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Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their
standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120,
040403 (2018), it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these
two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two
phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining
of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the
fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences
between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap
between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.
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I. INTRODUCTION

Complementarity—the fact that perfect knowledge about a
certain observable prohibits knowledge of a second comple-
mentary observable—is a cornerstone of quantum mechanics
and quantum information. Complementarity can be better
formulated through the concept of mutual unbiasedness [1],
which can be characterized in terms of bases (projectors) or
more generalized measurements [2]. Mutually unbiased bases
(MUBs) [3,4] play an important role in the security of quantum
cryptography [5,6], the efficiency of quantum tomography
[7,8], and they are useful for identifying quantum correlations
such as entanglement [9–11] and steering [12–19], as well as
for certifying quantum randomness [20].

In a finite d-dimensional Hilbert space, two orthonormal
bases {|ai〉} and {|bj 〉} are mutually unbiased if and only if
|〈ai |bj 〉| = 1/

√
d for i,j = 0, . . . ,d − 1 [4]. For the case of

continuous variables (CVs), it is well known that the conjugate
pair of position and momentum eigenstates also presents
mutual unbiasedness, as per the relation |〈x|p〉| = 1/

√
2π ,

where here and throughout we set h̄ = 1. The kets |x〉 and |p〉
are normalized (to Dirac delta) eigenvectors of x̂ (position)
and p̂ (momentum) operators, respectively. In fact, if we
define rotated phase-space operators as linear combinations
of dimensionless position and momentum operators,

q̂θ = cos θx̂ + sin θp̂, (1)

the eigenbases of q̂θ and q̂θ ′ are always mutually unbiased,
provided that sin (θ − θ ′) �= 0.

While mutual unbiasedness is not limited to only two
phase-space operators in the CV case, there is a large qualita-
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tive difference when compared to discrete, finite-dimensional
quantum mechanics. In particular, for a d-dimensional system,
the condition for MUBs can be mutually satisfied by d + 1
bases whenever d is the power of a prime number [4]. For CVs,
even though one might suspect that the infinite-dimensional
nature of the state space would lead to infinitely many MUBs,
this is not the case. Indeed, Weigert and Wilkinson [21] have
shown that one can identify at most three mutually unbiased
bases for each CV system. This result applies to the bases
mutually related by rotations on the phase space, leading to a
mutually unbiased phase-space “triple” set of operators. For
example, in addition to the eigenbasis of the position operator
x̂ ≡ q̂0, one can consider eigenbases of two more operators:
r̂ ≡ q̂2π/3 and ŝ ≡ q̂4π/3, as illustrated in Fig. 1. The choice to
begin with the position operator has been made without loss
of generality—alternatively, one could start with any other q̂θ ,
and rotate r̂ and ŝ by θ . Furthermore, if squeezing operations
are allowed, mutual unbiasedness can be preserved even for
phase-space triples whose angles do not differ by 2π/3 [21].

The above discussion on MUBs in the context of CVs
was based on the definition of eigenstates of phase-space
operators. These states are normalized to Dirac δ distributions
and as such are not accessible in an experiment, as they
correspond to the regime of infinite squeezing [22]. When
considering the physical case of quantum states that are merely
“localized” around some—say—position, the corresponding
MUB condition with the momentum is lost. This is true for all
mutually unbiased pairs as well as for triples.

A related issue arises in experimental scenarios in which
it is beneficial or even necessary to use coarse-grained mea-
surements [14,15,23–25]. In [25], while working with the pair
(x,p) of canonically conjugate variables, it was shown that
“standard” coarse graining does not preserve the unbiasedness
property originally present in CVs. Instead, one can work with
coarse-grained periodic structures and recover unbiasedness in
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FIG. 1. Pictorial representation of the phase-space variables
defining the three mutually unbiased bases in continuous variables.
The arrows divide the phase space in three equal slices of 2π/3.

that regime, in some way opposite to that known from modular
variables [26–33]. The goal of the present paper is to expand the
theoretical and experimental analysis performed in Ref. [25]
to the case of general phase-space variables, and in particular
to coarse-grained measurements of more than two phase-space
operators.

