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Role of the pair potential for the saturation of generalized Pauli constraints
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The dependence of the (quasi-)saturation of the generalized Pauli constraints on the pair potential is studied
for ground states of few-fermion systems. For this, we consider spinless fermions in one dimension which are
harmonically confined and interact by pair potentials of the form |xi − xj |s with −1 � s � 5. We use the density
matrix renormalization group approach and large orbital basis to achieve the convergence on more than ten digits
of both the variational energy and the natural occupation numbers. Our results confirm that the conflict between
energy minimization and fermionic exchange symmetry results in a universal and nontrivial quasisaturation of
the generalized Pauli constraints (quasipinning), implying tremendous structural simplifications of the fermionic
ground state for all s. Those numerically exact results are complemented by an analytical study based on a
self-consistent perturbation theory which we develop for this purpose. The respective results for the weak-coupling
regime eventually elucidate the singular behavior found for the specific values s = 2,4, . . . , resulting in an
extremely strong quasipinning.
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I. INTRODUCTION

In recent years, quantum information theoretical concepts
began to play a more important role in the description and
understanding of quantum many-body systems. One of the
prime examples reflecting the progress at that exciting inter-
face and its fruitful future prospects is given by Klyachko’s
breakthrough result a few years ago: It has been shown that
Pauli’s original exclusion principle [1]—despite its long-term
success on all physical length scales—is incomplete. Indeed,
as already suggested by first studies [2,3], the fermionic
exchange symmetry has been found [4–6] to imply more
restrictive constraints on the one-particle picture, independent
of the underlying Hamiltonian, rendering Pauli’s original prin-
ciple obsolete. To be more precise, these so-called generalized
Pauli constraints (GPCs) take the form of linear conditions,

Dj (�λ) ≡ κ
(0)
j +

d∑
k=1

κ
(k)
j λk � 0, (1)

on the decreasingly ordered natural occupation numbers �λ ≡
(λk)dk=1, the eigenvalues of the one-particle reduced density
operator ρ1 ≡ NTrN−1[|�N 〉〈�N |]. Here, |�N 〉 ∈ ∧N [H(d)

1 ] is
the N -fermion quantum state, where the one-particle Hilbert
space H(d)

1 has dimension d and j = 1, . . . ,ν(N,d), κ
(k)
j ∈ Z.

For each setting (N,d), the finite set of GPCs defines a convex
polytope P ⊂ Rd , a subset of the Pauli simplex 1 � λ1 �
· · · � λd � 0. Moreover, the values Dj (�λ) coincide up to a
prefactor with l1 distances of �λ to the respective polytope facets
Fj corresponding to Dj ≡ 0 [7].

In complete analogy to Pauli’s original exclusion principle,
the potential physical relevance of the GPCs would primarily

*christian.schilling@physics.ox.ac.uk

be based on their saturation in concrete systems. Such pinning
would then reduce the complexity of the system’s quantum
state and would define “a new physical entity with its own
dynamics and kinematics” [8] (see also [9,10]). Moreover, the
geometrical structure underlying the GPCs suggests a natural
hierarchy of extensions of the Hartree-Fock ansatz, allowing
one to systematically capture static correlations in few-body
quantum systems [10].

In an analytical study [11] of three harmonically interacting
spinless fermions in a one-dimensional harmonic trap, it has
been shown that the GPCs are saturated up to a very small
correction of the order of 8 in the dimensionless coupling, D ∝
κ8. A succeeding extended study of such harmonic models
[7,12–16] has confirmed, by varying the particle number,
spatial dimension, degree of spin-polarization, and coupling
strength, that this striking quasipinning effect has a physical
origin, namely, it emerges from the conflict between energy
minimization and fermionic exchange symmetry [14]. The
intensive ongoing debate discussing the physical relevance
of the GPCs in more realistic systems, as, e.g., atoms and
molecules (see [8,9,13,17–33] and references therein), has
been hampered, however, due to a couple of reasons: First, most
of the numerical studies of realistic systems were based so far
on very small active spaces of 3–5 orbitals and may therefore
fail to accurately capture the true physical situation. Second,
it has only been realized very recently that (quasi)pinning is
in some cases trivial in the sense that it is a mere consequence
of spatial symmetries [21,25,27] or may just follow from an
(approximate) saturation of the Pauli constraints [15,19].

In the present work, we revisit the quasipinning phe-
nomenon by addressing all the concerns mentioned above. We
use state-of-the-art numerical methods to calculate the natural
occupation numbers to a high precision and use a concise
quantitative measure to distinguish trivial from nontrivial
(quasi)pinning. The main aim is thus to estimate the genuine
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relevance that GPCs have in few-fermion quantum systems. By
considering one-dimensional harmonic trap systems of fully-
polarized fermions, we ensure that possible (quasi)pinning is
neither an artifact of orbital symmetries nor of spin symmetries.
On the other hand, freezing degenerate angular and spin de-
grees of freedom and considering a steep external trap reduces
the size of the underlying active space and thus allows us to
eventually perform a fully conclusive analysis of the GPCs’
relevance in those systems. This is quite different in atoms,
where the Coulomb interaction between the electrons mani-
fests itself in a wave-function cusp, which entails the presence
of dynamic correlations. While those dynamic correlations
typically do not change the qualitative physical behavior, their
recovering with high precision requires, however, much larger
active spaces for which the generalized Pauli constraints are not
known yet. We therefore believe that our succeeding analysis
will give us a rather good idea of the genuine relevance that
GPCs have in few-fermion quantum systems.

The Hamiltonians at hand take the form

Ĥ =
N∑

j=1

(
p̂2

j

2m
+ 1

2
mω2x̂2

j

)
+ K

∑
j<k

|x̂j − x̂k|s . (2)

By using the natural length scale of the external harmonic
trap, l ≡ √

h̄/mω, we introduce the dimensionless coupling
parameter

κ ≡ K/mω2l2−s . (3)

This is equivalent to just setting m ≡ ω ≡ h̄ ≡ 1. Besides the
general motivation above, there are further important reasons
for choosing the family of Hamiltonians of the form (2)
rather than the electronic Hamiltonians studied in quantum
chemistry: The remarkable recent progress in quantum optics
allows one to simulate with ultracold gases an increasing
variety of physical systems and models which high flexibility
and control. For instance, in contrast to the electrons in atoms
and molecules, the interaction between the ultracold fermionic
atoms can be tuned at the Feshbach resonance [34–36]. Further-
more, by departing from the dilute gas regime, the effective pair
interaction between the fermionic atoms is typically described
by a Lennard-Jones-type potential, and thus no longer differs
much from (2). The future prospects of quantum simulation
in general and the proposed experimental realization of the
(quasi)pinning effect in systems of ultracold fermionic atoms
in particular (see, e.g., the expected “transparency effect” [25])
provide further compelling reasons for studying the GPCs
in harmonic trap systems rather than in weakly correlated
few-electron atoms.

