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Multistate and multihypothesis discrimination with open quantum systems
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We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian
governing the evolution of an open quantum system may be calculated by numerically efficient means. Our
method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full
states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct
an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the
corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal
discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide
three realistic examples of multihypothesis testing with open quantum systems.
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I. INTRODUCTION

Quantum metrology is concerned with the discrimination
of quantum states, Fig. 1(a), often with the purpose of dis-
tinguishing between different physical parameters governing
the preparation or evolution of a quantum system [1]. In
Hamiltonian parameter estimation a continuum of candidate
parameter values are filtered by their different action on the
state of a quantum probe while hypothesis testing considers
scenarios with a discrete set of hypotheses m = 1,2, . . . ,N ,
for the Hamiltonian acting on the probe. In both cases, our
ability to determine the true candidate hypothesis or physical
parameter is ultimately limited by our ability to discern the
corresponding signals obtained by measurements on the probe
system.

In the present work we are interested in experiments with
an open probe system whose interaction with a broadband
environment validates the Born-Markov approximation. If
the environment is left unmonitored, the interaction leads to
decoherence of the system and to a loss of distinguishability,
while a combined measurement on the probe system and its
environment may yield much more information about the
physical parameters governing the dynamics; see Fig. 1(b).
Assuming that such a measurement is implementable, the
ultimate precision is concerned not with the discrimination
of reduced density-matrix candidates {ρm}Nm=1 for the small
system but rather with the discrimination of the, possibly, pure
quantum states of the system and its environment {|ψSE

m 〉}Nm=1.
In this article we show how discrimination between an

arbitrary number of (nonorthogonal) states of a quantum
system may be employed to determine an upper bound for our
ability to distinguish among different hypotheses concerning
the evolution of a Markovian open quantum system. The full
states of a system and a Markovian environment occupy in
general a very large Hilbert space and the candidate states
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of the combined system and their overlaps 〈ψSE
n |ψSE

m 〉 are
at a first glance intractable. Yet, it was shown in Ref. [2]
how 〈ψSE

n |ψSE
m 〉 can be calculated efficiently by propagating

a so-called two-sided master equation for an effective density
matrix which lives in the much smaller Hilbert space of the
system alone.

For two candidate states |ψ1〉 and |ψ2〉 prepared with prior
probabilities P1 and P2, Helstrom derived in 1969 a general
expression for the minimum error probability in discriminating
them by a single measurement [3],

Q(Helstrom)
e = 1

2 (1 −
√

1 − 4P1P2| 〈ψ1| ψ2〉|2). (1)

Recent works, e.g., Refs. [4,5], have made progress towards
deriving a general framework for cases with multiple hypothe-
ses, but no closed-form expression has been found except in
cases where the candidate density operators commute [6]. As
pointed out by Helstrom [3] it is, however, clear that even for
multiple hypotheses the error probability Qe depends only on
the pairwise overlaps between the candidate states and their
prior probabilities.

Our presentation is structured as follows. In Sec. II we
outline how the error probability in discriminating N arbitrary
quantum states can be phrased as a semidefinite-programming
problem for which numerically efficient algorithms exist. In
Sec. III we rederive the main results of Ref. [2] for evaluating
〈ψSE

n |ψSE
m 〉, and we show how the pairwise state overlaps

among N candidate states can be applied to embed these states
in a reduced Hilbert space of dimension N . Distinguishing
N hypotheses for the evolution of the open quantum system
is equivalent to a multistate discrimination problem on this
Hilbert space. In Sec. IV we illustrate our theory by presenting
three examples: (i) discriminating four candidates for the
relative phase of a Rabi drive on an open two-level system, (ii)
discriminating whether a low-Q cavity is coupled to 1, 2, 3, or
4 atoms, and (iii) using a sensor ion to determine the position of
a nearby qubit ion in a doped crystal lattice structure. Finally,
in Sec. V we conclude and provide an outlook.
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FIG. 1. (a) In state discrimination, a measurement is performed
to distinguish between a set of N candidate states {ψm}N

m=1. (b) In
hypothesis discrimination with an open quantum probe, a combined
measurement on the system and its environment is performed to
determine the true candidate from a set of N possible Hamiltonians
{Ĥ SE

m }N
m=1 of the system or the combined system and environment.