This paper is organized as follows: In Sec. II we introduce
periodic coarse-grained (PCG) measurements along arbitrary
directions in phase space. In Sec. III we define mutual unbi-
asedness of pairs of coarse-grained operators, and we extend
this definition to more than two measurements in Sec. IV. In
Sec. V we present experiments and results investigating both
the mutual unbiasedness of PCG phase-space triples and the
mutual unbiasedness of PCG measurements corresponding to
phase-space directions related by an arbitrary angle. Finally,
we provide concluding remarks in Sec. VI.

II. PERIODIC COARSE-GRAINING OF
PHASE-SPACE VARIABLES

Let |qθ 〉 denote an eigenstate of the quadrature operator
q̂θ defined in Eq. (1). The scalar product between eigenstates
corresponding to different quadrature operators is 〈qθ ′ |qθ 〉=
F(qθ ′ ,qθ ), where

F(qθ ′ ,qθ ) =
√

iei�θ

2π |sin �θ |e
i cot �θ

2 (q2
θ +q2

θ ′ )−i
qθ q

θ ′
sin �θ (2)

is the kernel of the fractional Fourier transform [34], and
�θ = θ ′ − θ . As |〈qθ ′ |qθ 〉| = 1/

√
2π | sin �θ |, it is clear that

the eigenbases of any two operators q̂θ and q̂θ ′ are mutually
unbiased whenever sin �θ �= 0.

We can use the eigenstates of q̂θ to define a family (labeled
by θ ) of d coarse-grained projective measurement operators

�̂θ
k =

∫
dqθMk

(
qθ − qcen

θ ; Tθ

)|qθ 〉〈qθ |, (3)

with detector apertures encoded in “mask functions” Mk ,
such that

∑d−1
k=0 Mk = 1. The displacement parameter qcen

θ is
included to represent the freedom of setting the origin, and the
parameter Tθ is the period of the mask function. One possible

FIG. 2. Mask function M0(z; T ), as defined in Eq. (4), for the
d = 4 case. Here, T is the mask’s spatial period, s is its bin width, z

is the spatial coordinate along which the mask is defined, and k is the
index that identifies individual masks. This mask can be viewed as a
periodic array of apertures spaced by d = 4 bins of size s.

choice for the mask functions is

Mk(z; T ) =
{

1, ks � z (mod T ) � (k + 1)s,

0 otherwise.
(4)

As defined in Ref. [25], the functions (4) are periodic square
waves specified by the period T and bin width s = T/d, so
that d can be considered as a “dimensionality” parameter.
The outcome probabilities produced by the set of projectors
(3) with the periodic mask functions (4) define the PCG of
the probability distribution associated with the phase-space
variable qθ . Since we work with dimensionless variables, both
mask parameters T and s are also dimensionless. In Fig. 2 we
illustrate the PCG geometry and the periodic mask function
for the particular case of d = 4.

The operators �̂θ
k are diagonal in their associated basis given

by {|qθ 〉}. To discuss mutual unbiasedness between several
PCG measurements corresponding to different directions in
phase space, it is beneficial to express �̂θ

k in terms of an
arbitrarily rotated basis |qθ ′ 〉. Toward that end, one needs to
represent the periodic mask function by means of its Fourier
series decomposition,

Mk(z; T ) =
∑
N∈Z

fNe− 2πiN
d

ke
2πiN

T
z, (5a)

with

fN = 1 − e− 2πiN
d

2πiN
. (5b)

A moderately straightforward but lengthy calculation (see
Appendix) leads to the result

�̂θ
k =

∑
N∈Z

fN

∫
dqθ ′eiNφ

(N)
k (qθ ′ )|qθ ′ 〉〈qθ ′ − Nτθ |, (6a)

with

φ
(N)
k (qθ ′ ) = τθ

(
qθ ′ − Nτθ

2

)
cot �θ −

(
2πk/d + qcen

θ τθ

sin �θ

)
,

(6b)

and τθ = 2π sin �θ/Tθ . Note that in the limit θ ′ → θ , or
equivalently �θ → 0, the above expressions are not singular,
since τθ → 0 in this limit.