In the following section, we develop a self-consistent per-
turbation theoretical approach to determine the leading-order
behavior of the natural occupation numbers in the regime of
weak coupling. In Sec. III we then explain how to obtain the nu-
merically exact ground state of (2) for finite coupling by using
the density matrix renormalization group (DMRG) approach
[37]. Eventually, we use those results to discuss in Sec. IV
the relevance of the GPCs for different Hamiltonians (2)
by considering about 100 different s values.

II. ANALYTICAL APPROACH FOR WEAK COUPLING

In this section we elaborate on a perturbation theoretical ap-
proach to determine the leading-order behavior of the minimal
distance D(�λ(κ)) of �λ to the polytope boundary for the ground
state |�(κ)〉 of a generalN -particle Hamiltonian,

Ĥ (κ) = Ĥ (0) + κV̂ , (4)

in the regime of weak coupling. Here, Ĥ (0) denotes the
one-particle Hamiltonian, V̂ the pair interaction, and the
Hamiltonian acts on the N -fermion Hilbert space ∧N [H(d)

1 ],
where we assume the one-particle Hilbert space to be finite, d-
dimensional. We assume that the ground state is nondegenerate
and that the respective D(�λ(κ)) is analytical in κ , at least in a
neighborhood ofκ = 0. SinceD(�λ(0)) = 0, following from the
fact that �λ(0) = (1, . . . ,1,0, . . . ,0) is a vertex of the polytope
(“Hartree-Fock point”), and D(�λ(κ)) � 0 for all κ , the linear
order of D(�λ(κ)) must vanish and therefore the leading-order
correction is quadratic. Determining this second-order term
by exploiting conventual perturbation theory is a rather lengthy
exercise. In a first step, one would need to determine |�(κ)〉 up
to order κ2. Then, one would need to determine the one-particle
reduced density operator of |�(κ)〉,

ρ1(κ) ≡ N TrN−1[|�(κ)〉〈�(κ)|]

≡
d∑

j=1

λj (κ)|ϕj (κ)〉〈ϕj (κ)|, (5)

by tracing out N − 1 fermions. Recall that the natural occu-
pation numbers λj (κ) shall be ordered nonincreasingly and
the respective natural orbitals |ϕj (κ)〉 are uniquely defined
as long as the natural occupation numbers are nondegenerate.
Finally, one would need to perform again second-order per-
turbation theory, this time on ρ1(κ), to determine the natural
occupation numbers up to corrections of O(κ2). This last
step is particularly challenging since it involves degener-
ate unperturbed eigenvalues. Indeed, one has spec(ρ1(0)) =
(1, . . . ,1,0, . . . ,0). In the following we therefore elaborate on
a self-consistent perturbation theory, which may simplify the
task quite a lot.

Self-consistent perturbation theory

The crucial point of our perturbation theoretical approach
is that it exploits a self-consistent expansion of |�(κ)〉. We
expand |�(κ)〉 for each coupling κ as a linear combination of
the Slater determinants built from its own natural orbitals [38],

|�(κ)〉 =
∑

i

ci (κ) |i(κ)〉. (6)

Here, we use the shorthand notation

|i(κ)〉 ≡ |ϕi1 (κ), . . . ,ϕiN (κ)〉 (7)

for the respective N -particle Slater determinant constructed
from the N natural orbitals |ϕi1 (κ)〉, . . . ,|ϕiN (κ)〉 and i ≡
(i1, . . . ,iN ). Moreover, |�(κ)〉 is normalized to unity,
〈�(κ)|�(κ)〉 = 1. The same shall hold for the natural or-
bitals and therefore also for all |i(κ)〉. The expansion (6)
is self-consistent in the sense that the respective expansion
coefficients ci (κ) fulfill self-consistency conditions, ensuring
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that the respective one-particle reduced density operator (5) is
diagonal with respect to its own natural orbitals and that the
natural occupation numbers are ordered nonincreasingly.

As discussed in Appendix, the self-consistent expansion (6)
implies several convenient structural simplifications. First of
all, a compact expression follows for the distance D(�λ(κ)) for
all κ . To explain this, we employ second quantization using
the natural orbitals of |�(κ)〉 as a reference basis. We can
then express the natural occupation numbers as particle number
expectation values, λj (κ) = 〈�(κ)|f †(ϕj (κ))f (ϕj (κ))|�(κ)〉,
where f †(χ ) and f (χ ) create and annihilate a fermion in the
state |χ〉. Hence, by introducing for any GPC (1) the respective
operator,

D̂�(κ) ≡ D
[
(n̂j (κ))dj=1

]
, (8)

n̂j (κ) ≡ f †(ϕj (κ))f (ϕj (κ)), we obtain (see also Ref. [9])

D(�λ(κ)) = 〈�(κ)|D̂�(κ)|�(κ)〉. (9)

Moreover, one observes the elementary identity
〈 j (κ)|D̂�(κ)|i(κ)〉 = δ j ,iD(�ei ), where �ei denotes a vector
with entries (�ei )k = 0,1, depending on whether k is contained
in i (1) or not (0). This identity then immediately leads to the
compact expression

D(�λ(κ)) =
∑

i

|ci (κ)|2 D(�ei ). (10)

It is remarkable that the right-hand side depends on κ only
via the coefficient functions ci (κ). Moreover, (10) holds not
only for GPCs but for any function D linear in the natural
occupation numbers λ1, . . . ,λd . In the following, we consider
only such GPCs which contain the Hartree-Fock point �λHF ≡
(1, . . . ,1,0, . . . ,0), i.e., constraints that are saturated for zero
interaction, κ → 0. By resorting to a perturbation theoretical
expansion of the ci (κ) and the natural orbitals |j (κ)〉 ≡ |ϕj (κ)〉
one eventually finds (see derivation in Appendix)

D(�λ(κ)) = κ2
∑
i∈I2

∣∣〈i(0+)|(Ĥ (0) − E(0))−1V̂ |i0〉
∣∣2

D(�ei )

+O(κ3). (11)

Here, the sum restricts toI2, the set of configurations i differing
by exactly two orbital indices from i0 ≡ (1,2, . . . ,N), and
E(0) denotes the energy of the unperturbed ground state
|�(0)〉 = |i0〉. Since ρ1(0) has a degenerate spectrum, the
expression (11) involves the adapted unperturbed natural
orbitals |j (0+)〉 ≡ |ϕj (0+)〉, which generally do not coincide
with the eigenstates |ϕj 〉 of the one-particle Hamiltonian Ĥ (0),
|ϕj (0+)〉 �= |ϕj 〉. The adapted natural orbitals, formally defined
via the limit process κ → 0+, can be determined without
much computational effort [39]. Hence, Eq. (11) defines a
striking connection between the pair interaction of the physical
system and the quantum information theoretical quantity D(�λ),
quantifying the absolute influence of the fermionic exchange
symmetry on the one-particle picture.