II. OPTIMAL STATE DISCRIMINATION

One may specify different goals and hence measures of
the quality of a state discrimination process, depending on
the number of copies of the quantum system available [7]
and depending on the cost and reward for making wrong
and correct estimates [8]. In the limit where measurements
on asymptotically many copies M of the quantum probe
system are available, the probability of making an erroneous
assignment decreases exponentially with M . The exponent
obeys the quantum Chernoff bound [9], which was recently
generalized to cases with multiple candidate states [10].

In the present study we are interested in the information
obtainable by performing a measurement on a single quantum
system. We assume that the system is prepared with probability
Pm in one of N different, mixed quantum states {ρm}Nm=1, and
that we can perform measurements on the system with out-
comes that we combine into our assignment λ = 1,2, . . . ,N of
the most likely state. We quantify a given measurement strategy
by the error probability of assigning a false state (hypothesis)
based on the outcome λ of a measurement performed on the
system,

Qe =
N∑

m=1

Pm

N∑
n=1
n�=m

P (λ = n|ρm). (2)

To be able to assign N possible states, the measurement must
have N possible outcomes, so for a Hilbert space of dimen-
sion d < N , we have recourse to generalized (nonprojec-
tive) measurements with fundamentally ambiguous outcomes.
Such measurements are defined by a positive-operator valued
measure (POVM) with effects {Êm}Nm=1 which are positive
semidefinite (Êm � 0) and sum to identity

∑
Êm = I [11].

The probability to obtain an outcome n if the true state is ρm

is then P (λ = n|ρm) = Tr(Ênρm), so by applying
∑

Êm = I
and

∑
Pm = 1 we may rewrite Eq. (2),

Qe
({Êm}Nm=1

) = 1 −
N∑

m=1

PmTr(Êmρm). (3)

The task of obtaining the optimal POVM, which minimizes
the error probability for a given set of candidate states {ρm}Nm=1
with (prior) probabilities {Pm}Nm=1 defines a semidefinite pro-
gramming problem [12]:

minimize Qe
({Êm}Nm=1

)
subject to Êm � 0 ∀m ∈ {1, . . . ,N}

and
N∑

m=1

Êm = I. (4)

Recent studies provide analytic solutions for this problem in
the case of discriminating three qubit states (N = 3, d = 2)
[4] with arbitrary prior probabilities or any number of a priori
equally probable qubit states [13]. Furthermore, it was recently
realized that any N -outcome measurement can be decomposed
into sequences of nested two-outcome measurements which
allow straightforward numerical optimization [5]. A detailed
discussion of the state discrimination problem as a convex
optimization task and a general solution by semidefinite pro-
gramming was provided in Ref. [14]. In the present study we
apply the CVX package for specifying and solving convex
programs in Matlab [15,16].

III. HYPOTHESIS TESTING WITH OPEN
QUANTUM SYSTEMS

Hypothesis testing is the task of discriminating the evolution
of a probe system subject to one of a discrete set of candidate
Hamiltonians. To distinguish different hypotheses, a system
may be subject to continuous monitoring by a probe beam or
information may be obtained by, e.g., homodyne detection or
photon counting of the radiation emitted by the system [17–19].
A variety of studies on such strategies point out that temporal
correlations in the transmitted or emission signals are essential
for their achievable precision [20–29].

As argued in [2,30,31], the Markovian nature of the system-
environment interaction implies that the discernibility of the
(unmeasured) quantum states of the system and environment
provides a theoretical upper bound for our practical ability
to distinguish the different hypotheses by, e.g., continuous
monitoring of the environment degrees of freedom [28,29].
Each individual hypothesis m thus leads to a particular unmea-
sured quantum state |ψSE

m 〉 of the system and the environment
at a given time t and hypothesis testing is equivalent to the
problem of discriminating the states {|ψSE

m (t)〉}Nm=1. Due to
the large Hilbert space dimension of the environment, these
states are generally not accessible. Nevertheless, following
the idea of Ref. [2], we show in this section that in situa-
tions where the Born-Markov approximation applies to the
system-environment interaction, the overlaps between any two
candidate states can be evaluated by solving a two-sided
master equation for an effective density operator on the small
system Hilbert space alone. We subsequently show how the
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overlaps between all pairs of states can be used to construct
a low-dimensional representation of the problem to which the
technique (4) of Sec. II applies.