III. MUTUAL UNBIASEDNESS

Given a pure state |	〉, we define a family of probabilities

p
(θ)
k (	) = 〈	|�̂θ

k |	〉, (7)
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which encodes the results of the PCG measurements in ques-
tion. Following [25], measurements labeled by different angles
in phase space, θ and θ ′, are mutually unbiased if for all |	〉
and all k0,l0 = 0, . . . ,d − 1,

p
(θ ′)
k (	) = δk0k =⇒ p

(θ)
l (	) = d−1, (8a)

p
(θ)
l (	) = δl0l =⇒ p

(θ ′)
k (	) = d−1. (8b)

In words, whenever a state is localized according to the
measurements with respect to the phase-space variable spec-
ified by the angle θ ′, it is evenly spread with respect to
measurements corresponding to the second variable defined
by θ . Note that whenever the pairs of projective measurements
are unitarily equivalent, it is sufficient to consider a single
condition, say (8a). In phase space this is usually the case
since q̂θ ′ = F̂

†
�θ q̂θ F̂�θ , with F̂�θ being the unitary fractional

Fourier transform operator. However, for the particular projec-
tive measurements considered here, one also needs an extra
symmetry. Namely, the presumed condition on the periods Tθ

and Tθ ′ , which is necessary to fulfill (8a), must be invariant
under the swap of both periods [25]. The last requirement
will be verified below. Here we mainly emphasize that in the
discussed scenario, the requirement (8b) follows automatically,
provided that (8a) is satisfied.

We are in position to establish the main theoretical results
of this paper. Due to Eq. (6), we can write

p
(θ)
l (	) =

∑
N∈Z

fN

∫
dqθ ′eiNφ

(N)
l (qθ ′ )ψ∗(qθ ′ )ψ(qθ ′ − Nτθ ),

(9)

with ψ∗(qθ ′) = 〈qθ ′ |	〉. This expression is a direct extension of
the formula derived in [25] for the special case of the conjugate
pair of position and momentum. Indeed, if θ ′ = 0 and θ = π/2,
so thatqθ ′ ≡ x, we find that τθ is negative and equal to−2π/Tp ,
with Tp ≡ Tπ/2.

Returning to the general case, we immediately conclude
from Eq. (9) that if

Tθ ′Tθ

2π
= d|sin �θ |

m
, m ∈ N, s.t. ∀n=1,...,d−1

m n

d
/∈ N,

(10)

then the mutual-unbiasedness condition (8) is fulfilled. In
words, m is a natural number [35] such that m n/d /∈ N for
all n = 1, . . . ,d − 1. As explained in [25], there is no clear
pattern followed by the allowed values of m. However, the
case m = 1 stands out as it is present for all values of d. An
excluded case in which m is a multiple of d shall correspond to
pairs of modular variables on the phase space, as this happens
for the standard scenario θ ′ = 0 and θ = π/2 [25,27]. Again,
both displacements of the origins are absent in (10).

To prove the above statement, we observe that under
the condition in question an autocorrelation term present in
(9) simplifies to ψ∗(qθ ′ )ψ(qθ ′ − mNε�θTθ ′/d) with ε�θ =
sign(sin �θ ). Now, if p

(θ ′)
k (	) = δk0k for some k0, then the

autocorrelation differs from zero only for integer values of
mN/d. The sign ε�θ plays no role here. Due to the additional

requirement put on m, the quantity mN/d is an integer only
when N/d ∈ Z. In turn, the prefactor fN defined in (5b)
vanishes for all N that are multiples of d, except the case
N = 0, when it assumes the value of 1/d. This proves the
desired result, since for N = 0, the qθ ′ integral in (9) is equal
to 1. As already mentioned, the condition (10) is invariant with
respect to the swap of both periods, as it only depends on their
product.

