/hx . In terms of φ, the

winding number ν can be represented as

ν = 1

2π

∮
c

∂kφdk, (5)

where the integral is also taken along a loop with k from 0
to 2π . Equation (3) is always well defined, except at the EPs,
where we have h2

x + h2
y = 0, giving rise to the location of EPs

at

hxr = −hyi, and hyr = hxi (6)

or

hxr = hyi, and hyr = −hxi, (7)

where hxr = Re(hx), hxi = Im(hx), hyr = Re(hy), and hyi =
Im(hy). This means that in this system, the number of EPs
is no more than two. When the system is Hermitian with
hx and hy being real, these two EPs merge into the original
point (hx,hy) = (0,0), which is the gap-closing point in the
Hermitian spectrum. Except at EPs, φ is well defined as a
function of k, and we always have

ei2φ = 1 + i tan φ

1 − i tan φ
= hx + ihy

hx − ihy

. (8)

Since φ is a complex angle, we can decompose it into two
parts,

φ = φr + iφi, (9)

where φr = Re(φ) and φi = Im(φ). Thus, Eq. (5) becomes the
integral of two parts. In ei2φ = ei2φr e−2φi , φr contributes to the
argument while φi contributes to amplitude,

e−2φi =
∣∣∣∣hx + ihy

hx − ihy

∣∣∣∣.

As φi is a real continuous periodic function of k, we have∮
c

∂kφidk = φi(2π ) − φi(0) = 0,

which means the imaginary part of φ having no effect on the
integral of winding number. On the other hand,

ei2φr = hx + ihy

hx − ihy

/∣∣∣∣hx + ihy

hx − ihy

∣∣∣∣ .
By using the relation

tan 2φr = Im
hx + ihy

hx − ihy

/
Re

hx + ihy

hx − ihy

,

after some algebras, we can rewrite the above relation as

tan 2φr = tan φ1 + tan φ2

1 − tan φ1 tan φ2
= tan (φ1 + φ2), (10)

where

tan φ1 = hyr + hxi

hxr − hyi

, tan φ2 = hyr − hxi

hxr + hyi

, (11)

which define two real angles φ1 and φ2, respectively.
From Eq. (10), it is straightforward to get the relation

between φr and φ1, φ2, i.e., φr = (φ1 + φ2)/2 + nπ , where
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FIG. 1. Schematic diagram of three typical winding cases by
calculating the model with hx = t + t ′ cos(k) and hy = t ′ sin(k) − iδ.
In (a)–(c) t = 0.5, t ′ = 1, and δ takes 1.75, 1, and 0.2, respectively.
Times for the trajectory surrounding the EP marked by the asterisk
gives ν1 and the one surrounding the pentagram gives ν2. It is
straightforward to get (a) ν1 = 0 and ν2 = 0, (b) ν1 = 0 and ν2 = 1,
and (c) ν1 = 1 and ν2 = 1.

n is an integer. Substituting them into Eq. (5) and using the
relation

∮
c
∂kφidk = 0, we get

ν = 1
2 (ν1 + ν2), (12)

where

ν1 = 1

2π

∮
∂kφ1dk, (13)

ν2 = 1

2π

∮
∂kφ2dk, (14)

can be viewed as two winding numbers. In the space spanned
by hxr and hyr , the point (hyi,−hxi) corresponds to one of
the EPs, and φ1 is the angle of (hxr ,hyr ) relative to this EP.
This indicates that ν1 is the winding number of the real part
of the Hamiltonian surrounding the EP point (hyi,−hxi) when
k ranges from 0 to 2π . Similarly, ν2 represents the winding
number about the other EP point (−hyi,hxi).

To get an intuitive understanding, in Fig. 1 we show
three typical winding cases for a simple model with hx =
t + t ′ cos k and hy = t ′ sin k − iδ, which corresponds to the
non-Hermitian SSH model to be considered in the next section.
In Fig. 1(a), these two EPs are not surrounded by the trajectory
of the Hamiltonian and its winding number is 0, while Figs. 1(b)
and 1(c) correspond to winding numbers ν = 1/2 and 1,
as one EP and two EPs are surrounded in Figs. 1(b) and
1(c), respectively. The winding number ν describes half the
total number summation of times that the real part of the
Hamiltonian travels counterclockwise around two EPs. Despite
that the non-Hermitian Zak phase only takes 0, π/2, or π with
a modulus of 2π , the winding number can be any half integer,
and indicates different topological phases. A more complex
example with ν = 3/2 and 2 shall be studied by considering
an extended non-Hermitian SSH model in Sec. IV.