A. Two-sided master equation for the state overlaps

The distinct hypotheses can be formally mapped to the states
|m〉 of an N -level ancillary system such that the evolution of
the system and environment is conditioned on the state of the
ancilla via the Hamiltonian

Ĥ ASE =
N∑

m=1

|m〉 〈m| ⊗ Ĥ SE
m , (5)

where the candidates Ĥ SE
m (t) = Ĥm + V̂ SE

m for the system-
environment Hamiltonian in the interaction picture may be
separated into candidates for the part acting on the system
alone Ĥm and candidates V̂ SE

m for the system-environment
interaction.

While the ancilla, system, and environment are initially pre-
pared in a separable pure state 1√

N

∑N
m=1 |m〉 ⊗ |ψSE(t = 0)〉,

evolution under the Hamiltonian (5) yields, after a time t , an
entangled state,

|ψ(t)〉 = 1√
N

N∑
m=1

|m〉 ⊗ ∣∣ψSE
m (t)

〉
. (6)

Instead of the explicit separation in ancilla (A) and system-
environment (SE) components in Eq. (6), we shall separate
the complete system in ancilla-system (AS) and environment
degrees of freedom. Assuming a weak coupling to a memory-
less environment, the state ρAS of the ancilla-system obeys a
Born-Markov master equation in the interaction frame [11,32]
(h̄ = 1),

ρ̇AS = − i[Ĥ AS,ρAS] −
∫ ∞

0
dt ′ TrE([V̂ ASE(t),[V̂ ASE(t ′),

× ρAS(t ′) ⊗ ρE(0)]]). (7)

In Eq. (7), the unitary part of the evolution is governed by a
Hamiltonian

Ĥ AS =
N∑

m=1

|m〉 〈m| ⊗ Ĥm, (8)

and the interaction with the environment described by

V̂ ASE(t) =
N∑

m=1

|m〉 〈m| ⊗ V̂ SE
m (t). (9)

The ancilla-system state can be put on the form of a block
matrix,

ρAS(t) = 1

N

N∑
n,m=1

ρnm(t) |n〉 〈m| , (10)

where the operators ρnm(t) on the system Hilbert space are all
equal to the projection operator on the initial state of the system
at time t = 0.

As seen from Eq. (6), the overlap between the nth and mth
system-environment candidate states can be obtained as the

expectation value of |n〉 〈m|,〈
ψSE

n

∣∣ψSE
m

〉 = N 〈ψ(t) |n〉 〈m| ψ(t)〉
= N TrAS[|n〉 〈m| ρAS(t)]

= TrS[ρmn(t)]. (11)

Inserting Eq. (10) as an ansatz into Eq. (7) produces a set of
equations,

ρ̇nm = − i(Ĥnρnm − ρnmĤm)

−
∫ ∞

0
dt ′ TrE

(
V̂ SE

n (t)V̂ SE
n (t ′)ρnm(t) ⊗ ρE(0)

+ ρnm(t) ⊗ ρE(0)V̂ SE
m (t ′)V̂ SE

m (t)

− V̂ SE
n (t)ρnm(t) ⊗ ρE(0)V̂ SE

m (t ′)

− V̂ SE
n (t ′)ρnm(t) ⊗ ρE(0)V̂ SE

m (t)
)
. (12)

We refer to these as two-sided master equations because the
matrix argument ρnm(t) is acted upon by the different candidate
Hamiltonians from the left- and right-hand sides.

Suppose now that, in the rotating-wave approximation, the
system-environment interaction can be written on a Jaynes-
Cummings form,

V̂ SE
m =

∑
k

(
g(k)

m âkŜ
†
me−iδk t + (

g(k)
m

)∗
â
†
kŜmeiδk t

)
, (13)

where the sum runs over the bosonic bath modes with annihila-
tion (creation) operators âk(â†

k), detuned by δk from the system
resonance. Hypotheses for the interaction with the environment
are represented by the system operators Ŝm and complex
coupling coefficients g(k)

m = |g(k)
m |eiφ

(k)
m to the individual modes.