IV. MUTUAL UNBIASEDNESS FOR SEVERAL VARIABLES

For infinite-dimensional CV systems there are up to three
simultaneously mutually unbiased bases [21], given—for
example—as eigenbases of the operators x̂ ≡ q̂0, r̂ ≡ q̂2π/3,
and ŝ ≡ q̂4π/3. On the contrary, in finite-dimensional quantum
mechanics one can find even more MUBs [4]. The coarse-
grained scenario is the discretization of the CV case, situated
somewhat between these two distinct regimes, and thus it
is especially interesting to discover which pattern of mutual
unbiasedness will be reproduced. We start with the general case
of the periodic coarse-grained version of mutually unbiased
CV variables, while later we focus on the particular case of
m = 1 [see Eq. (10)], valid for all d, and we prove that,
similarly to the usual CVs, only three PCG measurements
can be simultaneously mutually unbiased. In the most general
scenario—those with independent values of m for each pair of
variables—there is room for more complex settings (possibly
more than three unbiased measurements). We will not explore
this plethora of possibilities here.

A. Three mutually unbiased CV

Let Tx , Tr , and Ts be the periods corresponding to the
mask functions of PCG measurements along x, r , and s. Since
for each pair of the variables | sin �θ | = √

3/2, Eqs. (10) for
θ,θ ′ ∈ {0,2π/3,4π/3} become

TxTr =
√

3πd

m1
, TxTs =

√
3πd

m2
, TrTs =

√
3πd

m3
, (11)

where m1,m2,m3 are natural numbers satisfying the relevant
constraints in Eq. (10). The general solution is found to be

Tx =
√√

3πd
m3

m1m2
, Tr = m2

m3
Tx, Ts = m1

m3
Tx. (12)

Clearly, for the special case m1 = m2 = m3 = 1, all the
periods assume the fixed, dimension-dependent value of√√

3πd. Contrary to the case of the mutually unbiased pair, in
which one of the periods is not fixed but serves as a reference
length [25], for the mutually unbiased triple all the periods are
fixed, up to the freedom offered by the natural numbers m.
This situation is very similar to saturation of variance-based
uncertainty relations. For two variables, all pure Gaussian
states saturate a version of the Heisenberg uncertainty relation,
regardless of the variance of the state. For three CV variables,
the product of three variances is bounded by 1/8 [10,21,36],
and the inequality (�x)2(�r)2(�s)2 � 1/8 is saturated only
when all the involved variances are equal to 1/2.

052103-3



PAUL, WALBORN, TASCA, AND RUDNICKI PHYSICAL REVIEW A 97, 052103 (2018)

B. Maximum number of MUBs in the case m = 1

Here we show that for the periodic coarse graining consid-
ered and with m = 1, a maximum number of three MUBs is
possible. We proceed by searching for an arbitrary number
of K coarse-grained, periodic MUBs, specified by the an-
gles θ1, . . . ,θK and the periods T1, . . . ,TK . Without loss of
generality we assume that θj > θi whenever j > i, and that
0 � θi < 2π for all i = 1, . . . ,K .

We would like to check what number K of PCG measure-
ments {�̂θj

k } can simultaneously be mutually unbiased with the
same value m = 1, i.e., the conditions

TiTj

2π
= d| sin(θi − θj )| (13)

are all satisfied. Using i = 1, we get (j � 2)

Tj

2π
= d

T1
| sin(θ1 − θj )|, (14)

so that, after minor trigonometric simplification, we are left
with (K − 1)(K − 2)/2 consistency conditions (j > i � 2):

| cot(θj − θ1) − cot(θi − θ1)| = 2πd

T 2
1

. (15)

It is clear that if K = 3 we have a single condition for i = 2
and j = 3, which in turn can trivially be solved for T1. In
that way, one immediately obtains a generalized (θ -dependent)
variant of the solutions (12).