Before moving on to the study of concrete models, we
would like to demonstrate that our introduced winding numbers
ν1 and ν2 also have a correspondence to the second winding
number w2 defined in Ref. [6] and the energy vorticity defined
in Ref. [26]. Consider a quantity ν ′ defined as

ν ′ ≡ ν1 − ν2

2
, (15)

we obtain

ν ′ = 1

2π

∮
∂k

φ1 − φ2

2
dk = 1

2π

∮
∂kφ

′dk,

A

B

AA

B B

FIG. 2. Schematic diagram of non-Hermitian SSH model with
different nearest-neighbor hopping strengths inside a cell.

where 2φ′ = φ1 − φ2. Then we have

tan 2φ′ = tan(φ1 − φ2) = tan φ1 − tan φ2

1 + tan φ1 tan φ2
.

Substituting Eq. (11) into it, we obtain

tan 2φ′ = Im
(
h2

x + h2
y

)
Re

(
h2

x + h2
y

) = tan arg
(
h2

x + h2
y

)
,

which indicates that φ′ = 1
2 arg(h2

x + h2
y) + nπ with n ∈ Z.

Thus the new quantity ν ′ takes the form as

ν ′ = 1

2π

∮
∂k

[1

2
arg

(
h2

x + h2
y

) + nπ
]
dk

= 1

2π

∮
∂k arg

√
h2

x + h2
ydk, (16)

where
√

h2
x + h2

y is one of the two eigenenergies of the two-

band system. This definition of ν ′ is equivalent to the definition
of the second winding number w2 in Ref. [6]. From Eqs. (12)
and (15), we can also get

ν1 = ν + ν ′, ν2 = ν − ν ′. (17)

III. NON-HERMITIAN SSH MODEL

To give a concrete example and demonstrate our scheme,
first we consider the non-Hermitian version of the SSH model
[10,34,35] by changing the hopping term in the unit cell into
non-Hermitian form with different strengths in the right and
left hopping directions as shown in Fig. 2, described by the
Hamiltonian

H =
∑

n

[(t − δ)â†
nb̂n + (t + δ)b̂†nân

+ t ′â†
n+1b̂n + t ′b̂†nân+1], (18)

where â
†
n, b̂

†
n (ân, b̂n) are the creation (annihilation) operators

at the nth A,B site. After Fourier transform, we have

H =
∑

k

ψ
†
kh(k)ψk, (19)

where ψk = (ak,bk)T and

h(k) =
(

0 t ′e−ik + t − δ

t ′eik + t + δ 0

)
.

For simplicity, we take t ′ = 1, t , and δ real. In general, when
δ = 0, this model reduces to the standard SSH model, which
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FIG. 3. (a) Phase diagram of the non-Hermitian SSH model. The
colors from shallow to deep represent ν = 0, 1/2, and 1 as marked.
(b)–(h) Winding diagrams with different parameters. They are all
on the dashed line in (a) with t = 0.5 and different values of δ. In
each subfigure, (b) δ = −1.75, (c) δ = −1, (d) δ = −0.2, (e) δ = 0,
(f) δ = 0.2, (g) δ = 1, and (h) δ = 1.75. The red asterisk and blue
pentagram represent two different EPs.

belongs to a Z-type topological system with topological and
trivial phase characterized by the winding numbers ν = 1 and
0, respectively. The dispersion of this Hamiltonian is

E = ±
√

1 + t2 − δ2 + 2t cos k − i2δ sin k.

From the expression of dispersion, we see that the energy is
symmetric about zero energy, which is ensured by the chiral
symmetry. Since the energy gap must close at phase transition
points, we can determine the phase boundaries of the non-
Hermitian SSH model by the band-crossing condition E(k) =
0, which yields t = ±δ + 1 and t = ±δ − 1.

By using Eqs. (3) and (12), we calculate the winding number
of this model, as shown in Fig. 3(a). Topologically different
phases in the phase diagram can be distinguished by their
winding numbers ν = 0, 1/2, and 1. In Figs. 3(b)–3(h), we
illustrate the winding of the projection of Hamiltonian with
different δ by fixing t = 0.5. While the red asterisk represents
the EP of (−δ,0), the blue pentagram represent the other EP
of (δ,0). When the momentum k varies from 0 to 2π , the
curve of the Hamiltonian may enclose both of two EPs for
Figs. 3(d)–3(f) with ν1 = ν2 = 1, or only one of the EP with
ν1 = 1 for Fig. 3(c) or ν2 = 1 for Fig. 3(g), or not enclose them
with ν1 = ν2 = 0 for Figs. 3(b) and 3(h), which correspond to
ν = 1, 1/2, and 0, respectively. However, at the phase transition
points, the curve crosses any of the EPs, and the winding
number is ill defined due to h2

x + h2
y = 0 at these points. Except

for these phase transition points, the total enclosed times of EPs
is twice that of the winding number ν.