If we assume the environment to be in the vacuum state
ρE(0) = ∑

k |0k〉 〈0k|, performing the partial trace over the
environment in Eq. (12) yields a two-sided master equation,

ρ̇nm = − i(Ĥnρnm − ρnmĤm)

+ ĉnρnm(t)ĉ†m − 1
2 (ĉ†nĉnρnm − ρnmĉ†mĉm), (14)

where the candidate dissipation operators are defined as ĉm =√
γmŜme−iφm . Here the damping rates γm and phases φm

are obtained from the integrated correlation functions of the
environment,

�ab(t) =
∫ ∞

0
dt ′

∑
k

(
g(k)

a

)∗
g

(k)
b e−iδk (t−t ′). (15)

Consistent with Fermi’s golden rule, due to the time integral,
one obtains �ab(t) = 2π (g(ks )

a )∗g(ks )
b with δks

= 0, such that
γm = 2π |g(ks )

m |2 and φm = φ(ks )
m . Note that, for simplicity, we

included only a single environment and a single transition
operator. In the case of hypotheses concerning multiple en-
vironmental couplings, a corresponding sum over dissipation
operators, ĉm → {ĉj,m}J

j=1, is employed in the master equation
(14).

The solution of the uncoupled equations (14) yields by
Eq. (11) the temporal dynamics of the overlap between any pair
of the full states of the system and environment pertaining to the
different hypotheses for the effective system Hamiltonians Ĥm

and relaxation operators ĉm. Hence the numerically intractable
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problem of evolving the full states in the very large system and
environment Hilbert space is reduced to the much simpler task
of evolving (N2 − N )/2 matrices with the dimension of the
smaller probe system.

B. Low-dimensional representation of states
of the system and its environment

Although the full state of a system and its environment lives
in a formally infinite-dimensional Hilbert space, the discrete
nature of the hypothesis testing problem implies that at any
time we have at most N different possible states to distinguish.
These span a (time-dependent) subspace of dimensionN which
is sufficient to fully characterize the discrimination problem.
To apply the semidefinite programming methods of Sec. II,
let us define an orthogonal basis {|φ〉n}Nn=1 for this subspace
such that each candidate state can be expressed as a linear
combination,

∣∣ψSE
m

〉 =
m∑

n=1

C(m)
n |φn〉 ,

where the C(m)
n are complex expansion coefficients.

We shall now outline how one may in general define a basis
and obtain the C(m)

n : let the first basis state be the first candidate
state |φ1〉 = |ψ1〉, i.e., C(1)

n = δn1. The second state is then
used to define the second basis state, span(|ψSE

1 〉 , |ψSE
2 〉) =

span(|φ1〉 , |φ2〉), such that C(2)
n = 0 for n > 2. Since any of

the basis states may be multiplied by an arbitrary complex
phase factor, we may further use the convention that C

(2)
2 is

positive which together with the overlap 〈ψSE
1 |ψSE

2 〉 and the
normalization criterion completely determines |φ2〉. Similarly
the third candidate defines the third basis state and we set
C

(3)
3 ∈ R�0. By continuing in this manner, we represent the

states of the system and the environment as a sequence of
N -dimensional vectors

C (1)

=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

:

:
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C (2)

=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
(2)
1

C
(2)
2

0

:

:

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C (3)

=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
(3)
1

C
(3)
2

C
(3)
3

0

:

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . . C (N)

=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
(N)
1

C
(N)
2

:

:

:

C
(N)
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where all state amplitudes are given by a recursive procedure:

C(m)
n = 1

C
(n)
n

(
〈ψn|ψm〉 −

n−1∑
k=1

C
(n)∗
k C

(m)
k

)
(17)

for 1 � n � m − 1 and

C(m)
m =

√√√√1 −
m−1∑
k=1

∣∣C(m)
k

∣∣2
. (18)

It may in a given hypothesis testing scenario occur that two
or several candidate states become identical. The number
of POVM elements is then reduced and for some outcomes

of our protocol we have recourse to select the one of the
corresponding hypotheses with the largest prior probability.

IV. EXAMPLES

The ideas and methods presented in Secs. II and III allow us
to evaluate the minimum error probability in the assignment of
one of any number of distinct hypotheses for the evolution of
an open quantum system as a function of the duration t of an
experiment. Here we provide three examples which illustrate
different aspects of our theory and its application.