Analyzing the case K = 4, it is convenient to make a
simplifying assumption that does not spoil the generality of
the argument: let us assume that θ1 = 0, i.e., our first member
is the periodic coarse graining of the position variable. In this
case, we are left with three consistency conditions, which, after
solving one of them with respect to T1, lead to two equations:

|cot θ3 − cot θ2| = |cot θ4 − cot θ2|, (16a)

|cot θ4 − cot θ3| = |cot θ4 − cot θ2|. (16b)

All three angles θ2,θ3,θ4 can neither be 0 nor π as in such
a case some of the directions would reproduce the position
variable (or −x). As a result, no infinities occur in the above
conditions. By a similar argument we exclude cot θ2 = 0, since
it implies cot θ3 = 0 = cot θ4, and all three directions would
need to correspond to ±p. Since cot θ2 �= 0, we can introduce
auxiliary variables ζ3 = cot θ3/ cot θ2 and ζ4 = cot θ4/ cot θ2,
and rewrite the consistency conditions in the form

|ζ3 − 1| = |ζ4 − 1| = |ζ4 − ζ3|. (17)

It is easy to verify that the only solution to these conditions
is given by ζ3 = 1 = ζ4. As a result, we need to find three
angles from the range ]0,2π [ for which their cotangent would
assume the same value. Since in the desired range the cotangent
function assumes every real, finite value exactly twice, it is
impossible to fit four coarse-grained MUBs (with m = 1) into
the phase space. This argument can be applied to any number
K > 3 directions in phase space. Thus, for the PCG considered,
there are at most three mutually unbiased measurements.

V. EXPERIMENT

A. Three mutually unbiased PCG measurements

To demonstrate mutually unbiased PCG measurements of
the phase-space triple x (θ = 0), r (θ = 2π/3), and s (θ =
4π/3), we performed an optics experiment exploring the
transverse spatial variables of a paraxial laser beam. Using
systems of converging lenses and spatial light modulators
(SLMs), we prepared the eigenstate of the PCG measurement
operator �̂θ

k , described by Eq. (3) with Eq. (4). In the sequence,
we used an equivalent apparatus to perform the measurement
described by another operator �̂θ ′

k′ on the prepared state. This
procedure was followed for every combination of (different)
θ,θ ′ ∈ {0, 2π

3 , 4π
3 }, and every possible value of k and k′ for

measurement dimensionality d from 2 up to 10. The PCG
measurements {�̂θ

k} and {�̂θ ′
k′ } can be considered unbiased

if the resulting conditional probability distributions satisfy
p(k′|k) = 1/d ∀ k,k′.

Figure 3 shows a simplified scheme of our experimental
setup. The output of an attenuated Thorlabs’ CPS180 635-nm
diode laser was first coupled in and out of a single-mode fiber.
At the output of the fiber, the beam was well-collimated so that
its transverse field distribution was given by exp[−x2/(4σ 2)],
whereσ = 875 μm. Though our experiment used a laser beam,
the same physics applies to single photons with equivalent
spatial and spectral properties.

The preparation of the eigenstate of operator �̂θ
k was done in

two steps. First, the beam was subjected to a fractional Fourier
transform (FrFT) by a set of converging lenses connecting a
reference plane to the plane of SLM 1. In this way, the chosen
phase-space direction, defined by θ , was mapped onto the
phase-space x axis on the physical position of SLM 1, which
then performed the operation described by �̂0

k . This procedure
allows us to prepare eigenstates of the operator �̂θ

k .
A single lens of focal length f , placed symmetrically at a

distance z from the input and output planes, performs a FrFT
characterized by the phase-space rotation angle θ (with proper
dimensionalization discussed below), where [37]

z = 2f sin(θ2/2). (18)

To achieve all of the phase-space rotations desired, we com-
bined two different systems of lenses. On the one hand, a pair
of confocal 100-mm focal-length lenses together performed a
π rotation (see Fig. 4). On the other hand, a single 400-mm
focal-length lens, placed 200 mm away from both its input and
output planes, performed a π/3 rotation [38] (see also Fig. 4).
Therefore, two sequential 400-mm lenses performed a 2π/3
rotation, a pair of 100-mm lenses followed by a 400-mm lens
performed a 4π/3 rotation, and two sequential pairs of 100-mm
lenses were used to perform a 2π rotation.