An additional comment is in order, emphasizing the sig-
nificance of result (11). In general, after determining the
adapted natural orbitals, one could implement a unitary basis
set transformation from the one-particle eigenstates |ϕj 〉 of
Ĥ (0) to those adapted states |ϕj (0+)〉. This would change V̂ to

another pair interaction V̂ ′ and also Ĥ (0) to another one-particle
Hamiltonian with the same energy spectrum. The respective
expression (11) would then help to understand the mechanism
behind quasipinning: The form of V̂ ′ is related in the simplest
possible way to the leading order of the distance D(�λ(κ)) of
�λ(κ) to the polytope boundary.

III. NUMERICALLY EXACT TREATMENT
THROUGH DMRG

To apply DMRG in the context of continuously confined
fermions, we use its quantum chemical version (QC-DMRG)
[40] adapted to spinless fermions and express Hamiltonian (2)
in second quantization. As a truncated reference basis we
choose the first d oscillator states |ϕj 〉 of the external harmonic
trap (now playing the role of the “lattice sites” in standard
DMRG). The Hamiltonian then takes the form

Ĥ =
d−1∑
i,j=0

hi;j c
†
i cj + 1

2
K

d−1∑
i1,i2,j1,j2=0

Vi1i2;j1,j2c
†
i1
c
†
i2
cj2cj1 , (12)

where (recall m ≡ ω ≡ h̄ ≡ 1)

hi;j ≡ 〈ϕi | p̂2
1/2 + x̂2

1/2 |ϕj 〉 = (
j + 1

2

)
δij (13)

and

Vi1i2;j1,j2 ≡ 〈ϕi1 |⊗〈ϕi2 | |x̂1 − x̂2|s |ϕj1〉⊗|ϕj2〉. (14)

In a tedious derivation—being part of the long-term establish-
ment of a DMRG scheme for systems of continuously confined
fermions [41]—one can determine an analytical expression for
the two-particle matrix elements:

Vi1i2;j1,j2 = 2s/2 (−1)i2+j2

√
i1!i2!j1!j2!

min (i1,j1)∑
m1=0

min (i2,j2)∑
m2=0

(
i1

m1

)(
j1

m1

)

×
(

i2

m2

)(
j2

m2

)
m1! m2!Ji1+i2+j1+j2−2m1−2m2 ,

(15)

assuming i1 + i2 + j1 + j2 to be even since otherwise Vi1i2;j1,j2

vanishes (recall the invariance of the pair interaction under spa-
tial inversion). Here, Jk ≡ �( s+1

2 ) 2−k/2√
π

∏k/2−1
j=0 (s − 2j ), and �

denotes the Gamma function.
By choosing sufficiently large bases of up to d = 80

orbitals, we ensure the convergence of both the variational
energy and the natural occupation numbers on at least ten
digits. In particular, we use the dynamic block state selection
(DBSS) procedure [42,43] to reach a threshold accuracy of
10−13 in the energy. We also invoked the dynamically extended
active space (DEAS) procedure [44] with a minimum number
of block states set to M = 1024 to guarantee fast and stable
convergence during the initialization sweep of the DMRG.
The residual error threshold for the respective Lánczos and
Davidson diagonalization procedure is set to 10−13.

In the left panel of Fig. 1 we illustrate the convergence
of our approach by comparing our variational energy to the
exact one for the analytically solvable harmonic case [45],
i.e., s = 2, for the fixed coupling κ = 1 and N = 2,3,4,5
fermions. Convergence of the energy on more than ten digits
is achieved in our approach by choosing d sufficiently large.
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FIG. 1. Left: Absolute error of the DMRG ground-state energy
for s = 2 (harmonic interaction), κ = 1 as a function of the basis set
size d . Cases N = 2,3,4,5 are represented by symbols , , , and

, respectively, and dashed lines emphasize the exponentially fast
convergence in d . Right: Two-orbital mutual information Ii,j for any
two orbitals i,j = 1,2, . . . ,60 for same physical system and N = 5.

To illustrate the need for large basis sets from a different
perspective, we present in the right panel of Fig. 1 for the same
physical system the mutual information Ii,j for any two orbitals
i,j = 1,2, . . . ,60. Recall that Ii,j quantifies the correlation
between orbitals i,j since it quantifies the extra information
contained in the orbital reduced density operator ρij beyond the
information already contained in both single-orbital reduced
density operators ρi,ρj , i.e., in ρi ⊗ ρj [44,46–49]. While the
orbitals around the Fermi level are apparently the most active
ones, it can also be inferred from Fig. 1 that large basis sets,
d � N , are required to also cover dynamical correlation to
high precision.

For a detailed presentation of the DMRG scheme which
we developed to describe systems of continuously confined
fermions and a comprehensive analysis of the entanglement
structure of those systems, we refer the reader to [41].

IV. RESULTS

For various numerically exact ground states calculated by
DMRG we determine the corresponding one-particle reduced
density matrices and diagonalize them numerically to obtain
the natural occupation numbers λk . Since our high-precision
approach involves large active spaces and since the GPCs are
known so far only up to basis sets of size d = 12, we resort to
the concept of truncation [7]. We perform the (quasi)pinning
analysis in terms of a truncated vector �λ′, obtained by discard-
ing all natural occupation numbers sufficiently close to 0 (and
also 1). To be more specific, we quantify quasipinning by the
minimal l1 distance D of �λ to the polytope boundary. We then
reduce N to N ′ by ignoring eigenvalues close to 1, and d to
d ′ by also ignoring those close to 0. The minimal distance D′
of �λ′ to the boundary of the polytope P ′ of (N ′,d ′) coincides
with D in the full setting up to a truncation error ε′,

|D − D′| � ε′ ≡
N−N ′∑
j=1

(1 − λj ) +
d−d ′−N ′+N−1∑

k=0

λd−k. (16)

Furthermore, since the polytope P is a subset of the Pauli sim-
plex 1 � λ1 � · · · � λd � 0, quasipinning can be considered
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FIG. 2. For the ground state of the Hamiltonian (2) we present
for different coupling strengths κ the s dependence of the minimal
distance D of the vector �λ of natural occupation numbers to the
polytope boundary. The quadratic leading order of D following from
the perturbation theory is shown as a solid line.

as nontrivial only if the distance of �λ to the polytope boundary
∂P is much smaller than the distance of �λ to the boundary of
the Pauli simplex. This “degree of nontriviality” is quantified
by the Q parameter [15].

