
PHYSICAL REVIEW A 97, 052106 (2018)

Symmetry-protected coherent relaxation of open quantum systems
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We compute the effect of Markovian bulk dephasing noise on the staggered magnetization of the spin- 1
2 XXZ

Heisenberg chain, as the system evolves after a Néel quench. For sufficiently weak system-bath coupling, the
unitary dynamics are found to be preserved up to a single exponential damping factor. This is a consequence of the
interplay betweenPT symmetry and weak symmetries, which strengthens previous predictions forPT-symmetric
Liouvillian dynamics. Requirements are a nondegenerate PT-symmetric generator of time evolution L̂, a weak
parity symmetry, and an observable that is antisymmetric under this parity transformation. The spectrum of L̂
then splits up into symmetry sectors, yielding the same decay rate for all modes that contribute to the observable’s
time evolution. This phenomenon may be realized in trapped ion experiments and has possible implications for
the control of decoherence in out-of-equilibrium many-body systems.
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I. INTRODUCTION

The theory of open quantum systems has a long history,
finding countless applications in quantum optics, nanotech-
nology, quantum information, and other fields of physics [1].
Particularly in the past decade, there has been a drive to
apply this formalism to the realm of many-body quantum
systems. Rapid developments in the fields of cold atoms and
quantum computation form major incentives to improve our
understanding of the interaction between a quantum system
and its environment. Whether one is interested in shielding a
system from decoherence or driving it towards a specific steady
state, the theoretical challenges are largely the same and they
are formidable.

Analytical methods to tackle dissipative many-body sys-
tems are few and far between. Most efforts are focused
on Markovian baths, allowing a formulation in terms of a
Lindblad master equation. Exact solutions have been given
for quadratic fermionic systems [2–6], but this excludes most
bulk dissipation in spin systems. Various algebraic methods
have been used to solve Lindblad equations [7–9], requiring the
unitary and dissipative parts to form a closed algebra. Finally,
very specific models have been mapped to integrable closed
systems, solvable by Bethe ansatz [10]. On the other hand,
numerical approaches are typically restricted to either very
short timescales or to the infinite-time limit. Properties of the
full relaxation process are surprisingly difficult to probe, but
the presence of symmetries can simplify the problem.

Symmetry structures in the context of open quantum sys-
tems have been studied mostly in relation to stationary states
and conserved quantities [11–14]. They are closely tied to the
theory of decoherence-free subspaces and subsystems, which
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are considered promising candidates for quantum memory
[15]. However, symmetries can also play an important role in
the dynamics at shorter timescales. These dynamics satisfy the
Lindblad equation and are generated by the Liouvillian super-
operator L̂, acting on the space of linear operators. Symmetries
allow for a separation of operator sectors, which split up the
spectrum of L̂. For an observable, this means that large parts of
the spectrum may not contribute toward the time evolution of
its expectation value, depending on the symmetry properties
of the observable. We use this phenomenon, combined with
the spectral structure of a PT-symmetric Liouvillian [16], to
study a scenario where dissipation affects the dynamics of
observables in a predictable and coherent manner.

In general, adding a nonunitary part to a system’s time
evolution introduces many new timescales, corresponding to
the decay rates of the different modes of the time evolution’s
generator L̂. For a generic system, all of these modes will
contribute at intermediate times, affecting the dynamics in a
highly nontrivial way. In the system we study—a spin- 1

2 XXZ
Heisenberg chain affected by bulk dephasing noise—some
observables are protected by symmetry from all but one of the
system’s decay rates. The result is an overall damping factor
such that the unitary dynamics are preserved for weak system-
bath coupling. This surprising effect should be experimentally
measurable and may be relevant for the control of decoherence
in many-body quantum gates.