FIG. 3. Sketch of the experimental setup. The actual spatial light
modulators (SLMs) used were reflective. The fractional Fourier
transforms (FrFTs) are described in the text.
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FIG. 4. Lens systems used to perform the FrFTs. On the top, two
confocal 100-mm focal-length lenses are used to perform a π rotation.
On the bottom, a single 400-mm lens is used to perform a π/3 rotation.
The planes represent the object and image planes of the systems.
Sequential combinations of these systems were used to produce the
desired phase-space rotations.

To adequately interpret the action of a single lens as a FrFT
and therefore as a rotation in phase space, it is necessary to use
dimensionless variables. This can be done by using the scaling
factor [38]

δ =
√

λf sin θ/2π, (19)

where λ is the laser beam’s wavelength, f is the lens’ focal
length, and θ is the corresponding phase-space rotation angle.
Choosing f = 400 mm and θ = π/3, we were able to use
the same scaling factor for all variables. This means the
dimensionless variables are x = x ′/δ, r = r ′/δ, and s = s ′/δ,
where the primed letters represent the measured transverse
spatial variables (with dimension of length).

To perform the operations described by �̂0
k , we used

reflective Holoeye Pluto phase-only SLMs, which generated
the desired mask functions aligned with the horizontal (lab
table). All the mask periods were given by Eq. (12), with
m1 = m2 = m3 = 1. Combining Eqs. (12) and (19), we can
calculate the periods for each dimension. Considering that we
were constrained to using periods that were integer multiples of
the SLM pixel length (l = 8 μm), the actual periods used were
approximations of the theoretical ones, as we can see in Table I.

After the prepare and measure procedures, the beam size
was then reduced by a factor of ≈10 (a magnification of
≈ 0.1) by an imaging system consisting of two confocal
lenses of focal lengths 250 and 25.4 mm, and coupled into
a 300-μm core multimode fiber using a 10X Olympus plane
achromat objective. The multimode fiber was then connected
to one channel of a Perkin Elmer SPCM-AQ4C single-photon

TABLE I. Ideal mask periods (T ), as calculated from the theory,
and their ratio to the SLM pixel length (T/l), as a function of
the dimension (d). The actual experimental periods used (Texp)
correspond to the nearest possible integer number of pixels.

d T (μm) T/l Texp (μm)

2 617.3 77.2 616
3 756.0 94.5 752
4 872.9 109.1 872
5 976.0 122.0 976
6 1069.1 133.6 1072
7 1154.8 144.3 1152
8 1234.5 154.3 1232
9 1309.4 163.7 1312
10 1380.2 172.5 1384

FIG. 5. Probability distributions obtained for a periodic coarse
graining with dimension d = 7, when using preparation mask k = 2.
Each of the graphs corresponds to one of the possible combina-
tions of the prepare and measure phase-space directions x(θ = 0),
r(θ = 2π/3), and s(θ = 4π/3). The dashed lines correspond to the
theoretical predictions. The error bars correspond to the standard
deviations derived from the laser Poissonian count statistics.

avalanche photodiode detector. The number of photons arriv-
ing at the detector in a 0.1 s time interval was registered.

For each preparation, all the measurement outcomes were
normalized with respect to the sum of all outcomes (for
the preparation at hand). The normalized values were then
interpreted as the conditional probabilities p(k′|k) of ob-
taining each measurement result k′ given the corresponding
preparation k. Figure 5 shows an example of the probability
distributions obtained for d = 7, where the prepared mask
was k = 2. One can see qualitatively that the measurement
outcomes for all pairs of variables are approximately uniform,
displaying threefold mutual unbiasedness for these periodic
coarse-grained measurements.