In Fig. 2 we present the results for D for a large grid of
about 100 s values for the case of N = 3,4 fermions for weak
coupling (κ = ±0.1) and medium coupling (κ = ±1.0). For
the case of negative couplings we are restricted to s < 2 since
the system has no bound ground state for s > 2. For all grid
points we apply the “concept of truncation” [7], as explained
above. The respective truncation errors for the particle numbers
N = 3,4 and the chosen couplings κ turn out to be negligibly
small, i.e., they are smaller than the width of the plot markers.
Even for medium interaction strengths, those numerical results
confirm that the GPCs have an absolute relevance for all s
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values since the distance D of the natural occupation numbers
�λ to the polytope boundary is much smaller than the length
scale of the polytope given by O(1). For the specific cases
of a harmonic (s = 2) and quartic (s = 4) pair interaction the
system exhibits an extremely strong quasipinning, which is
mainly due to the fact that the active space size shrinks for
s = 2n,n ∈ N [7,11,13]. In that context, the reader should
note that s = 0 represents a noninteracting system, implying
D(�λ(κ)) = 0 for all couplings. A comparison of the results for
small coupling (|κ| = 0.1) with those for medium coupling
(|κ| = 1.0) shows that increasing the coupling leads to a
weakening of the quasipinning, which is due to the increase
of the total correlation. Nonetheless, given that D(�λ) � 10−3

for |κ| = 1.0 for all s values, the quasipinning for medium
coupling is still quite strong.

Particularly remarkable is the fact that the unique nature
of the extremely strong quasipinning in the neighborhood of
s = 2,4 reduces a lot as one increases the coupling from very-
small (|κ| � 1) to small (|κ| = 0.1) and eventually medium
coupling (|κ| = 1.0). In addition, it is also remarkable that for
κ = ±0.1 the perturbation theoretical results for D(�λ) agree
with the numerically exact DMRG results almost perfectly for
−1 < s < 2.5 and −1 < s < 1.3 in the cases of κ > 0 and
κ < 0, respectively. For s > 3 the numerically exact results
do not agree with the second-order perturbation theoretical
results. This is due to the fact that for such extreme pair
interactions, the coupling κ = 0.1 is not yet small enough
and thus higher orders (κ3) strongly affect the behavior of
D( �λ(κ)). Much better agreement between the numerical results
and the perturbation theoretical results can be found for s >

3, however, by considering smaller couplings, such as, e.g.,
κ = 0.01 (not presented here).

While Fig. 2 confirms the relevance of the fermionic
exchange symmetry on the one-particle picture, it is important
to also understand to what extent this relevance needs to be as-
signed to Pauli’s original principle. The potential significance
of the GPCs beyond the already well-established relevance of
Pauli’s exclusion principle is quantified by the Q parameter
[15]. Recall that a value Qj (�λ) of the Q parameter for the j th

GPC, Dj � 0, means that this GPC is 10Qj (�λ) more strongly
saturated than what one could expect from the approximate
saturation of some Pauli constraints. The results for the overall
Q parameter Q = maxj (Qj ) are presented in Fig. 3. First,
we infer that the GPCs have a nontrivial relevance for all
s values and all considered κ values, i.e., some GPCs are
always saturated by a factor of about 10 stronger than Pauli’s
exclusion principle constraints would suggest. The singular
behavior of D(�λ) at s = 2,4 is also present in the Q parameter,
at least for s = 2. For s = 4,6, . . . the present DMRG results
cannot resolve these singularities. Yet, we are convinced that
the nontrivial character of the quasipinning is particularly
pronounced at all positive even-integer values of s, and in
the respective vicinities. Furthermore, the perturbation theory
(shown as solid line) shows that the leading (zeroth) order
Q(0) of Q(�λ(κ)) is approximately constant for almost all s, in
complete contrast to the harmonic case. Indeed, for s = 2 and
probably also for further even-integer s values above s = 2
the Q parameter diverges as the coupling κ tends to zero [and
thus does not allow for a perturbation theoretical expansion
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FIG. 3. For the ground state of the Hamiltonian (2) we present for
different coupling strengths κ the s dependence of the Q parameter.
The leading order of Q following from the perturbation theory is
shown as a solid line.

of Q(�λ(κ))] at around κ = 0, i.e., Q(�λ(κ)) is not analytical at
κ = 0.

V. SUMMARY AND CONCLUSION

Conclusive results for a harmonic model system [7,11–13]
provided first evidence that the generalized Pauli constraints
(GPCs) would have a tremendous physical relevance since they
were found to be saturated up to a very small correction of
the order 8 in the coupling, D ∝ κ8. In the present work,
we explore whether those seminal findings—the presence
of such extremely strong quasipinning in ground states up
to medium interaction strength—also hold for various other
few-fermion systems. Answering this question is, however,
highly challenging since the exact description of interacting
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fermions in the continuum can be considered as one of the
hardest problems in physics. Even worse, as recent studies of
atoms and molecules based on rather small active spaces have
revealed, quasipinning found in those systems can be artificial
in the sense that it is a mere consequence of the orbital and spin
symmetries [13,21,25,27]. In our work, we largely avoided
those bottlenecks by considering one-dimensional systems of
spinless fermions interacting by a general pair potential of the
form κ|x̂i − x̂j |s confined by a harmonic external potential. We
resorted to the DMRG approach in the context of continuously
confined fermions to determine the numerically exact ground
states of those systems up to medium coupling κ for the
exemplary cases of N = 3,4 fermions and for about 100
different pair interactions −1 < s � smax, where smax = 5 for
attractive coupling (κ > 0) and smax = 2 for repulsive coupling
(κ < 0). By choosing sufficiently large basis sets of up to 80
orbitals, we ensured the convergence on more than ten digits of
both the variational energy and the natural occupation numbers
�λ ≡ (λi).

Our numerically exact analysis confirms the original ex-
pectation: The GPCs are indeed universally relevant in the
sense that they are approximately saturated regardless of the
type of pair interaction. Even for medium interaction strengths
and almost the whole regime −1 < s < 5 of considered pair
interactions, we found a quasisaturation D(�λ) � 10−3 of the
GPCs. This provides further evidence that such quasipinning
has its origin in the conflict between energy minimization and
fermionic exchange symmetry which is present in all systems
of continuously confined fermions. To distinguish between
genuine and trivial quasipinning we used the Q parameter
[15]. The comprehensive analysis eventually confirms that the
quasipinning by the GPCs is not primarily a result of the ap-
proximate saturation of Pauli’s exclusion principle constraints
0 � λj � 1.