A. Phase of a Rabi drive

We first examine a two-level system driven resonantly with
a known Rabi frequency 
 but with an unknown complex
phase φm. In a frame rotating with the resonance frequency,
the candidate Hamiltonians can be written as

Ĥm = 
[cos(φm)σ̂x + sin(φm)σ̂y]/2. (19)

In this example we consider the phases φm = π (m − 1)/2 as
illustrated in the inset of Fig. 2, and we assume that the atomic
excitation decays into the environment at a known rate γ

such that ĉ = √
γ σ̂−. The Rayleigh component of the emitted

radiation is in phase with the driving field and homodyne
detection should thus gradually reveal the value of φm. In
contrast, photon counting tracks the intensity of the emitted
radiation and hence maps the excitation of the system which
is independent of φm.

The full curve in Fig. 2 shows the minimum error probability
Qe(t) calculated from our theory as a function of the duration
t of the experiment. Initially Qe(t = 0) = 75%, reflecting that
each of the four hypotheses are a priori equally probable (Pm =
1/4), while for large times they may be unambiguously dis-
criminated. Interestingly, however, Qe(t) is not a monotonous

FIG. 2. Phase of a Rabi drive on a two-level system Eq. (19) is
determined by performing a combined measurement on the atom
and the emitted field. Inset: the four hypotheses are Ĥ1 = 
σ̂x/2,
Ĥ2 = 
σ̂y/2, Ĥ3 = −
σ̂x/2, and Ĥ4 = −
σ̂y/2. Main figure: the
probability of assigning a wrong hypothesis is shown for 
 = 2γ

and an atom initialized in its ground state. The dotted curve shows
the smallest error probability reachable by any given time t .
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function of t . For instance, it reaches a minimum around
γ t 
 1.25 and if for some reason the experiment lasts a little
longer, γ t � 2, the ability to discriminate the four cases dete-
riorates. The reason is that, irrespective of the excitation phase,
the atomic Bloch vector approaches the vertical direction
around 
t 
 π , and only the emitted radiation provides any
information until the Bloch vector candidates evolve further.
It is thus sometimes favorable to perform a measurement on
the atom and the field at an earlier time and keep the result
rather than wait for more data to accumulate. The dotted curves
track the minimum error probability obtainable by performing
a measurement before any given time t and hence represent
the lowest error achievable in an experiment of duration t .

B. Number of atoms inside a cavity

Here we imagine a cavity field driven by a (classical) field of
strength u and interacting with an unknown but small number
of atoms. Due to an outcoupling at a rate κ from the cavity,
the emitted radiation from the spins can be monitored and
we further assume that the experimental setup allows direct
measurements on the atomic ensemble. The atoms are modeled
as N two-level systems of which m are coupled linearly with
strength g to a single cavity mode and N − m are uncoupled.
Assuming the bad cavity limit, the field may be adiabatically
eliminated leading to an effective Hamiltonian and relaxation
of the atoms. The different hypotheses concerning the number
of spins inside the cavity are hence characterized by N sets of
Hamiltonians and relaxation operators,

Ĥm = g(αŜ
(m)
+ + α∗Ŝ(m)

− ),

ĉm = √
γpŜ

(m)
− , (20)

where Ŝ
(m)
± = ∑m

i=1 σ̂
(i)
± , α = 2u/κ , and γp = 4g2/κ is the

Purcell-enhanced decay rate. We assume that the number of
atoms coupled to the cavity is Poisson distributed with mean
value μ = 1.5. The probabilities prior to the experiment are
hence Pm ∝ μm/m!.

Figure 3 shows the evolution of the minimum error proba-
bility in distinguishing the cases of m = 1, 2, 3, and 4 atoms
inside the cavity. Results are shown for a weakly, a moderately,
and a strongly driven cavity, respectively. While it is never
favorable to drive the cavity very weakly since this does not
lead to a fluorescence signal with much structure, it is evident
that the moderate driving case outperforms the strong driving
case for a brief period around γpt 
 2.5. However, the dotted
curves, tracking the minimum error probability obtainable by
performing a measurement at an optimal time before t , shows
that the stronger driving is always favorable.