As a figure of merit to check the measurements’ unbiased-
ness, we opted to use the Kullback-Leibler (KL) divergence,
also known as the relative entropy:

D(P ||Q) =
d−1∑
i=0

Pi log2

(
Pi

Qi

)
, (20)

where P is the measured probability distribution, and Q is the
target uniform distribution, such that Qi = 1/d for all Qi . A
perfect match between generated and target uniform distribu-
tion means zero divergence, while a maximal divergence of
D = log(d) is achieved for a perfectly localized distribution.
Using this quantity, we compared (for each dimension) the
set of experimental probability distributions to a sample of
106 simulated random probability distributions. Each part
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FIG. 6. Histograms of the Kullback-Leibler divergences. The
blue bars represent the 106 simulated random distributions, while
the red bars represent the experimental data. The horizontal axes
are the KL divergences, and the vertical axes are the probabilities
of occurrence.

of Fig. 6 (one for each value of d) shows the histogram
of KL divergences for the sample of simulated probability
distributions (blue bars), together with the histogram for
the divergences calculated from the experimentally obtained
probability distributions (red bars). We can clearly see from the
graphs that the experimental probability distributions produce
KL divergences much lower than what would be expected from
random chance.

To have a better quantitative view of these results, we
calculated (again, for each d) the percentage of simulated prob-
ability distributions that produce KL divergences greater than
the greatest value achieved for the experimental distributions

TABLE II. Percentage (P ) for each dimension (d) of simulated
probability distributions that produce KL divergences greater than the
greatest value achieved for the experimental distributions. The errors
listed correspond to the standard deviations.

d P

2 80 ± 1
3 94.4 ± 0.4
4 97.2 ± 0.2
5 98.2 ± 0.2
6 99.3 ± 0.1
7 99.50 ± 0.04
8 99.65 ± 0.03
9 99.89 ± 0.02
10 99.33 ± 0.04

(see Table II). If we allow the extrapolation of these results to
the set of every (infinite) d-dimensional probability distribu-
tion, this means that each experimental distribution is closer
to the uniform distribution, as per the KL divergence, than
at least the given percentage of every possible d-dimensional
probability distribution. These results show that we were able
to obtain probability distributions very close to the uniform
distribution, and that their proximity was not solely a matter
of random chance, demonstrating that the three measurements
defined are indeed mutually unbiased.

B. Unbiasedness for two arbitrary directions in phase space

Any two PCG measurements in distinct directions in phase
space are mutually unbiased, given that Eq. (10) is satisfied.
With that in mind, we carried out experiments in which
we prepared eigenstates of �̂0

k , for every k = 0, . . . ,d − 1,
and then performed measurements described by the operators
{�̂α

k′ }, with the smallest value for the angle α that we could
achieve in our experimental setup. Using z = 200 mm and f =
250 mm, Eq. (18) gives θ ≈ 78.5◦. Two such optical systems in
a row implement a phase-space rotation of 157◦. Following this
operation by a reflection in real space, which is equivalent to
the transformation x → −x and is automatically fulfilled due
to the reflective character of the SLMs, we achieved the rotation
angle of α ≈ 23◦. With this operation, we performed the same
procedure described in the previous section, but repeating the
measurements for several bin widths. Each part of Fig. 7 shows
the KL divergences from the uniform distribution obtained for
these measurements, one for each d. On the horizontal axes
are the bin widths, in pixels, used for the preparation masks.
The bin width of the measurement masks can be obtained from
Eq. (10). We can see that for the smallest bin widths, the data
tend to not be as reliable. Nevertheless, for larger bin widths
the KL divergences are clearly near zero.