To shed more light on the weak-coupling regime, |κ| � 1,
we developed a self-consistent perturbation theory which is
based on an expansion of the N -fermion quantum states in
Slater determinants built from its own natural orbitals. The
respective analytical results agree quite well for most of the
s regime for coupling κ = ±0.1 with the numerical results.
Furthermore, the analytical results also elucidate the singular
behavior found for the specific values s = 2,4, . . . , resulting
in an even stronger, rather extreme quasipinning compared to
generic s values for weak couplings. In particular, the pertur-
bation theory provides a conceptually important insight into
quasipinning with consequences for the related terminology:
Quasipinning in generic systems is quite strong, despite the fact
that the leading-order correction is only quadratic, D(�λ(κ)) =
c2κ

2. It is thus the respective prefactor (c2) rather than the
exponent of the leading order of D(�λ(κ)) which defines the
strength of quasipinning. Only for the specific case s = 2 and
probably some further even-integer s values do the quadratic
and further higher orders in the expansion of D(�λ(κ)) vanish
rigorously. All these results, presented in our work for N = 3,4
fermions, hold qualitatively also for larger particle numbers.

Due to the remarkable implication of (quasi)pinning for
the structure of the many-fermion wave functions [10], our
findings emphasize again the potential significance that GPCs
may have in few-body quantum systems, particularly for multi-
configurational self-consistent field (MCSCF) ansatzes and in

reduced density matrix functional theory (RDMFT). Such ap-
plications of the GPCs would require, however, that the recent
development [4–6,24,50–58] in quantum information sciences
and mathematical physics yields more efficient algorithms for
the calculations of the GPCs for larger active spaces.
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APPENDIX: DETAILS OF THE SELF-CONSISTENT
PERTURBATION THEORY

In this Appendix we present all technical details of the self-
consistent perturbation theory proposed in Sec. II A. Let us
consider an N -particle Hamiltonian of the general form

Ĥ (κ) = Ĥ (0) + κV̂ , (A1)

acting on the N -fermion Hilbert space ∧N [H(d)
1 ], where H(d)

1
denotes the underlying one-particle Hilbert space of dimension
d. Here, Ĥ (0) is a general one-particle Hamiltonian, including
the kinetic energy and the external potential, and V̂ is a pair
interaction. We assume that the ground state |�(κ)〉 of the
Hamiltonian (A1) depends analytically on κ , at least in a
neighborhood of κ = 0, and thus allows us to study it by
perturbation theoretical means around κ = 0.

We expand |�(κ)〉 self-consistently according to (6). The
respective natural orbitals |ϕj (κ)〉 ≡ |j (κ)〉 follow from the
one-particle reduced density operator (5) obtained after tracing
out N − 1 fermions. This self-consistent expansion has a
couple of convenient properties. To discuss them we expand
the coefficient functions ci (κ),

ci (κ) = c
(0)
i + κ c

(1)
i + O(κ2), (A2)

and the natural orbitals |j (κ)〉,

|j (κ)〉 = |j (0)〉 + κ |j (1)〉 + O(κ2). (A3)

Here, the natural orbitals (and thus the Slater determinants
| j (κ)〉) shall be normalized to unity for all κ , 〈j (κ)|j (κ)〉 = 1.
It is important to notice that the states |j (0)〉 ≡ limκ→0+ |j (κ)〉
generally do not coincide with the one-particle eigenstates of
the unperturbed Hamiltonian Ĥ (0). Nonetheless, one has

span({|j 〉}1�j�N ) = span({|j (0)〉}1�j�N ),

span({|j 〉}N+1�j�d ) = span({|j (0)〉}N+1�j�d ). (A4)

Concerning the total quantum state (6), the expansion in κ

reads

|�(κ)〉 = |�(0)〉 + κ |�(1)〉 + O(κ2), (A5)
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with the normalization condition 〈�(κ)|�(κ)〉 = 1. Since the
ground state is assumed to be unique, we have

c
(0)
i =

{
1, if i = i0

0, otherwise, (A6)

where i0 ≡ (1,2, . . . ,N). A first useful property of the self-
consistent expansion (6) is that configurations i differing by
exactly one orbital index from the reference configuration i0 ≡
(1,2, . . . ,N ) contribute to |�(κ)〉 with significantly reduced
weight, as stated in the following Lemma.

Lemma 1. Let |�(κ)〉 be an N -fermion quantum state,
analytical in κ , and normalized to unity, 〈�(κ)|�(κ)〉 = 1.
We denote the overall first contribution in the series of the
analytical coefficient functions c j (κ) in the self-consistent
perturbation expansion (6) by r . Then, ci0 (κ) = 1 + O(κ2r )
and all configurations i differing from the reference configura-
tion i0 ≡ (1,2, . . . ,N) by exactly one orbital index, |i ∩ i0| =
N − 1, contribute only with weight of the order O(κ2r ).

Proof. Consider a configuration i differing from the
reference configuration i0 by the orbital index α > N which
replaces the index l � N in i0, i.e., i = (i0 ∪ {α}) \ {l}. Due
to the self-consistent character of the expansion (6), the one-
particle reduced density operator ρ1(κ) is diagonal in the basis
of its own natural orbitals. In particular,

0
!= 〈α(κ)|ρ1(κ)|l(κ)〉
=

∑
j�l

c∗
j (κ) c( j∪{α})\{l}(κ) (−1)#{i∈ j |k<i<α}

= c∗
i0

(κ) ci (κ) (−1)N−l+1 + O(κ2r ). (A7)

In the last line, we have used for i �= i0 that ci (κ) = O(κr ), i.e.,
r is the overall leading order in κ of the series (A2). Finally, by
using ci0 (κ) = 1 + O(κ2r ) following from the normalization
1 = 〈�(κ)|�(κ)〉 = |ci0 (κ)|2 + O(κ2r ), we then obtain from
(A7) ci (κ) = O(κ2r ). �

It is worth noticing that for generic Hamiltonians of the form
(4) the leading-order corrections are of linear order, r = 1.
For special cases, as, e.g., the Harmonium model defined by
Hamiltonian (2) with s = 2, however, one can find r > 1.

To determine the first-order contributions c
(1)
i to the

quantum state (6) we study the respective time-independent
Schrödinger equation

E(κ)|�(κ)〉 = (Ĥ (0) + κV̂ )|�(κ)〉. (A8)

In zeroth order, by expanding the energy according to

E(κ) ≡ E(0) + κ E(1) + O(κ2), (A9)

we have

E(0)|�(0)〉 = Ĥ (0)|�(0)〉. (A10)

This apparently yields [recall also (A4)]

|�(0)〉 = |i0〉 = |i0(0+)〉, E(0) = Ei0 , (A11)

where for any configuration i ≡ (i1, . . . ,iN ), Ei denotes the
unperturbed energy of the respective Slater determinant |i〉. Ei

is nothing else than just the sum of the single-particle energies
of the orbitals |i1〉, . . . |iN 〉. Moreover, we have indeed |i0〉 =
|i0(0+)〉 (up to a phase which we can set to zero) which follows
from (A4).