C. Relative positions of a dopant ion

Our final example concerns testing of the relative positions
between two impurity dipoles in a lattice structure. Rare-
earth-ion dopants in inorganic crystals have permanent electric
dipole moments which are different depending on whether each
ion is excited or not and may hence be used for controlled
gates in a quantum computation [33,34]. Such systems are
produced by low random doping during crystal growth and, for
applications in a quantum sensor or computer, one may want

FIG. 3. Inset: an unknown number of atoms are coupled to a
driven cavity. The number is estimated by performing a combined
measurement on the atomic spins and the field emitted from the cavity.
The hypotheses are m = 1, 2, 3, and 4 atoms and the system evolves
according to the Hamiltonian (20). Main figure: the probability of
assigning a false hypothesis is shown for weak driving αg = γp/2,
for moderate driving αg = γp , and for strong driving αg = 3γp/2.
The dotted curve shows the smallest error probability reached before
any given time t for the underdamped cases where local minima occur
in Qe(t).

to assess the relative positions of the individual ions (qubits)
by probing their interactions. A generic version of this kind
of setup in a cubic lattice structure with lattice constant a is
illustrated in Fig. 4(a). We assume dilute doping such that a
read-out (sensor) ion couples only to a single qubit ion and we
introduce a simple model of each ion as a two-level system. We
let the sensor ion relax radiatively at a rate γ and assume the
qubit ion states to be long lived. To obtain a fluorescence signal,
the sensor is driven by a laser field with Rabi frequency 
s and
detuned by δs from the bare transition frequency. We assume
also the possibility to resonantly drive the qubit ion with a Rabi
frequency 
q in order to optimize the sensing capabilities. The
candidate Hamiltonians may hence be written

Ĥm =
s

2
σ̂ (s)

x + 
q

2
σ̂ (q)

x − δs |es〉 〈es |
+ �m |eq〉 〈eq | ⊗ |es〉 〈es | , (21)

where the latter term accounts for the state-dependent shift in
frequency of the sensor ion due to the dipole-dipole interaction
with the qubit ion [35],

�m =
(

ε + 2

3ε

)2
μsμq

4πε0r3
m

[μ̂s · μ̂q − 3(μ̂s · r̂m)(μ̂q · r̂m)].

(22)

Here μs(q) = μs(q)μ̂s(q) is the difference in permanent electric
dipole moment between the excited and ground state of the
sensor (qubit) ion and rm = rm r̂m is the vector between the
sensor and the qubit with which the hypothesis testing is
concerned. The prefactor, where ε is the relative permittivity
at zero frequency, accounts for local field corrections due to
the crystal host material. One example is Eu3+ or Pr3+ ions
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FIG. 4. (a) Position of a qubit ion (green spin) in a cubic lattice structure with lattice constant a affects the fluorescence signal emitted by
a sensor ion (orange spin) of a different species at a nearby lattice position and the internal state of the two ions. In our example μs = μq =
(0.5,0.3,0.8)T such that each of the seven possible marked positions yield a distinct energy shift of the sensor ion as given by Eq. (22). (b) The
level structure of the Hamiltonian (21) of the two ions. The qubit ion is resonantly driven with a Rabi frequency 
q and the sensor ion is driven
with a Rabi frequency 
s and a detuning δs from resonance. The sensor excited state is shifted by �m due to the excited qubit ion. (c) Contour
plot showing the probability Qe of assigning a wrong lattice position to the qubit ion as a function of time and the (constant) detuning δs of the
sensor ion drive. The red line tracks the constant value of δs which minimizes Qe(t) at any given time. The white lines mark the energy shifts
�m/γ associated with each of the seven possible positions in (a). (d) Contour plot showing the probability Qe of assigning a wrong lattice
position as a function of time and the (constant) strength of the qubit drive 
q with δs = 0. The red line tracks the constant value of 
q which

minimizes Qe(t) for any given probing time. Results in (c) and (d) are shown for 
s = 3γ , ( ε+2
3ε

)
2 μsμq

4πε0
= 5γ a3, and equal priors Pm = 1/7.

doped in an YAlO3 or an Y2SiO5 crystal [36]. A suitable sensor
ion could be Ce3+, which has a large difference μs in static
dipole moment [37]. A level diagram for the Hamiltonian (21)
is shown in Fig. 4(b) and the level shift as well as the driven
transitions are indicated.