FIG. 4. (a) Phase diagram of non-Hermitian SSH model charac-
terized by the number of zero-mode edge states. The red shallow
represents the existence of a left zero-mode edge state, while the
blue shallow represents the right edge state. The number represents
the quantities of edge states in its mark area. Subgraphs (b)–(d) are
distributions of moduli of the zero-mode edge states of the three marks
(ring, star, and square) at t = 0.5 and δ = −1,0,1 in subgraph (a),
respectively. (e) The dispersion of H † × H with parameters t = 0.5
and δ changing from −2 to 2 for the lattice size with 200 sites.

Next, we discuss existence of zero modes under OBC.
In real space, we consider a semi-infinite system with n =
1,2,3,..., and choose the wave function as 
m = ∑

n(ψa,nâ
†
n +

ψb,nb̂
†
n)|0〉, with |0〉 the vacuum state. From H
m = Em
m,

we have the eigenequations:

(t + δ)ψa,n + ψa,n+1 = Emψb,n, (20)

(t − δ)ψb,n + ψb,n−1 = Emψa,n. (21)

Here, for n = 1, we have ψb,0 = 0, which gives the left
boundary condition.

A zero-mode solution of the system corresponds to Em = 0.
When Em = 0, Eqs. (20) and (21) are decoupled. Now Eq. (21)
becomes

(t − δ)ψb,n + ψb,n−1 = 0, (22)

and we have ψb,n = 0 for any n by using the above relation
and the boundary condition ψb,0 = 0. Similarly, Eq. (20) can
also be simplified as

(t + δ)ψa,n + ψa,n+1 = 0, (23)

which gives an exponentially decreasing state only if |t + δ| <

1, i.e., there exists a solution localized at the left edge when |t +
δ| < 1. We note that here we choose a semi-infinite geometry
with only one edge. When the system has a finite size with two
ends, edge states with a nonzero b component localized at the
other end can exist when Em = 0 and |t − δ| < 1.

In Fig. 4(a), we show the phase diagram characterized by the
number of zero-mode edge states, which is consistent with the
phase diagram determined by the winding number. Different
color in the shadow area represents different distributions of
the edge state. In the red area with |t + δ| < 1, there exists only
one zero-mode edge state, which is localized at the left side as
shown in Fig. 4(b) for the system with t = −1 and δ = 0.5.
In the blue area with |t − δ| < 1, there exists an edge state
localized at the right side as shown in Fig. 4(d) for a system with
t = 1 and δ = 0.5. In the middle crossing area, there exist two
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zero-mode edge states, which appear at both sides as shown
in Fig. 4(c), corresponding to t = 0 and δ = 0.5. It is also
straightforward to see the relation between winding number
and the zero-mode edge states. While ν = 1/2 corresponds to
the existence of one zero-mode edge state, ν = 1 corresponds
to two zero-mode edge states. Although both (ν1 = 1,ν2 = 0)
and (ν1 = 0,ν2 = 1) correspond to the same ν = 1/2, they give
rise to different ν ′ with ν ′ = 1/2 and ν ′ = −1/2, respectively.
Our results unveil that winding on different EP relates to
different edge states, i.e., ν1 = 1 or ν2 = 1 corresponds to the
zero-mode edge state at the left or right edge, respectively. In
the region of ν = 0, we do not find the existence of a zero-mode
edge solution.

Alternatively, we can check whether the zero-mode solution
exists by diagonalizing the Hermitian operator H † × H . If H

has zero-mode solutions, then H † also has zero modes. Thus,
we could use H † × H to illustrate the existence of a zero mode
in H . We note that when H holds a zero mode, H † × H must
hold zero mode, but on the contrary, it may not be true. The
spectrum of H † × H corresponding to the blue dashed line in
Fig. 4(a) is shown in Fig. 4(e). It is shown that the zero-mode
solution obtained by solving Eqs. (22) and (23) is consistent
with the zero mode in the spectrum shown in Fig. 4(e).

IV. EXTENDED NON-HERMITIAN SSH MODEL

Next, we consider an extended non-Hermitian SSH model,
which takes the form

H =
∑

k

ψ
†
kh(k)ψk, (24)

where ψk = (ak,bk)T and

h(k) =
(

0 t − δ + t ′e−ik + �e−2ik

t + δ + t ′eik + �e2ik 0

)
.