The structure of the paper is as follows: in Sec. II we
review the Lindblad master equation and its spectral properties.
Section III details the different types of symmetries and
their interplay in Liouvillian dynamics. Section IV describes
how these symmetries apply to the spin- 1

2 XXZ Heisenberg
chain with bulk dephasing. Finally, we study the staggered
magnetization after a Néel quench in Sec. V, as an example of
symmetry-protected coherent relaxation. The Appendix shows
a detailed perturbation theory calculation of corrections to the
staggered magnetization.
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II. LINDBLADIAN TIME EVOLUTION

Markovian dynamics can always be described in terms of a
Lindblad master equation of the form

∂ρ

∂t
= − i[H,ρ]

+ γ
∑

i

(
LiρL

†
i − 1

2
L
†
i Liρ − 1

2
ρL

†
i Li

)
, (1)

where γ > 0 is the system-bath coupling strength and Li are
the so-called jump operators, which encode the interaction
between the system and the bath. This form can typically be
derived from a microscopic theory by integrating out the bath
and applying several approximations, such as the Born-Markov
and the Rotating Wave approximation [1]. It is often convenient
to write the Lindblad equation in superoperator form:

∂ρ

∂t
= L̂ρ ⇒ ρ(t) = etL̂ρ(0), (2)

where the Liouvillian superoperator L̂ is a trace, hermiticity,
and positivity-preserving linear map, such that it maps one den-
sity matrix to another. Superoperators act on the space B(H),
consisting of all linear operators acting on the Hilbert space
of quantum states H. In turn, B(H) itself can be treated as a
Hilbert space with the Hilbert-Schmidt inner product: (A,B) ≡
tr(A†B). In what follows, we will be particularly concerned
with nondegenerate Liouvillians, which are diagonalizable1

and can therefore be written as a spectral decomposition:

L̂ρ =
∑
m

λm tr(v†
mρ) um

⇒ ρ(t) =
∑
m

etλm tr[v†
mρ(0)] um, (3)

where L̂um = λmum and L̂†vm = λ∗
mvm such that tr(v†

mum) =
1. Since L̂ is not Hermitian, its left and right eigenmodes
are not equal and its eigenvalues λm are generally complex.
Furthermore, Re(λm) � 0 or else ρ(t) would blow up in
the infinite time limit. Because of Brouwer’s fixed point
theorem, there must be at least one zero eigenvalue λ0 = 0.
The corresponding eigenmode u0 is known as a steady state of
the time evolution. Symmetries can result in multiple steady
states, as we will show in Sec. III. One can also have persistent
oscillations with λ �= 0 on the imaginary axis, but these are
rare and will not be discussed further in this work. All other
modes um with Re(λm) �= 0 are known as decay modes, and
they must be traceless operators.

Studying the spectrum of the Liouvillian can tell you
much about the nonunitary dynamics. One particular quan-
tity of interest is the dissipative gap, defined as � =
mindecay modes{| Re(λm)|}. The gap determines the longest
timescale in the system. At long times, generic observables

1This is not generally true for Liouvillians. However, a nondiago-
nalizable superoperator can be expressed in a comparable form using
a Jordan decomposition. Most of the following qualitative statements
will still hold true in this situation, although one can get power-law
contributions to the expansion of ρ(t). See, e.g., Refs. [3,17].

decay exponentially at rate �. Expanding the time evolution of
the expectation values of observables yields

〈O(t)〉 = tr[Oρ(t)] =
∑
m

etλm tr[v†
mρ(0)] tr(Oum). (4)

At sufficiently long times, the dissipative gap dominates all
higher decay modes and determines the rate at which the steady
state is approached. For some systems the gap may close in the
thermodynamic limit, leading to algebraic decay [18]. But as
we will see, the presence of symmetries can throw a wrench into
this simplified picture. Each symmetry sector has its own gap,
and the decay rates can be vastly different between observables.

Last, it is illuminating to consider the spectrum of the
Liouvillian for a closed system, i.e.,γ = 0. The eigenvalues are
purely imaginary and given by λ = i(εi − εj ), corresponding
to the eigenmodes |ψi〉〈ψj | with H |ψi〉 = εi |ψi〉. There is a
degeneracy at λ = 0, the size of the Hilbert space, as projectors
onto energy eigenstates are naturally stationary. If we then turn
on a weak dissipation, degenerate perturbation theory shows
that these diagonal modes |ψi〉〈ψi | will hybridize and their
eigenvalues will spread out. In the case of Hermitian jump
operators L

†
i = Li or in the presence of PT symmetry (see

Sec. III), they will stay on the real axis.