Imagine first that we prepare the qubit ion in the excited
state and then turn off the qubit drive (
q = 0). As illustrated
in Fig. 4(b) the resonance frequency of the excited state is then
shifted by �m in a manner depending on the position of the
qubit ion. It is intuitively clear that a higher sensitivity can
be obtained if the system is driven at the actual resonance,
i.e., by detuning the sensor ion driving laser such that δs

matches the true �m. In Fig. 4(c), the contour plot shows
the error probability as a function of time and the (constant)
value of δs . The red curve tracks the optimum which is seen
to be located near the mean value of the �m. Based on
this understanding, one could imagine an optimized scheme
where δs is cycled though the different �m candidates with an
appropriate portion of the total experimental time allocated to
each.

By preparing an excited qubit the last term in Eq. (21)
remains fully active at all times while driving the qubit yields
a transient evolution of the system which might depend more
strongly on �m. To investigate this, we show in Fig. 4(d) a
contour plot of the error probability as a function of time and the
qubit drive strength. The red line tracks the (constant) values of

q which minimizes Qe(t) at any given time. Interestingly, for
short times a relatively strong drive is favorable. This can be
explained by the same mechanisms as in the previous example:
when the system is strongly driven, it undergoes oscillations
which are more pronounced at short times and whose frequency
is modulated by �m. For longer times it becomes favorable
to maintain the excited state for longer durations and with the
parameters used here the optimal value lies around 
q 
 0.5γ .

We presented this example for dopant ions but the general
idea may be relevant in a number of similar setups. For

example, the dipole-dipole potential between neutral atoms
similarly yields an energy shift of the form Eq. (22) which is
responsible for, e.g., the Rydberg blockade mechanism [38].
Hence our formalism could be fitted to the determination of
the relative positions of Rydberg atoms in an optical lattice
structure. Another platform is the sensing of a remote nuclear
spin Î by an electron spin Ŝ. Here the frequency shift is due
to the hyperfine coupling [39–41]. For instance, the electron
spin of an NV center can be used to sense the position of a 13C
impurity in a vapor deposited (CVD) diamond which has a 13C
abundance of less than 0.01% [42].

V. CONCLUSION AND OUTLOOK

We have evoked how optimal discrimination between an
arbitrary number of quantum states may be phrased as a
semidefinite programming problem for which efficient numer-
ical solutions are available. We then utilize that distinguishing
a set of N hypotheses for the evolution of a Markovian
open quantum system is equivalent to the discrimination of
a set of time-dependent states of the full system and its
environment. We show how their overlaps may be calculated
in a straightforward manner and used to construct a lower-
dimensional representation which is suitable for numerical
treatment. This allows us to evaluate a lower (quantum) bound
to the probability of assigning a false hypothesis, and the
three examples presented in this article serve to illustrate some
insights that may be obtained by such an analysis.

For the example in Sec. IV C, we show how different
but constant values of the qubit ion Rabi frequency and
the detuning in the driving frequency of the sensor ion
lead to different error probabilities. In optimal control, the
bound could be further optimized by allowing time-dependent
parameters 
q(t) and δs(t). More generally, by following
this line of thought our formalism is suitable for systematic
optimization of the sensing capabilities in a given quantum
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setup by, e.g., controlling auxillary Hamiltonian parameters or
environmental coupling strengths.

Finally, we want to emphasize that our quantum bound may
pertain to a highly nonlocal measurement performed on the full
state of the system and its environment. Such a measurement
is in general infeasible to implement and in real experimental
situations one has recourse to perform a more conventional
measurement of the environment. For instance, the radiation
emitted by an open system may be monitored by photon
counting or homodyne demodulation [20,21,23–27], and the
signal possibly combined with a final projective measurement
on the system. In Ref. [29] we compare the performance of
such an approach to the quantum bound for dual hypothesis
testing with a two-level open quantum system. Depending

on the setup, different monitoring schemes are favorable as
discussed in relation to the example of Sec. IV A. See, e.g.,
Refs. [22,28] for further studies of hypothesis testing with
continuous measurements.
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