For simplicity, we take t ′ = 1, and t, δ,� real. In general, when
� = 0, this model reduces to a non-Hermitian SSH model. The
dispersion of this Hamiltonian is

E = ±
√

(t − δ + e−ik + �e−2ik)(t + δ + eik + �e2ik).

From the expression of dispersion, we see that the energy
is symmetric about zero energy, which is ensured by the
chiral symmetry. Since the energy gap must close at phase
transition points, we can determine the phase boundaries of
the non-Hermitian SSH model by the band-crossing condition
E(k) = 0, which yields t = ±δ + 1 − � and t = ±δ − 1 − �

for arbitrary �, and additionally, t = � ± δ if |�| > 0.5.
In Fig. 5(a), we show the winding number calculated by

Eq. (3) with � = 1. Topologically different phases in the
phase diagram are distinguished by their winding numbers
ν = 0, 1/2, 1, 3/2, and 2. In Figs. 5(b)–5(h), we also il-
lustrate the winding trace of the projection of Hamiltonian
with different δ by fixing t = 0.3, corresponding to ν =
0,1/2,3/2,2,3/2,1/2,0, respectively. From the pattern of the
winding trace, we can easily read out the information of
winding numbers ν1 and ν2, and thus ν = (ν1 + ν2)/2. For
example, we have ν1 = 1 and ν2 = 0 for Fig. 5(c) and ν1 = 1
and ν2 = 2 for Fig. 5(d), corresponding to ν = 1/2 and 3/2,
respectively.

FIG. 5. (a) The phase diagram of the non-Hermitian extended
SSH model with � = 1. The colors from shallow to deep represent
ν = 0, 1/2, 1, 3/2, and 2 as marked. (b)–(h) Winding diagrams with
different parameters. They are all on the dashed line in (a) with
t = 0.3 and different values of δ. In each subfigure, (b) δ = −2.6,
(c) δ = −1.5, (d) δ = −0.5, (e) δ = 0, (f) δ = 0.5, (g) δ = 1.5, and
(h) δ = 2.6. The red asterisk and blue pentagram represent two
different EPs.

Next we explore the zero-mode solution of the extended
non-Hermitian SSH model under OBC. In real space, the
Hamiltonian reads

H =
∑

n

[(t − δ)â†
nb̂n + (t + δ)b̂†nân + â

†
n+1b̂n

+ b̂†nân+1 + �â
†
n+2b̂n + �b̂†nân+2]. (25)

Here we also consider a semi-infinite system with n =
1,2,3,..., and choose the wave function as 
m = ∑

n(ψa,nâ
†
n +

ψb,nb̂
†
n)|0〉. H
m = Em
m yields

(t + δ)ψa,n + ψa,n+1 + �ψa,n+2 = Emψb,n, (26)

(t − δ)ψb,n + ψb,n−1 + �ψb,n−2 = Emψa,n. (27)

Since n starts from 1, here we set ψb,n = 0 for n ≤ 0 as the
left boundary condition.

A zero-mode solution can be achieved by setting En = 0,
as

(t + δ)ψa,n + ψa,n+1 + �ψa,n+2 = 0, (28)

(t − δ)ψb,n + ψb,n−1 + �ψb,n−2 = 0. (29)

The boundary condition indicates ψb,n = 0 for every n. For
edge states localized at the A sublattice, we expect it to decay
exponentially, and thus we assume ψa,n+1/ψa,n = λ, which
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FIG. 6. (a) In this figure, we distinguish different regions by the
number of left zero-mode edge states for the semi-infinite system with
the end at the left side. In the dark area, there are two left zero-mode
edge states corresponding to the region with both eigenvalues less
than unity, while in the shallow area, there is only one zero-mode
edge state. In the blank area, there is no zero-mode state. Subfigure
(b) shows the case with the end at the right side. Similarly, blank,
shallow, and dark areas correspond to regions with no, one, and two
right zero-mode edge states.

leads to

�λ2 + λ + (t + δ) = 0. (30)

The quadratic equation gives two complex solutions λ1 and
λ2, and we can obtain an edge state localized at the left end
of the 1D semi-infinite chain whenever one of the modules
of λi (i = 1,2) is less than unity. If there are two eigenvalues
less than unity, there must be two edge states at this side. If
only one eigenvalue is less than unity, there exists one edge
state. If no eigenvalue is less than unity, no zero-mode edge
state exists at the left side. A general solution of Eq. (30)
is given by λ = −1±√