III. SYMMETRIES IN HILBERT SPACE, LIOUVILLE
SPACE, AND BEYOND

In the context of unitary time evolution, discrete symmetries
are relatively straightforward. They are typically generated by a
Hermitian operator O, acting on the Hilbert space H, such that
[H,O] = 0. As a result, energy eigenstates are simultaneously
eigenstates of O. The Hilbert space can therefore be separated
into blocks, one for each eigenvalue of O, which are preserved
under unitary time evolution. If there are multiple, mutually
commuting symmetries, then there will be subblocks within
each symmetry block.

When adding a dissipative, nonunitary part to the time
evolution, this story becomes slightly more complicated [11].
Symmetry on the level of the Hilbert space H, as described
above, still exists, and we will call this a strong symmetry,
following Ref. [19]. In the case of Lindbladian evolution, the
operator O should not only commute with H , but also with
each jump operator individually: [Li,O] = 0∀i. Once again
the Hilbert space separates into blocks. Of course, nonunitarity
will produce mixed states, but it only mixes states within the
same symmetry block.

This block structure of H can be lifted to the space of linear
operators B(H), which we will call Liouville space. To make
this more precise, consider n symmetry blocks Ui that form
a partition of H. We can then partition B(H) into n2 blocks
Ûi,j spanned by operators of the form |ψ〉〈φ| with the states
|ψ〉 ∈ Ui and |φ〉 ∈ Uj . Because of the strong symmetry, the n

“diagonal” blocks2 Ûi,i must each have their own steady state.

2These should not be thought of in the sense of a block-diagonal
matrix. For example, one can block-diagonalize the Liouvillian
superoperator L̂, in which case all blocks Ûi,j will be on the diagonal.
Instead, these “diagonal” blocks relate to the diagonal matrix elements
of operators.
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TABLE I. Overview of different types of symmetries, acting on
the hierarchy of Hilbert spaces. The last column shows the examples
from the XXZ Heisenberg spin chain, as described in Sec. IV. B(A)
refers to the vector space of linear operators acting on space A.

Symmetry Acts on Condition Ex. XXZ

Strong H [H,O] = [Li,O] = 0
∑

i S
z
i

Weak B(H) [L̂,Ô] = 0 R̂,F̂

PT B[B(H)] P̂L̂′P̂ = −(L̂′)† P̂ρ = Fρ

In rare cases, some “off-diagonal” blocks may also contain
fixed points of the Liouvillian, yielding what is known as a
decoherence-free subspace [20].

However, one can have a block structure in Liouville space
without the strict conditions of a strong symmetry. The only
requirement for such a structure is a unitary superoperator that
commutes with the Liouvillian: [L̂,Ô] = 0, where unitarity is
defined as preserving the Hilbert-Schmidt inner product. This
is known as a weak symmetry (or a dynamical symmetry in
some literature [21]). Note that this requirement is immediately
satisfied in the case of a strong symmetry by defining Ôρ =
OρO†. But a weak symmetry by itself does not imply the
presence of multiple steady states. In general, only one block
will contain the steady state, while the others are spanned by
traceless decay modes. In Sec. IV examples of both weak and
strong symmetries will be discussed in detail.

It is necessary to understand the symmetry structures of
Liouville space when studying the time evolution of observ-
ables. Each of the Liouvillian’s decay modes is confined to one
symmetry block. If an observable has no components in a given
symmetry block, then it is clear from Eq. (4) that any decay
modes in this block will not contribute towards the observable’s
time evolution. This can severely impact which parts of the
spectrum are relevant, depending on the observables of interest.
An extreme example is the staggered magnetization in the XXZ
chain with dephasing, as we will see in Sec. V. One more
symmetry is needed to produce such a case, of a special type
that acts on the Liouvillian superoperator itself. Table I shows
an overview of the three different types of symmetries.