In linear order, (A8) leads to

E(1)|�(0)〉 + E(0)|�(1)〉 = Ĥ (0)|�(1)〉 + V̂ |�(0)〉. (A12)

By projecting (A12) onto |�(0)〉 = |i0(0+)〉 = |i0〉 and using
(A10) we find

E(1) = 〈i0|V̂ |i0〉. (A13)

On the orthogonal complement of |i0(0+)〉 we can invert the
operator E(0) − Ĥ (0). Thus we obtain from (A12), restricted to
span({|i(0+)〉}i �=i0

),

|�(1)〉 = (E(0) − Ĥ (0))−1V̂ |�(0)〉. (A14)

Moreover, by comparing (A2) and (A3) with (A5), and using
(A6) and Lemma 1, we find

|�(1)〉 =
∑

i

[
c

(1)
i |i(0+)〉 + c

(0)
i |i(κ)〉(1)]

∑
i∈I�2

c
(1)
i |i(0+)〉 + |i0(κ)〉(1). (A15)

Here, |i(κ)〉(1) denotes the linear order of |i(κ)〉 in κ and I�2

denotes the set of all configurations i = (i1, . . . ,iN ) differing
in at least two indices from i0 ≡ (1, . . . ,N).

Since 〈i(0+)|i0(κ)〉(1) = 0 for all i differing from i0 by more
than one orbital index, (A15) yields

〈i(0+)|�(1)〉 = c
(1)
i , ∀i ∈ I�2. (A16)

Using this in combination with (A14) leads to

c
(1)
i = 〈i(0+)|(E(0) − Ĥ (0))−1V̂ |i0〉 (A17)

for all i ∈ I�2. Finally, we observe that according to (A17),
c

(1)
i also vanishes in case i differs from i0 by more than two

indices since V̂ is a two-particle operator. Hence, (11) follows
from (10) by using (A17).

[1] W. Pauli, Über den zusammenhang des abschlusses der elek-
tronengruppen im atom mit der komplexstruktur der spektren,
Z. Phys. 31, 765 (1925).

[2] R. E. Borland and K. Dennis, The conditions on the one-matrix
for three-body fermion wavefunctions with one-rank equal to
six, J. Phys. B 5, 7 (1972).

[3] M. B. Ruskai, Connecting N-representability to Weyl’s problem:
The one-particle density matrix for N = 3 and R = 6, J. Phys. A
40, F961 (2007).

[4] A. Klyachko, Quantum marginal problem and
N-representability, J. Phys.: Conf. Ser. 36, 72 (2006).

[5] M. Altunbulak and A. Klyachko, The Pauli principle revisited,
Commun. Math. Phys. 282, 287 (2008).

[6] M. Altunbulak, Ph.D. thesis, Bilkent University, 2008.
[7] F. Tennie, D. Ebler, V. Vedral, and C. Schilling,

Pinning of fermionic occupation numbers: General concepts
and one spatial dimension, Phys. Rev. A 93, 042126
(2016).

052105-7

https://doi.org/10.1007/BF02980631
https://doi.org/10.1007/BF02980631
https://doi.org/10.1007/BF02980631
https://doi.org/10.1007/BF02980631
https://doi.org/10.1088/0022-3700/5/1/009
https://doi.org/10.1088/0022-3700/5/1/009
https://doi.org/10.1088/0022-3700/5/1/009
https://doi.org/10.1088/0022-3700/5/1/009
https://doi.org/10.1088/1751-8113/40/45/F01
https://doi.org/10.1088/1751-8113/40/45/F01
https://doi.org/10.1088/1751-8113/40/45/F01
https://doi.org/10.1088/1751-8113/40/45/F01
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1007/s00220-008-0552-z
https://doi.org/10.1007/s00220-008-0552-z
https://doi.org/10.1007/s00220-008-0552-z
https://doi.org/10.1007/s00220-008-0552-z
https://doi.org/10.1103/PhysRevA.93.042126
https://doi.org/10.1103/PhysRevA.93.042126
https://doi.org/10.1103/PhysRevA.93.042126
https://doi.org/10.1103/PhysRevA.93.042126


ÖRS LEGEZA AND CHRISTIAN SCHILLING PHYSICAL REVIEW A 97, 052105 (2018)

[8] A. Klyachko, The Pauli exclusion principle and beyond,
arXiv:0904.2009.

[9] C. Schilling, Quasipinning and its relevance for N -fermion
quantum states, Phys. Rev. A 91, 022105 (2015).

[10] C. Schilling, C. L. Benavides-Riveros, and P. Vrana, Re-
constructing quantum states from single-party information,
Phys. Rev. A 96, 052312 (2017).

[11] C. Schilling, D. Gross, and M. Christandl, Pinning of Fermionic
Occupation Numbers, Phys. Rev. Lett. 110, 040404 (2013).

[12] D. Ebler, Semester thesis, ETH Zurich, 2013.
[13] C. Schilling, Ph.D. thesis, ETH-Zürich, 2014.
[14] F. Tennie, V. Vedral, and C. Schilling, Pinning of fermionic

occupation numbers: Higher spatial dimensions and spin,
Phys. Rev. A 94, 012120 (2016).

[15] F. Tennie, V. Vedral, and C. Schilling, Influence of the fermionic
exchange symmetry beyond Pauli’s exclusion principle,
Phys. Rev. A 95, 022336 (2017).

[16] F. Tennie, Ph.D. thesis, University of Oxford, 2017.
[17] C. L. Benavides-Riveros, J. M. Gracia-Bondía, and M.

Springborg, Quasipinning and entanglement in the lithium iso-
electronic series, Phys. Rev. A 88, 022508 (2013).

[18] A. Klyachko, The Pauli principle and magnetism,
arXiv:1311.5999.

[19] R. Chakraborty and D. A. Mazziotti, Generalized Pauli condi-
tions on the spectra of one-electron reduced density matrices of
atoms and molecules, Phys. Rev. A 89, 042505 (2014).

[20] R. Chakraborty and D. A. Mazziotti, Sufficient condition for the
openness of a many-electron quantum system from the violation
of a generalized Pauli exclusion principle, Phys. Rev. A 91,
010101 (2015).

[21] C. L. Benavides-Riveros and M. Springborg, Quasipinning and
selection rules for excitations in atoms and molecules, Phys. Rev.
A 92, 012512 (2015).

[22] I. Theophilou, N. N. Lathiotakis, M. Marques, and N. Helbig,
Generalized Pauli constraints in reduced density matrix func-
tional theory, J. Chem. Phys. 142, 154108 (2015).

[23] R. Chakraborty and D. A. Mazziotti, Structure of the one-
electron reduced density matrix from the generalized Pauli
exclusion principle, Int. J. Quant. Chem. 115, 1305 (2015).