Again, we can see that, even for a relatively small angle
in phase-space between the variables, we obtain probability
distributions very close to the uniform distribution, showing
the unbiasedness of the measurements.

VI. DISCUSSION

Periodic coarse graining can be used to recover mutual
unbiasedness, a property that is not present in physical real-
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FIG. 7. The Kullback-Leibler divergences of the distributions
obtained by preparing an eigenstate of �̂0

k and performing the mea-
surements described by {�̂23◦

k′ }. Each figure summarizes the results
for one dimension. The horizontal axes are the bin widths in terms of
number of pixels. The vertical axes are the KL divergences from the
uniform distributions. The top dashed line in each figure identifies
the KL divergence value above which lie 80% of the probability
distributions simulated in the previous section. Analogously, the
following lines from top to bottom determine the limits for 90%, 95%,
and 99% of values, respectively (note that in the first two figures, only
the lines corresponding to the 80% and 90% limits are seen). The error
bars have been omitted for being about the size of the points.

ization of the standard coarse-grained versions of phase-space
observables. We have shown that, for a periodic coarse graining
given by mask functions defined in Eq. (4), and in the particular
case of m1 = m2 = m3 [see Eq. (12)], up to three mutually
unbiased bases can be defined. The open question remains as to

whether one can define more mutually unbiased measurements
for other cases, and it is an interesting topic to be investigated.

An optics experiment was performed to demonstrate these
results. The optical fractional Fourier transform was used to
prepare and measure periodic coarse-grained versions of a
symmetric phase-space triple of operators. Very good agree-
ment was found between theory and experiment for all mea-
surement dimensionality tested in our experiment (from 2 to
10). In addition, we experimentally tested mutual unbiasedness
for periodic coarse graining of measurements that correspond
to phase-space variables that are separated by only a 23◦
rotation in phase space.

Our theoretical and experimental results contribute to the
further understanding of the relation between continuous and
discrete quantum mechanics, and they could prove useful in
the discover of new uncertainty relations, and in adapting
quantum-information protocols to continuous variable sys-
tems.
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APPENDIX: DERIVATION OF EQ. (6)

We start the derivation by employing the Fourier series
expansion (5) of the periodic mask function

�̂θ
k =

∑
N∈Z

fNeiNϕk

∫
dqθe

i
Nτθ qθ
sin �θ |qθ 〉〈qθ |, (A1)

with ϕk = −2πk/d − qcen
θ τθ/ sin �θ . Using the completeness

relation 1 = ∫
dqθ ′ |qθ ′ 〉〈qθ ′ |, we can change the basis from |qθ 〉

to its rotated counterpart |qθ ′ 〉,

�̂θ
k =

∑
N∈Z

fNeiNϕk

∫
dqθ ′

∫
dq̃θ ′Q(qθ ′ ,q̃θ ′ )|qθ ′ 〉〈q̃θ ′ |, (A2)

where

Q(qθ ′ ,q̃θ ′ ) =
∫

dqθe
i

Nτθ qθ
sin �θ F(qθ ′ ,qθ )F(qθ ,q̃θ ′ ). (A3)

The variable q̃θ ′ has the same physical meaning as qθ ′ and the
tilde on top of it has only been introduced to distinguish both
integration variables.

An explicit form of the above kernel is

Q(qθ ′ ,q̃θ ′ ) = ei cot �θ
2 (q2

θ ′ −q̃2
θ ′ )

2π |sin �θ |
∫

dqθe
i

qθ
sin �θ (Nτθ+q̃θ ′ −qθ ′ ). (A4)

One can immediately perform the integration with respect
to qθ as it leads to the Dirac δ function

Q(qθ ′ ,q̃θ ′ ) = ei cot �θ
2 (q2

θ ′ −q̃2
θ ′ )δ(Nτθ + q̃θ ′ − qθ ′ ). (A5)

In the last step, one needs to plug the above expression
into Eq. (A2), perform the integration with respect to q̃θ ′ , and
simplify accordingly.
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