PT symmetry in Lindbladian time evolution was first
described in Ref. [16]. Since it features prominently in the rest
of this work, we will summarize its properties here but refer to
the original paper for details. A Liouvillian is PT-symmetric
when it satisfies the condition

P̂L̂′P̂ = −(L̂′)†, (5)

L̂′ = L̂ + γ δ1̂, δ ≡ − tr L̂
γ tr 1̂

, (6)

where L′ is the traceless part of the Liouvillian, P̂ is
some (unitary) parity superoperator (with P̂2 = 1), and the
Hermitian adjoint is again defined using the Hilbert-Schmidt
inner product. Since the unitary part of L̂ is traceless, tr L̂ is
proportional toγ , such that the scaling factor δ is dimensionless
and does not depend on the coupling strength. In words, this
is an antisymmetry relating the adjoint of the traceless part
of the Liouvillian to a parity transformation of the same.
While this seems highly specific and not very physical, it

can be considered a generalization of PT -symmetric quantum
mechanics [22]. PT-symmetric Liouvillians have some very
nice properties and turn out to be surprisingly prevalent in spin
systems [23].

The spectrum of a PT-symmetric Liouvillian shows a
second reflection symmetry axis in the complex plane, at
Re λ = −γ δ. This is in addition to the reflection symmetry
across the real axis, which is guaranteed by hermiticity con-
servation. In the absence of degeneracies and for sufficiently
weak system-bath coupling, all eigenvalues lie on these two
axes. This can be seen by applying perturbation theory to
the γ = 0 case, as mentioned at the end of Sec. II. PT
symmetry guarantees that the diagonal operators (in the energy
eigenbasis) stay on the real axis when the dissipation is turned
on [16]. Meanwhile, the off-diagonal coherences are confined
to move along Re λ = −γ δ as γ is increased. Only when two
eigenvalues collide (thereby creating a degeneracy), they might
shoot off into the complex plane. This can be described as a
spontaneous breaking of the PT symmetry, and at these points
the Liouvillian becomes nondiagonalizable [24].

While the decay modes with eigenvalues on the real axis
originate from purely diagonal operators, the perturbation
does yield nonzero off-diagonal elements to first order in γ .
Likewise, those on the vertical axis may have nonzero diagonal
elements under the dissipative perturbation.3 The claim that
decoherence is purely determined by modes with decay rate
γ δ is therefore only true for the asymptotic limit γ → 0. But
beyond this limit, the presence of weak symmetries can divide
the spectrum in such a way that all decay modes on the real
axis are confined to one symmetry sector.

One can understand this as follows: consider a weak
symmetry [L̂,Ô] = 0 where Ô has n distinct eigenvalues,
which label the different blocks that partition the space of
operators. Unless the dissipation is fine-tuned in a very par-
ticular way, the Hamiltonian and dissipative parts of L̂ should
separately commute with Ô. This implies that ÔH = H , such
that the Hamiltonian is found in the sector corresponding
to eigenvalue 1, i.e., the invariant subspace of Ô. Writing
H = ∑

i εi |ψi〉〈ψi |, the individual projectors onto the energy
eigenstates must also be part of that sector, assuming that
Ô is not specifically constructed to permute these different
projectors (in which case it would be unlikely to commute with
the dissipator). In other words, all operators that are diagonal
in the energy eigenbasis are invariant under Ô and must belong
to the same symmetry block. In the presence of PT symmetry,
these are precisely the operators responsible for the eigenvalues
on the real axis! As the dissipation is turned on perturbatively
and the eigenvalues spread along the axis, these diagonal decay
modes will be mixed with others (introducing off-diagonal
components), but only those within the same symmetry sector.
Due to the weak symmetry, the block structure is preserved.

We have shown that, for PT-symmetric Liouvillian dynam-
ics with a weak symmetry, all decay modes on the real axis
belong to the same symmetry sector. As mentioned before,

3Unless the unitary and dissipative parts of the Liouvillian commute
with one another. In that case, diagonal and off-diagonal modes
will remain separated. This would make the dynamics largely trivial
though.
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this becomes relevant when studying the time evolution of
the expectation value of observables. For observables outside
out of this sector, with no components invariant under Ô,
the decay modes on the real axis do not contribute. In case
of sufficiently weak system-bath coupling γ , all other decay
modes lie on the vertical access and decay at the same rate. The
result is an overall exponential damping factor, on top of the
unitary dynamics of the closed system. The interplay between
weak and PT symmetry, and its effect on the dynamics of
observables, constitutes our main result. The rest of the paper
is dedicated to a concrete example of the phenomenon.