[24] A. Lopes, Ph.D. thesis, University of Freiburg, 2015.
[25] C. Schilling, Hubbard model: Pinning of occupation numbers

and role of symmetries, Phys. Rev. B 92, 155149 (2015).
[26] J. Wang and P. J. Knowles, Nonuniqueness of algebraic first-

order density-matrix functionals, Phys. Rev. A 92, 012520
(2015).

[27] C. L. Benavides-Riveros, Ph.D. thesis, Universidad de Zaragoza,
2015.

[28] R. Chakraborty and D. A. Mazziotti, Role of the generalized
Pauli constraints in the quantum chemistry of excited states,
Int. J. Quant. Chem. 116, 784 (2016).

[29] D. A. Mazziotti, Pure-n-representability conditions of two-
fermion reduced density matrices, Phys. Rev. A 94, 032516
(2016).

[30] C. L. Benavides-Riveros, N. N. Lathiotakis, and M. A. L.
Marques, Towards a formal definition of static and dynamic
electronic correlations, Phys. Chem. Chem. Phys. 19, 12655
(2017).

[31] R. Chakraborty and D. A. Mazziotti, Noise-assisted energy
transfer from the dilation of the set of one-electron reduced
density matrices, J. Chem. Phys. 146, 184101 (2017).

[32] C. Schilling, M. Altunbulak, S. Knecht, A. Lopes, J. D.
Whitfield, M. Christandl, D. Gross, and M. Reiher, Generalized
Pauli constraints in small atoms, arXiv:1710.03074.

[33] T. Maciazek and V. Tsanov, Quantum marginals from pure
doubly excited states, J. Phys. A 50, 465304 (2017).

[34] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[35] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225
(2010).

[36] M. Weidemüller and C. Zimmermann, Interactions in Ultra-
cold Gases: From Atoms to Molecules (John Wiley & Sons,
New York, 2011).

[37] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[38] P. O. Löwdin, Quantum theory of many-particle systems,
I. Physical interpretations by means of density matri-
ces, natural spin-orbitals, and convergence problems in the
method of configurational interaction, Phys. Rev. 97, 1474
(1955).

[39] E. R. Davidson, Reduced Density Matrices in Quantum Chem-
istry (Academic Press, New York, 1976).

[40] S. White and R. Martin, Ab initio quantum chemistry using the
density matrix renormalization group, J. Chem. Phys. 110, 4127
(1999).

[41] Ö. Legeza and C. Schilling (unpublished).
[42] Ö. Legeza, J. Röder, and B. A. Hess, Controlling the accuracy of

the density-matrix renormalization-group method: The dynam-
ical block state selection approach, Phys. Rev. B 67, 125114
(2003).

[43] Ö. Legeza and J. Sólyom, Quantum data compression, quantum
information generation, and the density-matrix renormalization-
group method, Phys. Rev. B 70, 205118 (2004).

[44] Ö. Legeza and J. Sólyom, Optimizing the density-matrix renor-
malization group method using quantum information entropy,
Phys. Rev. B 68, 195116 (2003).

[45] Z.-L. Wang, A. M. Wang, Y. Yang, and X. C. Li, Exact
eigenfunctions of n-body system with quadratic pair potential,
Commun. Theor. Phys. 58, 639 (2012).

[46] Ö. Legeza and J. Sólyom, Two-Site Entropy and Quantum Phase
Transitions in Low-Dimensional Models, Phys. Rev. Lett. 96,
116401 (2006).

[47] J. Rissler, R. Noack, and S. R. White, Measuring orbital
interaction using quantum information theory, Chem. Phys. 323,
519 (2006).

[48] G. Barcza, Ö. Legeza, K. H. Marti, and M. Reiher, Quantum-
information analysis of electronic states of different molecular
structures, Phys. Rev. A 83, 012508 (2011).

[49] S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R.
Schneider, and Ö. Legeza, Tensor product methods and entan-
glement optimization for ab initio quantum chemistry, Int. J.
Quant. Chem. 115, 1342 (2015).

[50] A. Sawicki and M. Kus, Geometry of the local equivalence of
states, J. Phys. A: Math. Theor. 44, 495301 (2011).

[51] A. Sawicki, M. Oszmaniec, and M. Kus, Critical sets of the
total variance of state detect all SLOCC entanglement classes,
Phys. Rev. A 86, 040304(R) (2012).

[52] A. Sawicki and V. V. Tsanov, A link between quantum entangle-
ment, secant varieties and sphericity, J. Phys. A: Math. Theor.
46, 265301 (2013).