1−4�(t+δ)
2�

. For � = 1, it is easy to find
that when −δ < t < 1 − δ, both solutions of λ are less than
unity, indicating the existence of two left zero-mode edge states
corresponding to ν1 = 2. When −2 − δ < t < −δ, only one of
these two solutions is less than unity, indicating the existence
of one left zero-mode edge state corresponding to ν1 = 1. In
other cases, no λ is less than unity. To see it clearly, we show
the regions with one solution and two solutions of λ being less
than unity, corresponding to the shallow and dark red areas in
Fig. 6(a), with one and two edge states located at the left side,
respectively. A similar method can also be applied to obtain
the condition for the existence of one and two right zero-mode
edge states by solving a semi-infinite system with the end at
the right side, which yields

�λ′2 + λ′ + (t − δ) = 0, (31)

with the right edge at the Lth B site, where λ′ = ψb,n−1/ψb,n

andψa,n = 0. Similarly, we get a diagram as shown in Fig. 6(b),
in which the shallow and dark blue areas correspond to
regimes with one and two edge states located at the right
side, respectively. Combining Figs. 6(a) and 6(b) together, we
get a phase diagram characterized by the number of left and
right zero-mode edge states, which is consistent with the phase
diagram shown in Fig. 5(a).

In Fig. 7, we show the distribution of moduli of zero-mode
wave functions for systems corresponding to Figs. 5(c)–5(g)
from top to bottom, respectively, e.g., Fig. 7(a) shows that

(a)
1

0.5

0 60 L-60 L

(b)
1

0.5

0 60 L-60 L

(c)
1

0.5

0 60 L-60 L

(d)
1

0.5

0 60 L-60 L

(e)
1

0.5

0 60 L-60 L

FIG. 7. (a)–(e) Distribution of moduli of the zero-mode edge-state
wave functions under open boundary conditions, which correspond
to the situation in subgraphs (c)–(g) in Fig. 5 with � = 1, t = 0.3,
and δ = −1.5,−0.5,0,0.5,1.5, respectively. Red solid lines and black
dash-dot lines represent left-side edge states, while blue dashed lines
and purple dotted lines represent right-side edge states.

there is only one edge state localized at the left boundary,
corresponding to Fig. 5(c) with ν = 1/2 and ν1 = 1, and there
are two edge states localized at the right boundary and one
at the left boundary in Fig. 7(b), corresponding to Fig. 5(d)
with ν = 3/2, ν1 = 1, and ν2 = 2, etc. All the solutions are
consistent with the phase diagram shown in Fig. 5.

V. SUMMARY

In summary, we have explored the geometrical meaning
of winding number for general 1D two-band non-Hermitian
systems with chiral symmetry and applied it to determine the
phase diagram of a non-Hermitian SSH model and an extended
version of it. By generalizing the definition of winding number
for Hermitian systems to non-Hermitian systems, we unveil
that the introduced winding number ν is equal to half of the
summation of two winding numbers ν1 and ν2, i.e., ν = (ν1 +
ν2)/2, where ν1 and ν2 can only take integers as they represent
the winding times for the close trajectory of the real part
of the non-Hermitian Hamiltonian surrounding two EPs when
the momentum goes across the BZ. We further demonstrate
that the difference of ν1 and ν2 is equal to the twice that of the
second winding number or energy vorticity ν ′ introduced in
Refs. [6] and [26], i.e., ν ′ = (ν1 − ν2)/2. We then determine
the phase diagrams of the non-Hermitian SSH and extended
SSH models by calculating the winding numbers. It is shown
that different topological phases can be well characterized by

052115-6



GEOMETRICAL MEANING OF WINDING NUMBER AND ITS … PHYSICAL REVIEW A 97, 052115 (2018)

the winding numbers. By studying the zero-mode solutions of
semi-infinite systems for these two non-Hermitian models, we
find that the existence of left and right zero-mode edge states is
closely related to the winding numbers ν1 and ν2. While ν1 + ν2

indicates the total number of the zero-mode edge states, values
of ν1 and ν2 provide the information of where these edge states
localize. Our work gives a geometrical interpretation for the
winding numbers of 1D non-Hermitian systems and establishes
connection between the number of zero-mode edge states and
the winding numbers. Our scheme can be applied to other 1D
non-Hermitian models with chiral symmetry.

Note added. Recently, a work appeared on the arXiv [36]
in which topological classification of non-Hermitian systems
according to Altland-Zirnbauer classes is studied. While our

work is focused on the 1D non-Hermitian systems with chiral
symmetry, the definitions of winding numbers ν, ν1, and
ν2 cannot be directly generalized to systems without chiral
symmetry.
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