IV. XXZ HEISENBERG SPIN CHAIN WITH BULK
DEPHASING

As an example, we consider the spin- 1
2 XXZ anisotropic

Heisenberg chain, given by the Hamiltonian

H = J

N−1∑
i=1

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)
(7)

with coupling strength J , anisotropy �, zero magnetic field,
and open boundary conditions. For the dissipative part, we
consider bulk dephasing noise, defined by the N jump oper-
ators Li = Sz

i . This open quantum system cannot be solved
by any known analytical methods, except in the � = 0 limit
where it can be mapped to a Hubbard model and is solvable
by Bethe ansatz [10]. Nonetheless there have been some good
numerical studies on the system, in particular on the scaling of
its dissipative gap [25].

Since the total magnetization M = ∑
i S

z
i commutes with

the Hamiltonian and with all jump operators Li , it serves as
the generator of a strong symmetry. This means that there are
2N − 1 magnetization blocks in H and the same number of
diagonal blocks in B(H), each of which has its own steady
state. These steady states are the maximally mixed states
within each sector, as is easily checked by insertion into the
Lindblad master equation. Because of the block structure, we
can safely restrict ourselves to the zero-magnetization sector,
which contains a lot of interesting physics. Note that the
energy spectrum within this sector is nondegenerate, except at
specific values of � corresponding to the XXZ model’s roots of
unity [26].

The zero-magnetization sector contains two additional
weak symmetries, corresponding to spatial reflection and spin
inversion:

R =
N/2∏
i=1

(
S+

i S−
N+1−i + S−

i S+
N+1−i + 2Sz

i S
z
N+1−i + 1

2
1

)

⇒ RSz
i R = Sz

N+1−i , (8)

F =
N∏

i=1

(S+
i + S−

i ) ⇒ FSz
i F = −Sz

i . (9)

Both are parity operators, i.e., R2 = F 2 = 1 with eigenvalues
±1. R and F commute with the Hamiltonian and with each
other, but not with the individual jump operators. However,
it is easy to check that the superoperators R̂ρ ≡ RρR and
F̂ ρ ≡ FρF do commute with the Liouvillian. Therefore the

zero-magnetization sector of the Liouville space is split into
four blocks Ûp,q labeled by the eigenvalues p,q ∈ {±1} of
R̂ and F̂ . The steady state, being proportional to the identity
matrix, naturally is found in Û+,+. In fact, any decay mode
that is purely diagonal in the energy eigenbasis will belong
to this symmetry block. This can be seen as follows: Since
any energy eigenstate |ψ〉 is also an eigenstate of R and F

with eigenvalue ±1, we conclude that |ψ〉〈ψ | must be invariant
under the superoperators R̂ and F̂ . This is relevant, considering
that the system is also PT-symmetric.

The traceless part of the Liouvillian, as defined in (6), is
given by

L̂′ρ = −i[H,ρ] + γ
∑

i

Sz
i ρSz

i . (10)

The parity superoperator P̂ is given by left multiplication of
the spin inversion F , such that P̂ρ = Fρ. It is now simple to
check that the condition (5) for a PT-symmetric Liouvillian is
satisfied:

PL′Pρ = −iF [H,Fρ] + γ
∑

i

FSz
i FρSz

i

= −i[H,ρ] − γ
∑

i

Sz
i ρSz

i = −(L′)†ρ. (11)

Figure 1 shows the Liouvillian spectrum for three values of
γ . For sufficiently weak coupling, all eigenvalues are located
along the two axes of reflection. Those along the real axis
all correspond to decay modes in the Û+,+ symmetry block,
which can be understood as follows: in the limit γ → 0, these
decay modes are purely diagonal in the energy eigenbasis
and therefore even under R̂ and F̂ . Because the dissipation
preserves the symmetry structure in Liouville space, the modes
must remain in the Û+,+ sector as the perturbation is turned on,
even though they are no longer purely diagonal. In Sec. V we
will see how this affects observables such as the staggered
magnetization.