052105-8

http://arxiv.org/abs/arXiv:0904.2009
https://doi.org/10.1103/PhysRevA.91.022105
https://doi.org/10.1103/PhysRevA.91.022105
https://doi.org/10.1103/PhysRevA.91.022105
https://doi.org/10.1103/PhysRevA.91.022105
https://doi.org/10.1103/PhysRevA.96.052312
https://doi.org/10.1103/PhysRevA.96.052312
https://doi.org/10.1103/PhysRevA.96.052312
https://doi.org/10.1103/PhysRevA.96.052312
https://doi.org/10.1103/PhysRevLett.110.040404
https://doi.org/10.1103/PhysRevLett.110.040404
https://doi.org/10.1103/PhysRevLett.110.040404
https://doi.org/10.1103/PhysRevLett.110.040404
https://doi.org/10.1103/PhysRevA.94.012120
https://doi.org/10.1103/PhysRevA.94.012120
https://doi.org/10.1103/PhysRevA.94.012120
https://doi.org/10.1103/PhysRevA.94.012120
https://doi.org/10.1103/PhysRevA.95.022336
https://doi.org/10.1103/PhysRevA.95.022336
https://doi.org/10.1103/PhysRevA.95.022336
https://doi.org/10.1103/PhysRevA.95.022336
https://doi.org/10.1103/PhysRevA.88.022508
https://doi.org/10.1103/PhysRevA.88.022508
https://doi.org/10.1103/PhysRevA.88.022508
https://doi.org/10.1103/PhysRevA.88.022508
http://arxiv.org/abs/arXiv:1311.5999
https://doi.org/10.1103/PhysRevA.89.042505
https://doi.org/10.1103/PhysRevA.89.042505
https://doi.org/10.1103/PhysRevA.89.042505
https://doi.org/10.1103/PhysRevA.89.042505
https://doi.org/10.1103/PhysRevA.91.010101
https://doi.org/10.1103/PhysRevA.91.010101
https://doi.org/10.1103/PhysRevA.91.010101
https://doi.org/10.1103/PhysRevA.91.010101
https://doi.org/10.1103/PhysRevA.92.012512
https://doi.org/10.1103/PhysRevA.92.012512
https://doi.org/10.1103/PhysRevA.92.012512
https://doi.org/10.1103/PhysRevA.92.012512
https://doi.org/10.1063/1.4918346
https://doi.org/10.1063/1.4918346
https://doi.org/10.1063/1.4918346
https://doi.org/10.1063/1.4918346
https://doi.org/10.1002/qua.24934
https://doi.org/10.1002/qua.24934
https://doi.org/10.1002/qua.24934
https://doi.org/10.1002/qua.24934
https://doi.org/10.1103/PhysRevB.92.155149
https://doi.org/10.1103/PhysRevB.92.155149
https://doi.org/10.1103/PhysRevB.92.155149
https://doi.org/10.1103/PhysRevB.92.155149
https://doi.org/10.1103/PhysRevA.92.012520
https://doi.org/10.1103/PhysRevA.92.012520
https://doi.org/10.1103/PhysRevA.92.012520
https://doi.org/10.1103/PhysRevA.92.012520
https://doi.org/10.1002/qua.25120
https://doi.org/10.1002/qua.25120
https://doi.org/10.1002/qua.25120
https://doi.org/10.1002/qua.25120
https://doi.org/10.1103/PhysRevA.94.032516
https://doi.org/10.1103/PhysRevA.94.032516
https://doi.org/10.1103/PhysRevA.94.032516
https://doi.org/10.1103/PhysRevA.94.032516
https://doi.org/10.1039/C7CP01137G
https://doi.org/10.1039/C7CP01137G
https://doi.org/10.1039/C7CP01137G
https://doi.org/10.1039/C7CP01137G
https://doi.org/10.1063/1.4982927
https://doi.org/10.1063/1.4982927
https://doi.org/10.1063/1.4982927
https://doi.org/10.1063/1.4982927
http://arxiv.org/abs/arXiv:1710.03074
https://doi.org/10.1088/1751-8121/aa8c5f
https://doi.org/10.1088/1751-8121/aa8c5f
https://doi.org/10.1088/1751-8121/aa8c5f
https://doi.org/10.1088/1751-8121/aa8c5f
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1103/PhysRev.97.1474
https://doi.org/10.1063/1.478295
https://doi.org/10.1063/1.478295
https://doi.org/10.1063/1.478295
https://doi.org/10.1063/1.478295
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.67.125114
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1103/PhysRevB.70.205118
https://doi.org/10.1103/PhysRevB.68.195116
https://doi.org/10.1103/PhysRevB.68.195116
https://doi.org/10.1103/PhysRevB.68.195116
https://doi.org/10.1103/PhysRevB.68.195116
https://doi.org/10.1088/0253-6102/58/5/04
https://doi.org/10.1088/0253-6102/58/5/04
https://doi.org/10.1088/0253-6102/58/5/04
https://doi.org/10.1088/0253-6102/58/5/04
https://doi.org/10.1103/PhysRevLett.96.116401
https://doi.org/10.1103/PhysRevLett.96.116401
https://doi.org/10.1103/PhysRevLett.96.116401
https://doi.org/10.1103/PhysRevLett.96.116401
https://doi.org/10.1016/j.chemphys.2005.10.018
https://doi.org/10.1016/j.chemphys.2005.10.018
https://doi.org/10.1016/j.chemphys.2005.10.018
https://doi.org/10.1016/j.chemphys.2005.10.018
https://doi.org/10.1103/PhysRevA.83.012508
https://doi.org/10.1103/PhysRevA.83.012508
https://doi.org/10.1103/PhysRevA.83.012508
https://doi.org/10.1103/PhysRevA.83.012508
https://doi.org/10.1002/qua.24898
https://doi.org/10.1002/qua.24898
https://doi.org/10.1002/qua.24898
https://doi.org/10.1002/qua.24898
https://doi.org/10.1088/1751-8113/44/49/495301
https://doi.org/10.1088/1751-8113/44/49/495301
https://doi.org/10.1088/1751-8113/44/49/495301
https://doi.org/10.1088/1751-8113/44/49/495301
https://doi.org/10.1103/PhysRevA.86.040304
https://doi.org/10.1103/PhysRevA.86.040304
https://doi.org/10.1103/PhysRevA.86.040304
https://doi.org/10.1103/PhysRevA.86.040304
https://doi.org/10.1088/1751-8113/46/26/265301
https://doi.org/10.1088/1751-8113/46/26/265301
https://doi.org/10.1088/1751-8113/46/26/265301
https://doi.org/10.1088/1751-8113/46/26/265301


ROLE OF THE PAIR POTENTIAL FOR THE SATURATION … PHYSICAL REVIEW A 97, 052105 (2018)

[53] T. Maciazek, M. Oszmaniec, and A. Sawicki, How many invari-
ant polynomials are needed to decide local unitary equivalence
of qubit states? J. Math. Phys. 54, 092201 (2013).

[54] A. Huckleberry, M. Kus, and A. Sawicki, Bipartite entanglement,
spherical actions, and geometry of local unitary orbits, J. Math.
Phys. 54, 022202 (2013).

[55] A. Sawicki, M. Oszmaniec, and M. Kus, Convexity of momen-
tum map, morse index, and quantum entanglement, Rev. Math.
Phys. 26, 1450004 (2014).

[56] T. Maciazek and A. Sawicki, Critical points of the linear entropy
for pure l-qubit states, J. Phys. A 48, 045305 (2015).

[57] A. Sawicki, T. Maciazek, M. Oszmaniec, K. Karnas, K.
Kowalczyk-Murynka, and M. Kus, Multipartite quantum
correlations: Symplectic and algebraic geometry approach,
arXiv:1701.03536.

[58] T. Maciążek and A. Sawicki, Asymptotic properties of entan-
glement polytopes for large number of qubits, J. Phys. A: Math.
Theor. 51, 07LT01 (2018).

052105-9

https://doi.org/10.1063/1.4819499
https://doi.org/10.1063/1.4819499
https://doi.org/10.1063/1.4819499
https://doi.org/10.1063/1.4819499
https://doi.org/10.1063/1.4791681
https://doi.org/10.1063/1.4791681
https://doi.org/10.1063/1.4791681
https://doi.org/10.1063/1.4791681
https://doi.org/10.1142/S0129055X14500044
https://doi.org/10.1142/S0129055X14500044
https://doi.org/10.1142/S0129055X14500044
https://doi.org/10.1142/S0129055X14500044
https://doi.org/10.1088/1751-8113/48/4/045305
https://doi.org/10.1088/1751-8113/48/4/045305
https://doi.org/10.1088/1751-8113/48/4/045305
https://doi.org/10.1088/1751-8113/48/4/045305
http://arxiv.org/abs/arXiv:1701.03536
https://doi.org/10.1088/1751-8121/aaa4d7
https://doi.org/10.1088/1751-8121/aaa4d7
https://doi.org/10.1088/1751-8121/aaa4d7
https://doi.org/10.1088/1751-8121/aaa4d7