As γ is further increased, the dynamics undergoes a transi-
tion where thePT symmetry is spontaneously broken and some
of the eigenvalues leave the two axes. In Ref. [16] an estimate
is given for the critical coupling strength γPT at which this
happens. By computing the operator norm of the dissipator4

and estimating, in turn, the average density of states, we find
the following expression for our model:

γPT ≈ J
(N − 1)2

N

(
N

N/2

)−2

. (12)

Unfortunately this quantity decays exponentially as N be-
comes large. However, even for coupling strengths well above
γPT, the effects of the PT symmetry remain visible. Figure 2
shows the spread in the real part of eigenvalues, both for all
eigenvalues and for only those in the double-odd sector Û−,−.
As can be seen, the variance within the odd sector is far below
that of the total variance for a significant region of parameter

4As we are concerned with pure dephasing, the dissipator is diagonal
in the local spin basis. This makes it straightforward to find the largest
eigenvalue.
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FIG. 1. The spectrum of the Liouvillian for the dissipative XXZ
Heisenberg chain with N = 6, � = 0.3, and three different values
of the system-bath coupling γ . The plot axes, as well as γ , are in
units of the nearest-neighbor coupling J . Eigenvalues are labeled
according to their symmetry sector Ûp,q with p,q ∈ {±1}. At the top,
γ = 0.003 < γPT ≈ 0.013 shows all eigenvalues located on the two
axes of reflection. Those on the real axis all belong to sector Û+,+.
As γ is increased, the PT symmetry is spontaneously broken, and
eigenvalues of all sectors move away from the vertical axes, into the
complex plane.

space, even after the sharp jump at γ = γPT. This also ties
into the results of Ref. [25], where a critical coupling γc is
described, at which the global dissipative gap switches from
the even to the odd symmetry sector. This coupling γc scales
as N−2, rather than exponentially.

V. STAGGERED MAGNETIZATION AFTER A NÉEL
QUENCH

The interplay of PT symmetry and weak parity symme-
tries results in an interesting structure within the Liouvillian
spectrum of the XXZ chain with dephasing noise. To find out

FIG. 2. The variance of the real part of the Liouvillian spectrum
as a function of the coupling strength γ , computed in units of J for
the dissipative XXZ Heisenberg chain with N = 8 and � = 0.3. The
(blue) circles indicate the variance over all eigenvalues, while the (red)
diamonds include only those in the double-odd symmetry sector Û−,−.
Values are rescaled by a factor γ −2 to account for a uniform linear
dependence on γ . A discontinuity around γPT ≈ 0.0003 is clearly
visible.

whether this is more than just a mathematical oddity, let us
consider one of the natural observables for this system. The
staggered magnetization is defined as

Ms = 1

N

N∑
i=1

(−1)iSz
i . (13)

Its expectation value is maximized in the Néel state, defined as
|Néel〉 = |↓↑↓↑ . . .〉 in the local spin basis. We can imagine
preparing the system in the Néel state and looking at the
evolution of the staggered magnetization after the state is
released. This can be described as a quantum quench from
the Ising antiferromagnet (� → ∞) to the XXZ model, which
was studied numerically (in the absence of dissipation) in
Refs. [27,28]. Since the Néel state has nonzero overlaps with all
energy eigenstates in the zero-magnetization sector, the unitary
dynamics at short times is extremely complex and impossible
to study analytically, even using the tools of integrability. The
numerics show that the staggered magnetization Ms decays
exponentially, modulated by an oscillation in the gapless
regime. In the noninteracting limit (� = 0), the decay becomes
algebraic and is described exactly by a Bessel function.

Because the Néel quench provides such a rich unitary
dynamics, it is well suited to see the extreme effects of the
symmetry structure within Liouville space. Naively, one would
expect the dissipation to introduce many new timescales into
the system, effectively destroying the characteristic behavior
of the closed system. Looking back to Eq. (4), the factor
tr[v†

mρ(0)] is nonzero for all decay modes, due to the nature
of the Néel state. As it is an eigenstate of neither R nor F ,
the density matrix ρ(0) has components in all four symmetry
blocks. The factor tr(Oum), on the other hand, depends on the
symmetry properties of the observable.

Assuming that N is even, the staggered magnetization is
antisymmetric under both of the parity symmetries:

RMsR = FMsF = −Ms (14)
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and is therefore located within the Û−,− symmetry block
of Liouville space. It will be orthogonal under the Hilbert-
Schmidt inner product to any decay modes within other sectors.
As a result, only the decay modes in Û−,− will contribute
toward the time evolution of 〈Ms〉, regardless of the initial state.
And because of the PT symmetry, for γ < γPT all those modes
have eigenvalues on the vertical symmetry axis and hence
decay with the same rate δ. The weak dephasing noise only
introduces one new timescale after the Néel quench, yielding
an overall exponential damping factor on top of the existing
(unitary) exponential decay of the staggered magnetization.

This can be made more explicit by applying perturbation
theory in γ to Eq. (4), expanding λm, um, and vm. Since the
perturbation does not mix modes from different symmetry
sectors, the expansion only involves off-diagonal coherences,
and there are no degeneracies. The calculation is done in the
Appendix. In addition to the overall factor e−γ δt , we see a γ 2

correction to the expectation value, due the shift of the decay
modes along the vertical axis.

We have numerically confirmed the above using a master
equation solver [29] within the relevant symmetry sector [30],
and the results are shown in Fig. 3. Even for γ much higher
than γPT ≈ 10−5, the exponentially damped oscillations are
preserved. The only effect of the bulk dephasing is an increase
of the decay rate, proportional to γ , as predicted.

VI. DISCUSSION

We have shown that the effect of weak bulk dephasing on
the staggered magnetization of the XXZ spin chain consists
of a single exponential damping factor e−γ δ . This stems
from the combination of various symmetries, acting on the
different levels of a hierarchy of Hilbert spaces. On the level of
quantum states, the conserved magnetization generates a strong
symmetry, allowing a restriction to the zero-magnetization
sector. On the level of operators, there are two weak symmetries
in the form of reflection R̂ and spin inversion F̂ , which
divide the Liouvillian spectrum into four blocks Ûp,q with
p,q ∈ {±1}. And on the superoperator level, thePT symmetry
of the Liouvillian forces its spectrum into a unique shape. The
result is a spectral separation of the symmetry sectors, where
all modes contributing to the staggered magnetization Ms will
decay at the same rate.

It is now interesting to define a general recipe that can
be applied to look for similar behavior in other systems.
The required ingredients are a nondegenerate, PT-symmetric
Liouvillian and an observable of interest that is antisymmetric
under an additional weak parity symmetry. Since such anti-
symmetries are built into the algebra of fermionic and spin
systems, we suspect the phenomenon to be quite prevalent
in such many-body models. Unfortunately it may be more
difficult to find those properties in the simple bosonic systems
that serve as popular models in quantum optics. Whether a
PT-symmetric Liouvillian is even possible in a purely bosonic
system is an interesting open question.

In Ref. [16], a boundary driven XXZ chain is given as an
example of PT symmetry. There one relevant observable is
the spin current J = i

∑N−1
i=1 (S+

i S−
i+1 − S−

i S+
i+1) which has

vanishing diagonal elements in the energy eigenbasis, just like
the staggered magnetization in our example above. The reason

FIG. 3. The staggered magnetization after a Néel quench of
the XXZ spin chain with N = 12 and � = 0.4, for various values
of the bulk dephasing strength γ (in units of J ). For the closed
system and for weak dephasing, the expectation value shows an
exponentially damped oscillation. The oscillatory behavior is largely
unchanged for γ < 0.1. Dashed lines show exponential fits of the
envelopes. The bottom panel shows the resulting decay rates due to
the dephasing 1/τdiss = 1/τ (γ ) − 1/τ (0), with error bars acquired
from the exponential fit. It is clear that 1/τdiss is proportional to γ .
Parameters for this computation were chosen to minimize finite-size
effects.

for this is that J also is odd under the parity symmetries R

and F . However, this is not enough to ensure that the spin
current relaxes with a uniform rate, except in the limit of
γ → 0. As we have seen, the decay modes on the real axis
do have nonzero off-diagonal elements. Unlike the staggered
magnetization under bulk dephasing, J is not protected from
these modes by a weak symmetry. That is because the driving of
the spin chain is no longer symmetric under the superoperators
R̂ and F̂ individually, but only under their product [19]:
[L̂,R̂F̂ ] = 0. The spin current is found in the even sector of
this weak symmetry, and so are the decay modes on the real
axis. It can easily be checked numerically that the contribution
of these modes to the expectation value is small but nonzero.
Particularly at long times, they may have a noticeable effect due
to the slower decay rates. Another observable that is confined
to the odd symmetry sector is the total magnetization, which
is not conserved by the boundary driving.

Also worth noting is that the addition of long-range inter-
actions does not break any of the symmetries described for
the XXZ spin chain. Going beyond nearest-neighbor coupling
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will affect γPT, but the structure of the symmetry sectors
and the Liouvillian spectrum will remain the same. This
is experimentally relevant in the context of trapped ions,
which allow quantum simulation of spin chains with highly
tunable long-range interactions [31–33]. For such systems,
bulk dephasing corresponds to local magnetic fluctuations
within the trap, although there are also methods to control
the dissipation [34]. It is our hope that the phenomenon of
symmetry-protected coherent relaxation may be detectable in
these kind of experiments.
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APPENDIX: PERTURBATION THEORY OF 〈Ms〉
In this extra material, we will derive corrections to the

staggered magnetization in the XXZ Heisenberg chain, re-
sulting from weak bulk dephasing. We will draw heavily
on the symmetry arguments from Secs. IV and V. As a
starting point, consider Eq. (4) in the γ = 0 case. Assuming
nondegenerate energy eigenstate H |μ〉 = εμ|μ〉, we find that
um = vm = |μ〉〈ν| with λm = i(εμ − εν). Since Ms is confined

to the double-odd symmetry sector Û−,−, only modes with
μ �= ν need to be considered.

Now we can turn on the dissipation and apply perturbation
theory to these off-diagonal modes. Writing the perturbation
as

D̂ρ = D̂†ρ = −δρ +
∑

i

Sz
i ρSz

i , (A1)

we find

λm = λ(0)
m + γ tr(u†

mD̂um) + O(γ 2)

= i(εμ − εν) − γ δ + γ
∑
i,j

〈ν|Sz
i |ν〉〈μ|Sz

j |μ〉 + O(γ 2)

= i(εμ − εν) − γ δ + O(γ 2), (A2)

where we have used that 〈ν|Sz
i |ν〉 = 0. Similarly, the first-order

correction to the decay modes becomes

um ≈ |μ〉〈ν| − iγ
∑
μ′,ν ′
�= μ,ν

∑
i,j

〈μ′|Sz
i |μ〉〈ν|Sz

j |ν ′〉
εμ − εν − εμ′ + εν ′

|μ′〉〈ν ′|.

Note that the XXZ Hamiltonian is real and symmetric (most
easily seen in the Pauli representation of the local spin basis),
which means that the matrix elements of Sz

i are also real:
〈μ|Sz

i |ν〉 = 〈ν|Sz
i |μ〉. Therefore, the first-order correction is

purely imaginary.
The operators Ms and ρ0 = |Néel〉〈Néel| likewise have only

real matrix elements. Plugging the results above into Eq. (4),
we find

〈Ms(t)〉 = e−γ δt
∑

μ,ν �=μ

eit(εμ−εν )+O(γ 2)

⎛
⎜⎜⎜⎝〈μ|ρ0|ν〉 + iγ

∑
μ′,ν ′
�= μ,ν

∑
i,j

〈μ′|Sz
i |μ〉〈ν|Sz

j |ν ′〉
εμ − εν − εμ′ + εν ′

〈μ′|ρ0|ν ′〉

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝〈μ|Ms |ν〉 − iγ

∑
μ′,ν ′
�= μ,ν

∑
i,j

〈μ′|Sz
i |μ〉〈ν|Sz

j |ν ′〉
εμ − εν − εμ′ + εν ′

〈μ′|Ms |ν ′〉

⎞
⎟⎟⎟⎠. (A3)

The cross terms, representing the corrections of order O(γ ), are purely imaginary and cancel out when completing the sum over
μ and ν. As a result, the leading order correction due to the shifting decay modes is proportional to γ 2:

〈Ms(t)〉 = e−γ δt [〈Ms(t)〉0 + O(γ 2)], (A4)

where 〈Ms(t)〉0 is the time evolution for the closed system, as described in Ref. [27].
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